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Abstract

Market betas of bitcoin relative to a broad crypto market index vary considerably, de-

pending on the data source and the index selected. Even greater differences are found

for ether and other cryptocurrencies. An in-depth exploration of the cause of these

discrepancies reveals a long-standing incorrect time-stamping of some ranking-site data,

and hence also the CRIX market index. Furthermore, individual coin data from some

exchanges requires adjusting for unstable prices in the ‘stablecoin’ tether. Even then,

Bitfinex coin prices have de-coupled from prices on other exchanges. Is yet another

Bitfinex-tether issue arising? Finally, regarding the risk analysis of coin returns, we

argue that this requires highly sophisticated models. But calibrating even the simplest

GARCH model is extremely difficult because they are surprisingly sensitive to the data

source.
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Highlights

• Market betas of major coins differ remarkably depending on the data source

• Less than half the papers published since Jan 2017 employ correct data

• Data from some sources have mistakes that require adjusting

• Bitfinex prices diverge from other exchanges even after tether adjustment

• Bitcoin needs complex GARCH models and these are highly sensitive to data source



1 Introduction

It is free and easy to download long historical series on prices of major cryptocurrencies at the

daily frequency, indeed even hourly and higher frequency data are available on bitcoin (BTC), ether

(ETH), ripple (XRP) and other major coins.1 It is, therefore, unsurprising that a very large number

of empirical studies have appeared during the last few years. Indeed, a quick initial search already

shows 124 relevant papers published in academic journals between January 2017 and March 2019,

and 28 SSRN relevant discussion papers published in 2018.2 Unfortunately, over 80 of these use:

1. Data from questionable sources; and/or

2. Non-concurrent time-series data in multivariate analysis; and/or

3. Non-traded prices in portfolio optimisation, efficiency studies, trading strategy development

or hedging analysis.

The primary sources for traded price and volume data are the centralised crypto exchanges such

as Coinbase, Kraken and Binance. These have an Application Programming Interface (API) service

that allows retrieval of a limited history of the order book, and traded prices and volumes, via a

variety of data transfer protocols.3 Historical time series for traded prices and volumes may also

be obtained from CoinAPI and Cryptodatadownload, for some of the major coin pairs traded on

the most established exchanges.4 However, most of the academic literature on cryptocurrencies

uses non-traded price data on individual coins (or tokens) that are freely downloaded from websites

such as Cryptocompare (CC), Coinmarketcap (CM) and Coingecko (CG). These ‘coin ranking’

companies are so called because they rank both coins and exchanges by trading volume and market

capitalisation.5

1A cryptocurrency (or cryptoasset or ‘crypto’) is a type of digital asset residing on a blockchain, including coins
such as bitcoin, ether and ripple and tokens, which differ from coins because they ride on a non-native blockchain.

2That is, a Scopus search on title, abstract or keywords with terms ‘bitcoin’ or ‘cryptocurrency’ published in Ac-
counting, Business, Econometrics, Economics, Finance or Management journals yielded 247 papers published between
January 2017 – March 2019 and 87 SSRN discussion papers (uploaded between January 2018 – March 2019). From
these we judged that 124 published and 28 SSRN papers were on topics relevant to this audience. Many more papers
were published in conference proceedings but we do not include those here.

3These APIs provide free and open access to each centralised exchange’s data, allow the management of trade
orders, and interact with users via REST, WebSocket, or FIX protocols. REST is best used for infrequent individual
requests; WebSocket provides a constant stream of data; FIX is commonly used for order placement and management.
Most exchanges provide libraries in common programming languages that allow access to their API – see e.g. the
libraries provided in the Coinbase Pro exchange REST API. The typical output of a price data request to an exchange
API is in JSON format – see e.g. the output of a browser-based REST API call to Coinbase Pro that retrieves a list
of its products. Note that all of the above holds for centralised exchanges that function outside the blockchain; the
executed orders and positions held by investors are recorded internally by the exchange, unless a user explicitly requests
the transfer of crypto funds to their own personal wallet or fiat funds to their personal bank account. Centralised
exchanges therefore must hold fiat currency and cryptocurrency reserves in order to fulfill any such requests. On the
other hand, there also exist (less liquid) decentralised exchanges that operate on smart contract-enabled blockchain
platforms such as Ethereum and EOS, and all trade orders are recorded and executed on-chain as smart contract
transactions – see Daian et al. (2019) for further details.

4CoinAPI is a paid service with limited free access even to individual executed trades and Cryptodatadownload
provides some daily, hourly and higher frequency data free.

5See www.coingecko.com, www.coinmarketcap.com, and www.cryptocompare.com. Other coin ranking sites in-
clude Nomics, Coincall, Coincap, and OnchainFX. The period available depends on liquidity, e.g. bitcoin daily data
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A straightforward way to illustrate how empirical results can be influenced by the choice of

crypto data is to estimate a simple index regression of the form:

rit = αi + βiRt + εit,

where rit is the ordinary return on the ith source of the coin price and Rt is the return on the market

factor. Table 1 displays the results for daily returns on BTC and ETH, with traded and non-traded

prices as dependent variables. Here we examine BTC and ETH traded prices from the Bitfinex,

Coinbase, Gemini, Kraken and Poloniex centralised crypto exchanges. Non-traded price indices are

obtained from CG, CM and CC.

Table 1: Market Betas of BTC and ETH w.r.t. CCi30, CRIX and MVDA25 Indices
Market betas with corresponding t-statistics in parentheses of daily returns on BTC (upper panel) and ETH (lower
panel) prices from CG, CM and CC, and from Bitfinex, Coinbase, Gemini, Kraken and Poloniex. The market factor
is the return on either the CCi30, the CRIX, or the MVDA25 crypto market index. The sample period is 1 April
2016 – 31 March 2019 for BTC and 1 July 2016 – 31 March 2019 for ETH. Parameters of interest are highlighted in
blue and red.

CG CM CC Bitfinex Coinbase Gemini Kraken Poloniex

BTC

CCi30
0.374 0.730 0.744 0.742 0.734 0.743 0.734 0.743
(14.6) (44.3) (44.9) (43.4) (43.2) (44.1) (43.5) (43.3)

CRIX
0.903 0.528 0.519 0.515 0.506 0.515 0.497 0.521
(69.4) (20.9) (20.1) (19.6) (19.4) (19.7) (18.9) (19.8)

MVDA25
0.359 0.495 0.509 0.501 0.504 0.508 0.504 0.504
(15.4) (24.1) (24.6) (23.7) (24.2) (24.4) (24.3) (23.8)

ETH

CCi30
0.501 1.008 1.020 1.012 1.012 1.023 0.998 1.021
(13.1) (37.3) (37.4) (37.7) (36.1) (36.0) (36.3) (37.8)

CRIX
1.041 0.513 0.502 0.489 0.490 0.498 0.471 0.510
(33.6) (12.0) (11.6) (11.4) (11.2) (11.2) (10.9) (11.8)

MVDA25
0.568 0.763 0.778 0.757 0.778 0.777 0.760 0.772
(16.8) (25.3) (25.6) (25.0) (25.4) (24.8) (25.0) (25.5)

For the market factor we tested three alternative crypto market indices – the CCi30, the CRIX and

the MVDA25 index.6 The indices include a different number of assets – between 25 and 50 of the

largest cap coins, and are structured as follows: the CRIX and MVDA25 indices are cap-weighted,

and the assets in CCi30 are weighted by the square root of their market cap.

Due to this difference in the weighting scheme, we expected the β estimates for both BTC and

ETH to be smaller with respect to (w.r.t.) CCi30 compared with the other two indices. In fact, this

is not at all the case; the correlations between index returns and BTC returns from CC indicate

start as early as April 2013 but ether data begins only in August 2015. Bloomberg and Thomson Reuters also provide
aggregated data on coin prices. Data are also not limited to US dollar coin prices; there are indices in other fiat
currencies like the euro and Japanese yen, calculated using the same methodology.

6See www.cci30.com for CCi30, Trimborn and Härdle (2018) and www.thecrix.de for CRIX, and the MVDA25
methodology.
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the opposite – 0.81 for CCi30, 0.52 for CRIX and 0.6 for MVDA25. Moreover, given that ETH is

significantly more volatile than BTC we expected the same relationship to hold for their estimated

betas, but this is not always the case. So we expected the betas estimated from our simple index

model to depend on the choice of index to some extent, but our results are extreme. The first

inexplicable observation is that beta estimates for the Coingecko (CG) data are radically different

compared with the other data sources. For instance, the Coingecko BTC beta w.r.t. the CRIX is

0.903 while the estimated CRIX betas based on all other BTC sources are around 0.5. The same

holds for ETH betas, for instance w.r.t. the MVDA25 index – the CG beta is 0.568 whereas the

betas w.r.t. the MVDA25 for the rest of the data sources are around 0.7. We also observe that the

market betas w.r.t. the three indices are inconsistent to a degree that cannot be explained by the

small differences in composition. For instance, the BTC beta for CG is 0.903 w.r.t. the CRIX but

only 0.374 w.r.t. the CCi30 and 0.359 w.r.t. the MVDA25; and again, the same holds for ETH.

We were very surprised by these inconsistencies, and rather puzzled, so we decided to investigate

things further and ended up writing this paper, which we intend to be used as a guide for authors

of empirical studies on cryptocurrencies. First we examine the different sources of free historical

crypto price data in detail. Then, finding important mistakes in some commonly-used sources, we

explain how these should be corrected to avoid generating meaningless empirical results. Thereafter,

we demonstrate that (even after correction) historical crypto data need handling with considerable

care otherwise results will not be robust. Finally, we survey some of the literature mentioned above,

finding good data practices in only a fraction of the already-published papers on cryptocurrency

markets.

In the following: Section 2 provides a detailed explanation of the construction of non-traded coin

prices and indices, focusing on how trading volumes distort the data provided by some coin-ranking

websites; Section 3 examines the mistakes generated by Coingecko data, which (at the time of

writing) feed into the CRIX index; Section 4 examines the use of non-synchronous crypto and other

financial data, corrects for those exchanges which trade against tether instead of USD and identifies

some interesting and recent problems emerging in Bitfinex data; Section 5 presents a volatility

analysis of BTC using various models calibrated to prices from various sources, thence questioning

how robust risk assessment can be in this asset class; Section 6 summarises and concludes; and

some additional results are reported in appendices.

2 Volume Matters

The most common sources for cryptocurrency price data are ranking websites. A recent SEC

application from Bitwise Asset Management (2019) and an article by Carter (2018) both suggest that

the revenue model of such websites is largely dependent on crypto exchanges, and that consequently

ranking websites are in a conflict of interest regarding their data methodologies. Retail investors

decide which crypto exchange to trade on, based on the market data that ranking websites provide.

Ranking websites host advertisements and referral links that ‘funnel’ retail investors to affiliate

crypto exchanges, in return for fees. Because of the fees that certain ranking websites receive

from crypto exchanges, they may be tempted to report traded volume data inflated by wash-
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trading, transaction fee mining, and use of non-fiat cross-rates, which may result in certain exchanges

appearing more liquid than in reality. Of the data that ranking websites provide, market cap is

relatively straightforward to measure, being the value of all coins in circulation – ignoring those

coins held by the development team or locked in inaccessible wallets. But the daily volume traded

is much more difficult to quantify for two reasons: Firstly, many exchanges deliberately inflate

volume figures precisely because this boosts their ranking and attracts more traders as well as

developers who are more willing to pay large fees to list their coins on these exchanges; Secondly,

Coinmarketcap and Coingecko construct fiat-denominated coin indices using some sort of inferred

volume from cross-trades against other crypto and different fiat rates.7

These artificial volume figures affect the coin values quoted by coin-ranking sites. To see how

and why, we explain their methodology.8 The dollar price index for each coin is based on the

volume-weighted average of its dollar price on different crypto exchanges, so that the daily price

index pit for each coin i is obtained using pijt , the price of coin i from source j at time t, and vijt ,

the corresponding 24-hour volume traded from t− 1 to t, both expressed in USD, in the formula:

pit =

 N∑
j=1

vijt

−1 N∑
j=1

pijt v
ij
t , (1)

where N is the total number of price sources – for instance in the BTC/USD price index, currently

N is approximately 300 for CG, 400 for CM, but only 40 for CC.

Consider the effect that each of the issues identified above may have on the individual coin

indices of CC, CM and CG. Starting with volume inflation, several new exchanges have a ‘zero fee’

structure or even a ’transaction-fee mining’ structure which turns trading fees around by actually

rewarding market makers for placing limit orders with the exchange’s own coin.9 This actively

encourages volume inflation because market makers earn coins through wash trading, which is still

legitimate in these unregulated exchanges.10

Turning to volumes inferred from data on cross-rates, only Cryptocompare confines its calcu-

lation to USD-denominated crypto prices; both Coinmarketcap and Coingecko include USD prices

inferred from cross-rates with other coins – including tether – and other fiat currencies. That is why

they have several hundred price sources in (1). It is not clear how to infer a traded volume from

7See the methodologies of Coinmarketcap and Coingecko.
8In the following, we use the US dollar index, because it is the most commonly used rate in data analysis, but the

same remarks apply to the other fiat indices provided. In fact, CC calculates price indices in multiple fiat currency
denominations – e.g. a JPY-denominated BTC price index only includes BTC/JPY prices. By contrast, CG and
CM denominate their price indices in USD, transforming any non-USD crypto prices into USD using FX rates. For
instance if we request a JPY-denominated BTC price index from CM, they transform their USD-denominated price
index into JPY using the JPY/USD FX rate.

9As of March 2019 the top exchanges (by monthly traded volume) that engage in transaction-fee mining were
Coinbene, ZBG and FCoin. Combined monthly traded volume of transaction-fee mining exchanges represented 14%
of total cryptocurrency spot traded volume in March 2019 – see Cryptocompare Exchange Review for more detail.

10Wash trading is the same entity (perhaps even the exchange itself) placing buy and a sell orders at the same price
and volume, so that almost certainly the two orders will be executed against each other. This increases the volume
without moving the price and it can be practiced at no cost (and with little risk) by any trader in zero-fee exchanges.
Exchanges offering transaction-fee mining take this a step further – they calculate a trader’s fees and then reward
the trader with these ‘fees’ in the form of a (supposedly) stable token set up by the exchange. Of course, until these
exchanges are regulated all these questionable trading practices will be as rife as spoofing.
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two cross-rates correctly, because this requires information on the size and purpose of each realised

trade within the give time frame (e.g. 24-hour period). In the absence of such detailed information,

ranking websites that employ cross-rates in the VWAP calculation resort to ‘back-of-the-envelope’

calculations to express cross-rates and their volumes in the desired base currency.11 If the prices

obtained from CM and CG behaved very similarly to the CC prices this obscurity would not be

important. But using non-traded volumes inferred from cross-rates is actually an important issue

– for reasons explained below when we examine the data in more detail.

Any problems with the individual coin price data will be carried over to the market-wide coin

indices that employ them. The CCi30, CRIX and MVDA25 are cap-weighted indices derived from

25–50 large cap coins, typically constructed as:

It = d−1t

k∑
i=0

pit q
i
s , (2)

where: k is the number of coins included; pit is the price index of coin i at time t, based on (1); qis is

the circulating supply of coin i at time s ≤ t, which is typically the point when the index was last

rebalanced; and the normalizing divisor dt resets when the index composition changes.12

In Tables A1 and A2 of the appendices we compare the sample statistics for ordinary daily

returns on BTC and ETH close prices from CG, CM, and CC, and also from Bitfinex, Coinbase,

Gemini, Kraken and Poloniex for the period 1 April 2016 (1 July 2016 for ETH) – 31 March 2019.

We select this period because it includes several different states of the crypto market, so that our

results are not dominated by the characteristics of a particular market regime.13 Given the variety

of market states in our sample, the descriptive statistics very much depend on the sub-period

examined – e.g. we observe extremely high positive returns and high volatility in the 1 April 2017 –

31 March 2018 (middle panel) which is dominated by the Q4 2017 bubble, and much lower volatility

and negative returns during the bear market of 2018 (lower panel). When comparing the statistics

across different data sources, the main differences are located in the skewness and excess kurtosis,

which indicates that some outliers are apparent in some data sources but not in other.

Unlike other financial assets, cryptocurrency prices can also differ markedly depending on the

11CM first translates any non-USD prices and volumes in (1) into USD via relevant cross-rates, while ignoring the
cross-rate volume. This is especially problematic for coin-to-coin cross-rates: if the prices used are all fiat-crypto rates,
then the total traded volume is at least indicative of flows between crypto markets and the ‘fiat world’. If crypto-
to-crypto cross-rates are used, then e.g. the BTC/ETH currency pair provides an implied BTC/USD price via the
ETH/USD rate; the BTC/ETH traded volume is also expressed in USD via the ETH/USD cross-rate. This method
erroneously assumes that all trades in the BTC/ETH pair are executed with the purpose of exchanging the coin back
to USD. Despite this serious bias, the majority of ranking websites (with the notable exception of Cryptocompare)
use many non-USD prices and volumes in (1). The approach adopted by CG and Nomics is to translate the prices
via cross-rates, and express all volumes in the corresponding coin. For instance, when calculating a BTC price index,
traded volumes of BTC/USD, BTC/EUR, BTC/ETH etc. are all expressed in BTC. This approach does not make
assumptions regarding the trading volume, although it still uses non-USD cross-rates.

12The CRIX and MVDA25 indices are constructed as per (2), while the CCi30 index employs a variant of (2) that
weights coins by the square root of their market cap. In (2), k is 30 for the CCi30, 50 (currently) for the CRIX, and
25 for the MVDA25. As for pit, it is constructed as per (1) by all market indices mentioned here. CCi30 uses CoinAPI
data; CRIX uses CG price indices; MVDA25 uses CC price indices.

13The April 2016 – March 2019 period contains the most recent crypto market bubble of Q4 2017, the more
reasonable pre-bubble bullish period until Q2 2017, the bubble’s burst in January 2018, and the subsequent bearish
period for the rest of 2018.
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exchange. These differences are least pronounced in the most liquid market, i.e. BTC/USD, but even

these prices can be significantly different across various exchanges. To justify this remark Figure A1

in the appendices exhibits the distribution of end-of-day prices over many exchanges to illustrate the

extent to which synchronous prices on BTC/USD may differ. The empirical distribution is derived

from 23:00:00 UTC time-stamped prices from the 12 largest exchanges (by BTC trading volume at

that time) over the entire year 2018. Most percentage deviations from the Coinbase price are less

than 50 basis points but some are up to 4%. Other coins have even more deviant prices, which can

be more than 10% depending on the coin and exchange selected.14

3 Mistakes in Time Stamps

Crypto exchanges trade on a 24-7 basis so their close prices are usually measured at (or very near

to) 23:59:59 UTC.15 However, the BTC/USD daily prices from Coingecko (CG) are timestamped

00:00:00 UTC, and so are the CRIX crypto market index values because they are constructed using

CG data.16 This means that there is either a one millisecond difference, which should hardly affect

the prices reported at all, or there is a whole day’s difference, depending on the day that the time-

stamp refers to. However, something very strange seems to have occurred on 30 January 2018

because the CG (and CRIX) prices moved out of synch with other prices since that date – and the

problem still persists at the time of writing. Figure 1 illustrates the problem by plotting the CG –

CC spreads for BTC and ETH (in blue) and, as a sanity check, the CM – CC spreads (in red) all

relative to CC’s prices.

Because of the volume issue identified above, we do not expect the spreads to be zero. However,

after 30 January 2018, the CG – CC spread moved completely out of line, deviating by as much as

20%. The middle graphs of Figure 1 exhibit the same spreads but the CG prices are lagged by one

day relative to the other two prices. This time, the CG spread moves into line after 30 January but

is out-of-line before that date. In the lower graphs of Figure 1 we plot the CG – CC and CM – CC

spreads after this mistake has been corrected. Both spreads now behave in a similar manner. We

conclude that, when historical coin prices are downloaded from CG, prior to 30 January 2018 they

can be used as they are; but the researcher needs to lag them starting from 30 January onwards.17

Now consider the market indices. In Figure 2 we compare the CRIX – CCi30 spread relative

to CCi30 firstly using the CRIX data as is (upper graph), then lagging CRIX by one day (middle

graph), and finally using CRIX data as is until 29 January 2018 and a 1-day lag of CRIX values

starting from 30 January 2018 (lower graph). Again, the results show that lagging CRIX data after

30 January 2018 is the correct treatment. We again perform a sanity check, this time for crypto

market indices. We construct the CC5, a simple price weighted index (similar in construction to

14Distributions of price deviations between exchanges for other coins are not reported here but are available on
request.

15Coordinated Universal Time (UTC) shares the same current time with Greenwich Mean Time (GMT), and they
do not change for Daylight Saving Time (DST).

16We source Coingecko BTC/USD prices using its API tool – the data can be accessed at Coingecko’s API. CRIX
data are obtained from the CRIX website – see thecrix.de.

17That is, we delete the 30 January 2018 CG price and lag the remaining 31 January 2018 – 31 December 2018
price series by one day.
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Figure 1: CG – CC Spread for BTC and ETH Prices
CG – CC and CM – CC price spreads relative to CC’s daily price for BTC (left-hand graphs) and ETH (right-hand
graphs), using CG price data as is (upper graphs), lagged by one day (middle graphs), and finally as is until 29
January 2018 and lagged starting from 30 January 2018 (lower graphs). The sample period is 1 April 2016 (1 July
2016 for ETH) – 31 March 2019.
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the Dow Jones stock index) that contains BTC, ETH, XRP, LTC, and DASH – the top 5 coins

in market cap on 1 January 2016, using historical coin price data from CC. We find no excessive

variability in the CC5 – CCi30 spread, indicating that the CCi30 data are not at fault. However, it

is clear the CRIX data have absorbed the mistake in the CG data as described above.18 As of June

2018 four published papers and other discussion papers employ Coingecko as a data source, and a

further eleven papers employ CRIX index data.

18It would be good to use ready-made crypto market indices with a more sophisticated construction methodology
such as the MVDA25 or the Bletchley 10 index – see www.bletchleyindexes.com. However, this is not possible. The
MVDA25 values refer to 17:00:00 UTC, and the Bletchley 10 index does not provide historical data as far back as
early 2016.
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Figure 2: CCi30 – CRIX Spread
CRIX – CCi30 spread relative to CCi30, using CRIX daily data as is (upper graph), lagged by one day (middle graph),
and as is until 29 January 2018 and lagged starting from 30 January 2018 (lower graph). The sample period is 1 April
2016 – 31 March 2019.
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4 Other Data Issues

In this Section we begin by examining the use of non-synchronous crypto and other financial data,

and then we discuss the deviations between traded prices which sometimes behave quite strangely.

We now examine the use of non-synchronous crypto and other financial data, which can be

problematic due to the high volatility of crypto prices. But even when using synchronous traded

data, prior to 2018 there were significant price deviations across crypto exchanges; these deviations

have become very small since January 2018, with the exceptions of tether-denominated crypto prices

which still exhibit significant deviations.

If crypto prices are used in multivariate analysis with other types of financial assets it is necessary

to access data on an intra-day basis in order to obtain synchronous prices across all assets used.19

A few hours difference in the time of price measurement could be particularly problematic in crypto

markets because of the very high volatility of coin prices. That is, data are used in a correlation

or other multivariate analysis where the price of a coin is for instance registered 3 or 4 hours after

the close price of a New York-based stock index. Typically the time lag can range from 3 to 18

hours.20 Even in BTC, which is the least volatile of the commonly traded cryptocurrencies, the

19For instance, the close prices on the New York Stock Exchange (NYSE) are only available Monday through Friday
at 16:00 Eastern Time (UTC-05:00 or UTC-04:00 depending on Daylight Saving Time). Another advantage of CC is
that it allows high-frequency data to be downloaded.

