IMAGE
DOCUMENT
VIDEO
DOCUMENT
DOCUMENT
1/1
Amacrine cells differentially balance zebrafish color circuits in the central and peripheral retina
journal contribution
posted on 2023-06-07, 08:03 authored by Xinwei WangXinwei Wang, Paul Roberts, Takeshi YoshimatsuTakeshi Yoshimatsu, Leon LagnadoLeon Lagnado, Thomas BadenThomas BadenThe vertebrate inner retina is driven by photoreceptors whose outputs are already pre-processed; in zebrafish, outer retinal circuits split “color” from “grayscale” information across four cone-photoreceptor types. It remains unclear how the inner retina processes incoming spectral information while also combining cone signals to shape grayscale functions. We address this question by imaging the light-driven responses of amacrine cells (ACs) and bipolar cells (BCs) in larval zebrafish in the presence and pharmacological absence of inner retinal inhibition. We find that ACs enhance opponency in some bipolar cells while at the same time suppressing pre-existing opponency in others, so that, depending on the retinal region, the net change in the number of color-opponent units is essentially zero. To achieve this “dynamic balance,” ACs counteract intrinsic color opponency of BCs via the On channel. Consistent with these observations, Off-stratifying ACs are exclusively achromatic, while all color-opponent ACs stratify in the On sublamina.
History
Publication status
- Published
File Version
- Published version
Journal
Cell ReportsISSN
2211-1247Publisher
ElsevierExternal DOI
Issue
2Volume
42Page range
112055-112055Department affiliated with
- Neuroscience Publications
Full text available
- Yes
Peer reviewed?
- Yes