We establish a strong completeness property called observational completeness of the program logic for imperative, higher-order functions introduced in [1]. Observational completeness states that valid assertions characterise program behaviour up to observational congruence, giving a precise correspondence between operational and axiomatic semantics. The proof layout for the observational completeness which uses a restricted syntactic structure called finite canonical forms originally introduced in game-based semantics, and characteristic formulae originally introduced in the process calculi, is generally applicable for a precise axiomatic characterisation of more complex program behaviour, such as aliasing and local state.