20For instance, the S&P 500 close time is 16:00 Eastern Time (UTC-05:00 or UTC-04:00 in DST), so crypto prices
are reported 3 or 4 hours later; the Euro Stoxx 50 close time is 18:00 Central European Time (UTC+01:00 or
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average intra-day price range over the period 1 January 2016 – 31 December 2018 is 5.85% with a

positive skew and heavy-tails, as shown in Figure A2 of the appendices; and for ETH the average

intra-day range in the same sample period is 10.5%.21

It is important to use concurrent data for papers studying portfolio diversification and hedging,

but also for any other paper analysing crypto and other financial data in combination. Borri and

Shakhnov (2018), Karalevicius (2018), Baur and Dimpfl (2019), Borri (2019) and Urquhart and

Zhang (2019) acknowledge this issue and treat it accordingly.22 It is also particularly important to

use synchronous data for studies of arbitrage. Some papers on exchange arbitrage are careful to use

synchronous high-frequency data. For instance, Lintilhac and Tourin (2017) use 5-hour frequency

traded data on BTC-e, Bitstamp and itBit with a sample period of 4 January 2014 to 3 June 2016 to

demonstrate profitable arbitrage opportunities after accounting for bid/ask slippage, transactions

costs and market impact costs. Similarly, Makarov and Schoar (2018) use tick level trading data

from the 15 largest and most liquid exchanges between 1 January 2017 – 28 February 2018, and find

large arbitrage opportunities across different exchanges that often persist for several days. Also,

when examining cryptocurrency futures and their role in price discovery, synchronous data must be

used – see e.g. (Alexander and Heck, 2019; Baur and Dimpfl, 2019; Choi et al., 2019).23

Significant price deviations between crypto exchange prices allowed arbitrageurs to extract prof-

its, but since the beginning of 2018 these price deviations have become much smaller. To see this

Figure 3 depicts the price spread between the Coinbase BTC price and four other long-established

centralised exchanges, always relative to the Coinbase price. The spreads are large and variable

until the second quarter of 2018, after which they become almost negligible.24 However, in the last

UTC+02:00 in UTC), so crypto prices are reported 7 or 8 hours later; the Nikkei 225 close time is 15:00 UTC+09:00
(no DST), so crypto prices are reported 18 hours later; the CSI 300 close time is 15:00 UTC+08:00 (no DST), so
crypto prices are reported 17 hours later. Crypto markets operate on a 24-7 basis with almost no exceptions, so a
common convention in historical price data is to report each day’s ‘close’ price at or very near 23:59:59 UTC.

21Of course, those cryptocurrencies that are hardly traded at all have illiquid markets and so their prices do not
move much, but we are not interested in those.

22Borri and Shakhnov (2018) examine the efficiency of bitcoin markets. They compute end-of-day bitcoin prices
corresponding to 16:00 UTC and drop observations corresponding to weekends and additional non-business days, to
match bitcoin prices with fiat currency exchange rates (obtained from Thompson Reuters) whose daily close occurs
at 16:00 UTC; and the same treatment is applied in Borri (2019). Karalevicius (2018) examines whether investor
sentiment is a good predictor for bitcoin’s returns. He webscrapes news articles from Coindesk, Cointelegraph and
other crypto news websites, and takes care to convert all dates and times to UTC+00:00 in accordance with the price
data he collects from Bitstamp so that sentiment analysis is performed on the correct subsample of articles for each
day. Baur and Dimpfl (2019) use 15-minute frequency for their bitcoin spot price data, in order to align them exactly
on the bitcoin futures trading hours. Urquhart and Zhang (2019) examine bitcoin’s role as a hedge or diversifier
against fiat currency exchange rates. Since foreign exchange trades on a 24-hour basis except weekends, and bitcoin
trades on a 24-7 basis, they choose to filter out bitcoin prices during periods when the currency markets are closed.

23Other papers use synchronous spot data to study crypto market efficiency: Bariviera (2017), Vidal-Tomás and
Ibañez (2018) and Zargar and Kumar (2019) use data from Bitstamp; Pieters and Vivanco (2017) and Sensoy (2019)
use data from multiple crypto exchanges, as can be obtained from Bitcoincharts; and Borri and Shakhnov (2018)
consider prices from over 100 exchanges listed on Cryptocompare; Brauneis et al. (2018) access the REST API of
Bitfinex, Bitstamp and Coinbase, requesting both high-frequency trades and limit order book data.

24All significant deviations of these spreads from zero can be tied with extreme events in the crypto market. For
instance, on 28 May 2016 BTC traded at a significant discount on Poloniex just when the enormously-hyped DAO
token began trading on Poloniex. On 2 August 2016 BTC the Bitfinex – Coinbase BTC spread spiked because
Bitfinex halted trading due to a hack and at the same time BTC prices crashed on most other exchanges. In April
2017 Bitfinex and Poloniex BTC prices decoupled from other exchanges due to issues faced by Bitfinex and Tether
with their banking partners. And in the fourth quarter of 2017 Coinbase BTC prices were higher than Bitfinex,
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Figure 3: Bitfinex, Gemini, Kraken and Poloniex BTC Spreads against Coinbase
Bitfinex – Coinbase, Gemini – Coinbase, Kraken – Coinbase and Poloniex – Coinbase BTC price spreads, all expressed
relative to Coinbase’s BTC price. The data frequency is daily and the sample period is 1 April 2016 – 26 June 2019.
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quarter of the sample period when the spreads on Bitfinex and Poloniex diverge compared with

the spreads on Gemini and Kraken, because the prices on Bitfinex and Poloniex are expressed in

tether (USDT) not USD. Tether is a stablecoin and is supposed to be exchangeable 1:1 with USD,

but in fact it has been known to deviate significantly, offering quite a lot of arbitrage opportunities.

In fact, on 15 January 2015 Bitfinex announced that it accepts USDT deposits and credits them

as USD to users’ trading accounts at a 1:1 rate. The tether-dollar parity was effectively ended by

Bitfinex on 27 November 2018 when it introduced a USDT/USD cross-rate, and even more so on

21 December 2018 when they introduced margin trading on that pair with up to 3.3x leverage.

But until 11 March 2019 when separate BTC/USDT and ETH/USDT pairs were introduced by

Bitfinex, BTC and ETH Bitfinex prices were effectively denominated in tether.

In the upper graph of Figure 4 we express the Bitfinex and Poloniex BTC prices in USD using

the USDT/USD cross-rate available on Kraken.25 The Poloniex prices (in green) move into line

with the rest after adjustment, but the Bitfinex prices (in blue) do not, and even using the Bitfinex

USDT/USD price to adjust the Bitfinex BTC price does not bring it back in line with the others.

Interestingly, the decoupling of the Bitfinex BTC price (even after tether adjustment) coincides

exactly with a significant decline in BTC/USD price levels during the fourth quarter of 2018 as

shown in Figure 4. This event occurs very close to the introduction of the USDT/USD pair by

Bitfinex on 27 November 2018, denoted by the first dotted line in the upper graph of Figure 4; the

second dotted line denotes the introduction of margin trading for the BTC/USDT and ETH/USDT

Bitfinex pairs (11 April 2019). The Bitfinex price subsequently converges towards the Coinbase

price, making the Bitfinex – Coinbase BTC price spread in the upper graph very small. A second

Bitfinex price decoupling occurs in mid-April 2019 (upper graph), and coincides very closely with

the legal issues face by Bitfinex. Most alarming of all, the lower graph of Figure 4 depicts an

immense increase in the supply of tether by more than 1.5 billion tokens between mid-March and

late June 2019. This increase in tether’s supply is accompanied by an impressive surge in BTC/USD

Kraken and Poloniex prices, possibly because many of its new users traded through its retail platform.
25We use the Kraken USDT/USD price because it has much higher (real) volume compared with other crypto

exchanges and the longest historical period available.
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prices across all exchanges – see Alexander and Dakos (2019) for more detail, and Griffin and Shams

(2018) for empirical evidence of tether’s role in the bitcoin price bubble of 2017.

Figure 4: BTC Tether-Adjusted Price Spreads, BTC Price Level and USDT Supply
Upper graph: Bitfinex – Coinbase, Gemini – Coinbase, Kraken – Coinbase and Poloniex – Coinbase BTC price
spreads, all expressed relative to Coinbase’s BTC price. Bitfinex and Poloniex prices are expressed in USD via the
Kraken USDT/USD cross-rate. Lower graph: BTC price index from CC. The data frequency is daily, and the
sample period is 1 April 2018 – 26 June 2019. Vertical dotted lines denote dates of interest.
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5 Challenges in Risk Assessment

Here we demonstrate that the choice of data source has an enormous influence on the calibra-

tion of statistical volatility models for cryptocurrencies, using BTC and ETH for our empirical

results. Numerous papers explore the best specification for generalised autoregressive conditional

heteroscedasticity (GARCH) models introduced by Bollerslev (1986) on different types of financial

data, see Engle et al. (2008) for a useful survey. Ten recent papers have explored this topic using

returns on BTC and other cryptos. Bouoiyour and Selmi (2016) examine several specifications

for BTC returns and find that the optimal specification is the component with multiple threshold

(CMT)-GARCH. Katsiampa (2017) claims that asymmetric component GARCH fits BTC returns

better than many other models. Corbet et al. (2018) use symmetric GARCH and Vidal-Tomás and

Ibañez (2018) use a component GARCH, both with un-specified distributions for innovations. By

contrast, Bouri et al. (2017) use a symmetric model with innovations that follow a generalised error

distribution (GED), and Al-Khazali et al. (2018) attempt several specifications, finding that the op-

timal model is the exponential GARCH with normally distributed residuals. Dyhrberg (2016) uses

a symmetric and an exponential normal GARCH on BTC returns. Similarly, Baur et al. (2018) use

a normal exponential GARCH model, and note that using a Student-t distribution does not improve

their results. They also use a normal GJR-GARCH and find that estimates violate the parameter
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constraints for a finite positive steady-state volatility, so the variance process is integrated.26

All of the above papers calibrate models using maximum likelihood estimation (MLE). However

this optimizer lacks robustness: when we generate observations from a GARCH model with fixed

parameters and use these observations to re-estimate the same GARCH specification, MLE cannot

identify the same parameters. Following Asai (2006), Virbickaite et al. (2015) and Ardia (2008)

it is now recognised that Markov chain Monte Carlo (MCMC) is much more robust than MLE

for calibrating univariate GARCH data generation processes. Using MCMC, Ardia et al. (2019)

motivate the use of Markov switching GARCH models for BTC data, and find that a two-regime

asymmetric (GJR) skewed Student-t GARCH model provides the best in-sample fit. Also using

MCMC, Caporale and Zekokh (2019) extend these results to ether, ripple and litecoin, using Value-

at-Risk and Expected Shortfall backtesting and the model confidence set procedure to select the

best model specification.

Before we put these risk models for cryptocurrencies under the microscope, we ask how important

it is to get the right risk model – e.g. perhaps a moving average estimation is enough. Suppose we

take a 30-day equally-weighted moving average (EQMA) or a standard RiskMetrics exponentially

weighted moving average (EWMA) with smoothing constant 0.94 – would we obtain similar results

to those generated by a GARCH model? Let us compare the different model’s in-sample volatility

estimates for daily returns on BTC and ETH prices from CC. In Figure 5 we plot the 30-day EQMA,

the EWMA with λ = 0.94 and – after much experimentation with several GARCH specifications –

the exponential GARCH model of Nelson (1991) with Student-t distributed innovations.27 Bitcoin’s

volatility is lower than other cryptos; ether’s volatility is higher, yet it is the second least-volatile

cryptocurrency. The spreads in volatility estimates between different methods can be as high as

400% for BTC and 100% for ETH, and they maximize during periods of high volatility. For instance,

on 21 November 2018 BTC volatility is 73% when calculated with an EQMA(30) and 133% when

calculated with a single-state Student-t EGARCH. This has an enormous impact on Sharpe ratio

calculation that most funds report on a regular basis: PwC reports an average quant crypto hedge

fund return of a little more than 10% p.a. in 2018; assuming that a funds return on 21 Novemeber

2018 was 10% p.a. and with current borrowing rates so low, this would translate into an ex-post SR

of either 0.14 using the EQMA(30) or 0.07 using the single-state Student-t EGARCH. By the same

token, such huge differences in volatility, depending on risk model choice, would have a significant

effect on the capital provisions necessary for large institutional investors. In view of these findings

we conclude that the choice of risk model is very important indeed – a risk manager should deploy

a well-defined GARCH model which should be calibrated using MCMC rather than MLE.

Now we investigate how our choice of data source affects the GARCH model calibration. For

this, we use daily returns on BTC prices obtained from various sources. We find similar results to

Baur et al. (2018) for non-switching GARCH specifications, i.e. the estimated variance process is

26Also Borri (2019) examines conditional tail-risk in the markets for bitcoin, ether, ripple and litecoin using prices
obtained from the Bitfinex and Bitstamp exchanges. Matkovskyy (2019) compares the EUR, USD, and GBP central-
ized and decentralized BTC crypto exchanges in terms of return volatility and interdependency.

27We were only able to calibrate this model by imposing a reasonable value for the degrees of freedom parameter
based on sample statistics moments.
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Figure 5: Cryptocompare BTC and ETH In-sample Volatility
We depict the 30-day EQMA, EWMA and Student-t EGARCH in-sample volatility estimates based on the daily
returns of BTC (upper graph) and ETH (lower graph) prices from CC. The sample period is 1 April 2018 – 31 March
2019.
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almost always integrated and most models are clearly misspecified.28 Therefore, we explore Markov

switching specifications. Following Ardia et al. (2019) we use the two-state Markov switching GJR-

GARCH model and estimate its parameters using MCMC.29 We filter the log returns through an

AR(1) conditional mean and then apply the two-state Markov switching skewed Student-t GJR-

GARCH model:

σ2it = ωi +
(
αi + γiI{εt−1< 0}

)
ε2t−1 + βiσ

2
i,t−1 where εt ∼ tηi,ξi and i = 1, 2.

We approximate the unconditional steady-state volatility of each regime as:

UVi =

√
365ωi

1− αi − 0.5γi − βi
.

The β parameter controls the persistence of price shocks in the volatility, and volatility may react

differently to positive and negative price shocks depending on the values of α and γ. The degrees

28Detailed results are available on request.
29Ardia et al. (2019) take log returns on BTC Bitstamp prices, ranging from 19 August 2011 until 2 March 2018.

They find that out of several model specifications the two-state skewed Student-t GJR-GARCH provides the best
in-sample fit based on the Deviance Information Criterion (DIC). We can successfully replicate their results using the
MSGARCH R package documented in Ardia et al. (2019). We thank Dr. David Ardia and Keven Bluteau for their
valuable help in adapting the MSGARCH R package for the leverage effect we need for crypto returns.
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of freedom (η) and asymmetry (ξ) parameters for the skewed Student-t distribution are also state-

dependent. The constant state transition probabilities control the latent state variable st; these are

summarised in the transition probability matrix:

Π =

(
p11 p21

p12 p22

)
,

where each element pij = P (st = j|st−1 = i) denotes the constant probability of transitioning from

state i at time t− 1 to state j at time t.

To understand the ‘data source effect’ on the GARCH model parameters, we use BTC prices

from CG, CM, CC, Bitstamp and Kraken between 1 September 2013 – 31 March 2019.30 We

produce the posterior parameter distribution using 10,000 burn-in draws and build a sample of size

2,000 with the next 10,000 draws keeping only every 5th draw, setting our pseudo-random number

generator seed to 1 for each data source. Table 2 reports the posterior distribution median and

(in parentheses) the 25th and 75th percentiles for each parameter in the Markov switching skewed

Student-t GJR-GARCH. The parameter estimates are highly sensitive to the data source choice.

For instance, in state 1 which is the low volatility regime (upper panel of Table 2) the CG ω1

median falls outside CC’s (25th, 75th) percentile interval, even though the two medians are quite

close; and similarly for γ1 and p11. Even worse, in state 2 which is the high volatility regime, the

median estimate for the leverage parameter γ2 does not even maintain the same sign for all sources,

and the corresponding (25th, 75th) percentile intervals indicate a lot of dispersion in the parameter

distributions; the estimates of β in state 2 based on the CG and Bitstamp data are both well below

the normal values for a GARCH persistence parameter; and the steady-state volatility estimates

vary considerably across data sources. In fact all the calibrated parameters differ, in some cases

very considerably, across different data sources.

Given the large discrepancies in parameter estimates across data sources, we now ask whether

the optimal model choice also varies when we use different data. We compare the optimal GARCH

model specification for BTC returns from CG, CM, CC, Bitstamp and Kraken, as indicated by

the Deviance Information Criterion (DIC) and the Bayesian Predictive Information Criterion (IC).

Table A3 of the appendices reports the DIC and IC for the following model specifications estimated

using MCMC: two-state Markov switching GARCH, GJR-GARCH or EGARCH with innovations

distributed according to a (symmetric or skewed) normal or Student-t distribution. For each data

source we highlight (in blue) the minimum DIC and IC values which indicate the optimal model

choice from those examined. The DIC and IC reported in Table A3 indicate that the optimal

models are almost exclusively the two-state Markov switching symmetric GARCH and EGARCH

with innovations that follow a skewed Student-t distributions. These results are different compared

with Ardia et al. (2019), but we do not employ the same historical period.

Because the optimal choice of model can be highly sensitive to the sample period, we also exam-

ine the symmetric GARCH and EGARCH specifications as defined by Bollerslev (1986) and Nelson

30We do not use ETH data since they are only available from mid-2015 onwards, and the sample length is not
sufficient for a Markov switching model calibration, even with the MCMC method.
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Table 2: Markov Switching GJR-GARCH on Non-Traded and Traded BTC Data
Markov switching skewed Student-t GJR-GARCH parameter medians and (in parentheses) the 25th and 75th per-
centiles, based on BTC daily returns from CG, CM, CC, Bitstamp and Kraken. The sample period is 1 September
2013 – 31 March 2019. Parameters of interest are highlighted in blue and red.

CG CM CC Bitstamp Kraken

State 1

ω1
0.145 0.007 0.197 0.036 0.011

(0.116, 0.185) (0.006, 0.007) (0.166, 4.932) (0.031, 0.042) (0.009, 0.014)

α1
0.147 0.052 0.156 0.070 0.100

(0.126, 0.168) (0.046, 0.058) (0.051, 0.181) (0.051, 0.093) (0.085, 0.117)

γ1
-0.067 -0.019 -0.097 -0.006 -0.074

(-0.091, -0.035) (-0.034, -0.005) (-0.144, 0.246) (-0.033, 0.020) (-0.089, -0.061)

β1
0.865 0.953 0.858 0.922 0.917

(0.846, 0.878) (0.947, 0.958) (0.662, 0.877) (0.910, 0.934) (0.908, 0.926)

η1
2.948 2.396 2.873 2.832 3.057

(2.846, 3.093) (2.362, 2.441) (2.709, 4.653) (2.699, 3.001) (2.950, 3.202)

ξ1
1.013 1.046 0.998 1.028 1.100

(0.989, 1.033) (1.026, 1.068) (0.902, 1.031) (1.008, 1.046) (1.082, 1.124)

p11
0.944 0.957 0.976 0.975 0.862

(0.934, 0.952) (0.950, 0.964) (0.972, 0.980) (0.970, 0.979) (0.846, 0.879)

UV1 49.6% 21.5% 45.7% 36.3% 14.2%

State 2

ω2
30.442 2.377 4.599 24.312 1.828

(27.905, 32.819) (2.129, 2.645) (0.168, 5.435) (20.950, 28.351) (1.675, 2.004)

α2
0.003 0.240 0.067 0.231 0.022

(0.003, 0.004) (0.222, 0.258) (0.054, 0.185) (0.197, 0.265) (0.019, 0.025)

γ2
0.297 -0.055 0.204 0.311 0.168

(0.230, 0.364) (-0.082, -0.031) (-0.144, 0.262) (0.185, 0.424) (0.140, 0.202)

β2
0.009 0.767 0.682 0.308 0.880

(0.004, 0.028) (0.754, 0.779) (0.657, 0.880) (0.275, 0.348) (0.862, 0.896)

η2
51.933 4.172 4.165 3.131 65.485

(29.060, 70.020) (3.895, 4.542) (2.684, 4.835) (2.860, 3.466) (61.535, 69.464)

ξ2
0.710 0.865 0.937 0.854 0.906

(0.661, 0.775) (0.837, 0.893) (0.880, 1.022) (0.813, 0.891) (0.851, 0.960)

p22
0.772 0.950 0.974 0.951 0.599

(0.730, 0.815) (0.944, 0.956) (0.969, 0.979) (0.936, 0.961) (0.569, 0.634)

UV2 115% 204% 106% 170% 216%

(1991) respectively, reporting results in the appendices (and results for other GARCH models are

available on request). Specifically, the MCMC parameter medians (and percentiles) of the skewed

Student-t symmetric GARCH and EGARCH models are reported in Tables A4 and A5 of the appen-

dices. Again we note significant discrepancies in all parameters across data sources. For instance,

the skewed Student-t GARCH appears to be the optimal model for CG and Bitstamp according the

corresponding DIC and IC values in Table A3. However, when we examine the parameter estimates
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in Table A4 every parameter median for CG is outside the (25th, 75th) percentile interval of the

same parameter for Bitstamp, except for the distribution parameters η and ξ, and the state 2 tran-

sition probability p22; and the same holds vice versa. Similarly, the skewed Student-t EGARCH is

the optimal model for CC and Kraken data. And yet, when we examine the EGARCH parameter

medians and percentile intervals of CC and Kraken displayed in Table A5 the parameter medians

of CC are outside the percentiles’ interval of Kraken, and vice versa, for almost all parameters.

6 Summary and Conclusions

In the light of all our findings and discussions, we critically surveyed the last two and a half years of

papers published in finance and economics journals, and some of the more recent SSRN papers. We

summarise those papers which use the wrong kind of data without citing any of them explicitly. As

explained in Section 1, by ‘wrong’ we mean any of the following: data from questionable sources;

non-concurrent time-series data in multivariate analysis; non-traded prices in portfolio optimisation,

efficiency studies, trading strategy development or hedging analysis.

In total, we examined 152 published and SSRN discussion papers. Of these, 38 use data from

questionable sources; 38 incorrectly employ non-traded prices; and 36 use non-synchronous data

in a multivariate analyses across different asset classes. Approximately half the relevant published

papers in our literature search (67 from a total of 124) are published in Economics Letters, Finance

Research Letters and Research in International Business and Finance; 39 of these use ‘wrong’ data.

Having said this, out of the 152 published and discussion papers in our search, 25 papers do use

proper traded prices when examining the topics mentioned above.31 Hopefully by the time this

article is published, there will be many more.32 As for data synchroneity, 5 papers in our sample

do use concurrent data.33

When examining crypto market efficiency, portfolio optimization, hedging and trading applica-

tions it is very important to use traded data from crypto exchanges, not data from coin-ranking

sites. But some exchanges do not trade fiat currencies and instead use ‘stablecoins’ such as tether.

So their prices need adjustment in order to be comparable with fiat prices. Even then, significant

inconsistencies can occur between traded prices on different exchanges. Researchers and traders

need to be aware of such inconsistencies both in order to avoid using ‘compromised’ data, and

because these cases may be excellent topics for further research. The BTC/USD price premium of

Bitfinex and its potential implications form one such case that we discuss in brief.

It is also important to use a well-conditioned GARCH model for risk assessment of cryptocur-

rencies. Following Ardia et al. (2019) we support the use of Student-t Markov-switching GARCH

31These are the following: Bariviera (2017), Lintilhac and Tourin (2017), Pieters and Vivanco (2017), Urquhart
(2017), Baur et al. (2018), Benedetti (2018), Borri and Shakhnov (2018), Brauneis et al. (2018), Dyhrberg et al.
(2018), Griffin and Shams (2018), Koutmos (2018), Makarov and Schoar (2018), Vidal-Tomás and Ibañez (2018),
Baig et al. (2019), Baur and Dimpfl (2019), Borri (2019), Borri and Shakhnov (2019), Bouri et al. (2019), Choi et al.
(2019), Eross et al. (2019), Hu et al. (2019), Matkovskyy (2019), Mbanga (2019), Sensoy (2019), Urquhart and Zhang
(2019), and finally Zargar and Kumar (2019).

32These numbers are valid as of the time of writing, and to the best of our knowledge.
33These are: Borri and Shakhnov (2018), Borri (2019), Karalevicius (2018), Baur and Dimpfl (2019) and Urquhart

and Zhang (2019).
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models with two states, at least for BTC returns. However, we find that the choice between a

symmetric or asymmetric volatility model very much depends on the data source as well as the

sample period, and so do the model parameters themselves. In practice the risk manager must

be very careful to calibrate this model on data from the crypto exchange that they are actually

trading on. Otherwise, the parameter estimates are likely to be quite incorrect. For instance, if

a trader uses CC or Bitstamp prices for investments made on Kraken, they will get very different

results. And when a non-traded coin price can be used for risk assessment we recommend using the

Cryptocompare data because other coin-ranking sites base their quotes on unreliable volume data.

In finance we sometimes tend to worry very little about the quality of our data; after all,

Bloomberg is Bloomberg. However, the choice of data source is of particular importance in cryp-

tocurrency research. We have tried to provide a framework for best data practice which, having

surveyed the recent literature, is clearly necessary in this area. There are numerous different sources

of freely-downloadable data to choose from but some are clearly better than others and we have

given several reasons why. In addition to volume-inflation, which can distort some individual coin

data from coin-ranking sites, the Coingecko data contains significant errors which feed into the

CRIX market index. We have shown how these errors can be corrected, and that it is necessary to

do this before any meaningful empirical analysis can be performed.
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Appendices

Supplementary Figures and Tables

In Figure A1 we compare end-of-day BTC/USD historical prices from Bitbay, Bitfinex, Bitstamp,

Cexio, Exmo, Gemini, ItBit, Kraken, Quadrigacx, Quoinex, and Yobit with the BTC/USD price

from the Coinbase exchange, and we plot the empirical density of
(
pjt − pct

)
/pct , where pjt is the

end-of-day BTC/USD price from exchange j on day t, and pct is the BTC/USD price in Coinbase

at the same time. All end-of-day (23:00:00 UTC) prices are retrieved from Cryptodatadownload for

the period 1 January 2018 to 31 December 2018. The average deviation is 1.18% with a standard

deviation of 2.58%, but the distribution exhibits a strong positive skew and heavy tails, with some

deviations being as large as 4%.

Figure A1: Percentage deviations of daily BTC exchange prices relative to Coinbase
Empirical density of the difference between the BTC/USD end-of-day prices on Bitbay, Bitfinex, Bitstamp, Cexio,
Exmo, Gemini, ItBit, Kraken, Quadrigacx, Quoinex, and Yobit, and the BTC/USD end-of-day prices on Coinbase.
The differences are expressed relative to Coinbase prices, the data is retrieved from Cryptodatadownload, and the
sample period is 1 January 2018 – 31 December 2018.

Figure A2 depicts the empirical density of the intra-day BTC price range for the period 1

January 2016 to 31 December 2018 period. The high-low range is calculated using Cryptocompare’s

BTC/USD index price and is expressed relative to each day’s Low price.

Figure A2: Intra-day range of Cryptocompare BTC/USD
Empirical density of the intra-day range for Cryptocompare’s BTC/USD single index. The range is expressed relative
to each day’s Low price, and the sample period is 1 January 2016 – 31 December 2018.
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Table A1: Sample Statistics on BTC Non-Traded Price Indices and Traded Prices
Sample statistics of the daily returns on BTC prices from CG, CM and CC, and from Bitfinex, Coinbase, Gemini,
Kraken and Poloniex.

BTC Non-Traded BTC Traded

CG CM CC Bitfinex Coinbase Gemini Kraken Poloniex

1 Apr 2016 – 31 Mar 2017

Mean (p.a.) 113.1% 110.8% 112.6% 111.3% 113.5% 113.1% 113.4% 113.9%
Volatility 58.9% 56.6% 58.0% 55.9% 58.5% 58.3% 60.0% 59.9%
Skewness -0.74 -0.73 -0.84 -0.58 -0.50 -0.84 -0.79 -0.88
Ex. Kurtosis 6.24 6.01 6.62 5.79 6.03 6.11 6.51 7.09

1 Apr 2017 – 31 Mar 2018

Mean (p.a.) 241.7% 241.2% 240.4% 243.0% 238.5% 239.7% 238.0% 242.0%
Volatility 105.2% 104.1% 104.3% 107.8% 103.9% 104.7% 102.5% 106.7%
Skewness 0.41 0.33 0.28 0.35 0.46 0.42 0.27 0.34
Ex. Kurtosis 4.57 2.57 2.20 2.06 2.68 2.68 1.97 2.01

1 Apr 2018 – 31 Mar 2019

Mean (p.a.) -33.9% -33.9% -31.9% -29.2% -31.7% -31.4% -31.3% -31.6%
Volatility 61.8% 61.6% 63.8% 65.6% 64.4% 64.6% 64.6% 64.2%
Skewness -0.15 -0.13 -0.16 -0.07 -0.19 -0.17 -0.18 -0.18
Ex. Kurtosis 2.96 3.02 2.90 3.12 3.20 3.13 3.14 3.20

Table A2: Sample Statistics on ETH Non-Traded Price Indices and Traded Prices
Sample statistics of the daily returns on ETH/USD prices from CG, CM and CC, and from Bitfinex, Coinbase,
Gemini, Kraken and Poloniex.

ETH Non-Traded ETH Traded

CG CM CC Bitfinex Coinbase Gemini Kraken Poloniex

1 Jul 2016 – 31 Mar 2017

Mean (p.a.) 238.8% 247.8% 249.8% 241.7% 252.1% 250.1% 247.9% 249.5%
Volatility 113.4% 114.1% 115.3% 110.0% 118.1% 117.9% 114.6% 115.9%
Skewness 0.97 1.32 1.17 1.49 1.32 0.84 1.15 1.08
Ex. Kurtosis 8.49 8.12 6.87 6.66 6.70 5.38 6.63 6.69

1 Apr 2017 – 31 Mar 2018

Mean (p.a.) 290.8% 293.8% 292.7% 294.4% 291.6% 298.2% 289.6% 293.2%
Volatility 130.7% 133.6% 132.9% 133.3% 132.7% 136.2% 130.2% 132.4%
Skewness 0.54 0.76 0.66 0.41 0.81 0.79 0.60 0.43
Ex. Kurtosis 2.06 2.74 1.81 1.24 2.37 2.11 1.41 1.16

1 Apr 2018 – 31 Mar 2019

Mean (p.a.) -56.9% -57.5% -52.2% -51.3% -52.7% -52.5% -51.9% -53.9%
Volatility 95.5% 95.0% 99.2% 99.0% 99.5% 99.6% 99.7% 97.9%
Skewness 0.05 -0.04 -0.02 0.02 -0.07 -0.03 -0.04 -0.01
Ex. Kurtosis 2.02 2.08 1.98 1.95 2.05 2.11 2.00 1.99
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Table A3: Optimal GARCH Models – DIC and IC Comparison
Comparison of DIC (upper metric in each row) and IC (lower metric in each row) for two-state Markov-switching GARCH models. We examine all combinations
of GARCH, GJR-GARCH and EGARCH with normal and Student-t (both symmetric and skewed) distributed innovations. We use BTC data from CG, CM, CC,
Bitstamp and Kraken, for the sample period 1 September 2013 – 31 March 2019. We highlight (in blue) the optimal (smallest) DIC and IC values for each data
source.

GARCH GJR-GARCH EGARCH

Normal Student-t Normal Student-t Normal Student-t

Sym. Sk. Sym. Sk. Sym. Sk. Sym. Sk. Sym. Sk. Sym. Sk.

