Many animals rely on robust visual navigation which can be explained by snapshot models, where an agent is assumed to store egocentric panoramic images and subsequently use them to recover a heading by comparing current views to the stored snapshots. Long-range route navigation can also be explained by such models, by storing multiple snapshots along a training route and comparing the current image to these. For such models, memory capacity and comparison time increase dramatically with route length, rendering them unfeasible for small-brained insects and low-power robots where computation and storage are limited. One way to reduce the requirements is to use a compressed image representation. Inspired by the filter bank-like arrangement of the visual system, we here investigate how a frequency-based image representation influences the performance of a typical snapshot model. By decomposing views into wavelet coefficients at different levels and orientations, we achieve a compressed visual representation that remains robust when used for navigation. Our results indicate that route following based on wavelet coefficients is not only possible but gives increased performance over a range of other models.
Funding
Brains on Board: Neuromorphic Control of Flying Robots; G1980; EPSRC-ENGINEERING & PHYSICAL SCIENCES RESEARCH COUNCIL; EP/P006094/1