LakkisMakridakisPryer-2014-A-article-A comparison.pdf (668.59 kB)
Download fileA comparison of duality and energy a posteriori estimates for L8(0,T;L2(O)) in parabolic problems
journal contribution
posted on 2023-06-09, 00:18 authored by Omar LakkisOmar Lakkis, Charalambos MakridakisCharalambos Makridakis, Tristan PryerWe use the elliptic reconstruction technique in combination with a duality approach to prove a posteriori error estimates for fully discrete backward Euler scheme for linear parabolic equations. As an application, we combine our result with the residual based estimators from the a posteriori estimation for elliptic problems to derive space-error indicators and thus a fully practical version of the estimators bounding the error in the norm. These estimators, which are of optimal order, extend those introduced by Eriksson and Johnson in 1991 by taking into account the error induced by the mesh changes and allowing for a more flexible use of the elliptic estimators. For comparison with previous results we derive also an energy-based a posteriori estimate for the -error which simplifies a previous one given by Lakkis and Makridakis in 2006. We then compare both estimators (duality vs. energy) in practical situations and draw conclusions.
Funding
EPSRC 2006; RD05; EPSRC-ENGINEERING & PHYSICAL SCIENCES RESEARCH COUNCIL; EP/P502780/1
History
Publication status
- Published
File Version
- Published version
Journal
Mathematics of ComputationISSN
0025-5718Publisher
American Mathematical SocietyExternal DOI
Issue
294Volume
84Page range
1537-1569Department affiliated with
- Mathematics Publications
Full text available
- Yes
Peer reviewed?
- Yes