CG
10298.45 10285.59 10253.31 10227.27 10334.05 10330.67 10246.01 10246.49 10317.50 10260.63 10233.19 10233.08
10304.86 10292.79 10274.62 10238.78 10344.67 10339.49 10259.90 10264.81 10332.53 10271.10 10240.76 10248.11

CM
10274.03 10267.27 10201.66 10188.53 10297.07 10305.19 10253.51 10189.07 10321.82 10320.95 10198.15 10189.12
10280.70 10273.99 10215.43 10200.89 10303.14 10314.02 10263.73 10198.58 10337.98 10329.20 10205.55 10199.76

CC
10510.80 10498.39 10385.62 10377.72 10514.47 10499.12 10381.61 10382.14 10430.68 10425.66 10371.59 10369.67
10517.30 10504.90 10393.36 10386.59 10523.79 10507.59 10392.58 10394.86 10437.89 10432.08 10378.40 10381.09

Bitstamp
10362.92 10354.06 10302.68 10286.02 10404.15 10410.56 10316.93 10318.08 10415.23 10410.00 10300.69 10291.61
10369.28 10360.75 10320.41 10298.88 10412.13 10418.72 10331.79 10330.84 10428.35 10424.19 10308.80 10302.95

Kraken
10518.65 10516.61 10524.27 10486.93 10532.42 10532.82 10462.73 10459.52 10484.96 10483.45 10449.89 10445.04
10524.56 10523.98 10582.89 10523.98 10539.56 10541.38 10470.79 10467.94 10491.50 10490.66 10458.82 10456.94
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Table A4: Markov Switching GARCH on Non-Traded and Traded BTC Data
Markov switching skewed Student-t GARCH on BTC daily returns from CG, CM, CC, Bitstamp and Kraken. The
sample period is 1 September 2013 – 31 March 2019. The two-state Markov-switching skewed Student-t GARCH
model is defined as σ2

it = ωi+αiε
2
t−1 +βiσ

2
i,t−1, where εt ∼ tηi,ξi and i = 1, 2. Again we approximate the steady-state

volatility as UVi =
√

365ωi
1−αi−βi

. We highlight in blue the values of interest.

CG CM CC Bitstamp Kraken

State 1

ω1
0.164 0.066 0.174 0.065 0.002

(0.121, 0.227) (0.049, 0.092) (0.112, 0.394) (0.050, 0.088) (0.001, 0.004)

α1
0.078 0.062 0.076 0.055 0.036

(0.065, 0.101) (0.050, 0.074) (0.066, 0.100) (0.045, 0.067) (0.027, 0.045)

β1
0.909 0.927 0.914 0.930 0.961

(0.887, 0.923) (0.913, 0.939) (0.888, 0.926) (0.918, 0.940) (0.949, 0.971)

η1
2.450 2.412 2.374 2.455 2.339

(2.410, 2.508) (2.379, 2.453) (2.336, 2.486) (2.417, 2.496) (2.297, 2.396)

ξ1
1.042 1.051 1.027 1.050 1.117

(1.015, 1.065) (1.031, 1.073) (0.985, 1.051) (1.028, 1.072) (1.092, 1.141)

p11
0.966 0.965 0.976 0.958 0.935

(0.959, 0.972) (0.958, 0.971) (0.973, 0.979) (0.951, 0.965) (0.920, 0.951)

UV1 68.2% 48.6% 82.1% 40.3% 14.8%

State 2

ω2
3.550 1.674 5.925 1.633 2.086

(2.213, 5.457) (1.236, 2.336) (4.401, 7.112) (1.229, 2.152) (1.357, 3.470)

α2
0.241 0.161 0.330 0.158 0.182

(0.186, 0.296) (0.135, 0.193) (0.249, 0.385) (0.138, 0.186) (0.147, 0.238)

β2
0.703 0.823 0.588 0.829 0.805

(0.621, 0.777) (0.786, 0.854) (0.539, 0.657) (0.797, 0.853) (0.745, 0.846)

η2
4.275 3.857 3.516 4.143 3.543

(3.988, 4.536) (3.689, 4.048) (3.280, 3.699) (3.959, 4.330) (3.319, 3.759)

ξ2
0.856 0.870 0.911 0.869 0.975

(0.826, 0.893) (0.845, 0.894) (0.880, 0.955) (0.844, 0.895) (0.948, 0.999)

p22
0.959 0.964 0.976 0.960 0.943

(0.952, 0.966) (0.959, 0.969) (0.972, 0.979) (0.954, 0.965) (0.931, 0.955)

UV2 153% 198% 163% 215% 242%
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Table A5: Markov Switching EGARCH on Non-Traded and Traded BTC Data
Markov switching skewed Student-t EGARCH on BTC daily returns from CG, CM, CC, Bitstamp and Kraken. The
sample period is 1 September 2013 – 31 March 2019. The two-state Markov-switching skewed Student-t EGARCH
model is defined as ln(σ2

it) = ωi + g(zt−1) + βiln(σ2
i,t−1), where g(zt) = θizt + γi(|zt| − E[|Zt|]), Zt ∼ tηi,ξi and

i = 1, 2. Again we approximate the steady-state volatility as UVi =
√

365 exp( ωi
1−βi

) . We highlight in blue the values

of interest.

CG CM CC Bitstamp Kraken

State 1

ω1
-0.029 0.001 0.003 -0.009 0.000

(-0.034, -0.025) (-0.002, 0.005) (-0.001, 0.006) (-0.013, -0.006) (-0.001, 0.001)

γ1
0.207 0.376 0.284 0.195 0.119

(0.186, 0.232) (0.312, 0.446) (0.239, 0.334) (0.176, 0.215) (0.084, 0.171)

θ1
0.050 0.040 0.110 0.074 0.101

(0.036, 0.065) (-0.008, 0.085) (0.069, 0.154) (0.060, 0.089) (0.080, 0.120)

β1
0.995 0.995 0.994 0.991 0.996

(0.995, 0.996) (0.995, 0.995) (0.993, 0.994) (0.991, 0.992) (0.996, 0.997)

η1
2.944 2.100 2.166 2.869 2.305

(2.849, 3.050) (2.100, 2.100) (2.160, 2.173) (2.793, 2.978) (2.283, 2.329)

ξ1
1.030 1.044 1.039 1.031 1.091

(1.012, 1.050) (1.027, 1.062) (1.019, 1.062) (1.009, 1.051) (1.072, 1.111)

p11
0.878 0.976 0.971 0.895 0.965

(0.867, 0.888) (0.974, 0.978) (0.969, 0.973) (0.887, 0.905) (0.963, 0.968)

UV1 0.871% 21.3% 23.5% 11.1% 19.9%

State 2

ω2
0.569 0.294 0.420 0.464 1.207

(0.472, 0.677) (0.246, 0.365) (0.360, 0.492) (0.366, 0.547) (1.010, 1.502)

γ2
0.373 0.353 0.473 0.321 0.381

(0.306, 0.445) (0.300, 0.408) (0.418, 0.531) (0.255, 0.387) (0.301, 0.459)

θ2
-0.045 0.015 -0.063 -0.055 -0.132

(-0.083, -0.006) (-0.010, 0.040) (-0.096, -0.033) (-0.086, -0.019) (-0.173, -0.091)

β2
0.866 0.919 0.884 0.895 0.652

(0.830, 0.891) (0.897, 0.933) (0.865, 0.902) (0.869, 0.918) (0.570, 0.710)

η2
9.669 4.434 3.827 14.412 5.720

(8.757, 10.665) (4.156, 4.711) (3.690, 3.988) (12.849, 15.971) (5.291, 6.170)

ξ2
0.768 0.837 0.883 0.691 0.994

(0.733, 0.804) (0.810, 0.867) (0.855, 0.910) (0.660, 0.727) (0.964, 1.024)

p22
0.633 0.967 0.965 0.637 0.942

(0.622, 0.645) (0.966, 0.968) (0.964, 0.966) (0.626, 0.649) (0.939, 0.944)

UV2 158% 116% 118% 173% 108%
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