University of Sussex
Browse

A theoretical investigation of orientation relationships and transformation strains in steels

Download (506.51 kB)
journal contribution
posted on 2023-06-09, 05:21 authored by Konstantinos KoumatosKonstantinos Koumatos, A Muehlemann
The identification of orientation relationships (ORs) plays a crucial role in the understanding of solid phase transformations. In steels, the most common models of ORs are the ones by Nishiyama–Wassermann (NW) and Kurdjumov– Sachs (KS). The defining feature of these and other OR models is the matching of directions and planes in the parent face-centred cubic gamma phase to ones in the product body-centred cubic/tetragonal alpha\alpha' phase. In this article a novel method that identifies transformation strains with ORs is introduced and used to develop a new strain-based approach to phase-transformation models in steels. Using this approach, it is shown that the transformation strains that leave a close-packed plane in the gamma phase and a close-packed direction within that plane unrotated are precisely those giving rise to the NW and KS ORs when a cubic product phase is considered. Further, it is outlined how, by choosing different pairs of unrotated planes and directions, other common ORs such as the ones by Pitsch and Greninger–Troiano can be derived. One of the advantages of our approach is that it leads to a natural generalization of the NW, KS and other ORs for different ratios of tetragonality r of the product body-centred tetragonal alpha' phase. These generalized ORs predict a sharpening of the transformation textures with increasing tetragonality and are thus in qualitative agreement with experiments on steels with varying alloy concentration

History

Publication status

  • Published

File Version

  • Published version

Journal

Acta Crystallographica Section A: Foundations and Advances

ISSN

2053-2733

Publisher

Wiley

Volume

A73

Page range

115-123

Department affiliated with

  • Mathematics Publications

Research groups affiliated with

  • Analysis and Partial Differential Equations Research Group Publications

Full text available

  • Yes

Peer reviewed?

  • Yes

Legacy Posted Date

2017-03-02

First Open Access (FOA) Date

2017-03-02

First Compliant Deposit (FCD) Date

2017-03-01

Usage metrics

    University of Sussex (Publications)

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC