University of Sussex
Browse
- No file added yet -

A novel tool to measure extracellular glutamate in the Zebrafish nervous system in vivo

Download (283.51 kB)
journal contribution
posted on 2023-06-09, 17:28 authored by Ryan B MacDonald, Nachiket D Kashikar, Leon LagnadoLeon Lagnado, William A Harris
Glutamate is the major excitatory neurotransmitter in the brain. Its release and eventual recycling are key to rapid sustained neural activity. We have paired the gfap promoter region with the glutamate reporter molecule, iGluSnFR, to drive expression in glial cells throughout the nervous system. Tg(gfap:iGluSnFR) is expressed on the glial membrane of Müller glia cells in the retina, which rapidly respond to stimulation and the release of extracellular glutamate. As glial cells are associated with most, if not all, synapses, Tg(gfap:iGluSnFR) is a novel and exciting tool to measure neuronal activity and extracellular glutamate dynamics in many regions of the nervous system. Glutamate is the major excitatory neurotransmitter in the brain. Its release and eventual recycling are key to rapid sustained neural activity.1 Glial cells play a key role in the uptake and recycling of glutamate from the synaptic cleft. iGluSnFR has been used to study synaptic activity by measuring glutamate dynamics in the zebrafish nervous system.2,3 Previous work has also used iGluSnFR in glial cells; however, this was done transiently in the mouse using viral vectors.2,4 As such, we designed a transgene to stably express iGluSnFR in the glial cells of the zebrafish nervous system. We report a novel transgenic zebrafish, Tg(gfap:iGluSnFR), that displays the glutamate-sensitive fluorescent reporter iGluSnFR specifically on the membrane of glial cells (Figure 1A–C). This molecule is expressed on the glial membrane in many brain regions and rapidly responds to stimulation and the release of extracellular glutamate (Figure 1D–F, Supplementary Data; Supplementary Data are available online at www.liebertpub.com/zeb). Thus, pairing the sensitivity of iGluSnFR and optical transparency of the zebrafish provides a powerful tool for understanding glutamate dynamics in neural tissues in vivo.

Funding

Synaptic computation in the visual system; G1321; WELLCOME TRUST; 102905/Z/13/Z

History

Publication status

  • Published

File Version

  • Published version

Journal

Zebrafish

ISSN

1545-8547

Publisher

Mary Ann Liebert

Issue

3

Volume

14

Page range

284-286

Department affiliated with

  • Neuroscience Publications

Research groups affiliated with

  • Sussex Neuroscience Publications

Full text available

  • Yes

Peer reviewed?

  • Yes

Legacy Posted Date

2019-04-03

First Open Access (FOA) Date

2019-04-03

First Compliant Deposit (FCD) Date

2019-04-03

Usage metrics

    University of Sussex (Publications)

    Categories

    No categories selected

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC