University of Sussex
Browse

Compartmental diffusion and microstructural properties of human brain gray and white matter studied with double diffusion encoding magnetic resonance spectroscopy of metabolites and water

Download (2.6 MB)
journal contribution
posted on 2023-06-10, 03:33 authored by Henrik Lundell, Chloé Najac, Marjolein Bulk, Hermien E Kan, Andrew G Webb, Itamar RonenItamar Ronen
Double diffusion encoding (DDE) of the water signal offers a unique ability to separate the effect of microscopic anisotropic diffusion in structural units of tissue from the overall macroscopic orientational distribution of cells. However, the specificity in detected microscopic anisotropy is limited as the signal is averaged over different cell types and across tissue compartments. Performing side-by-side water and metabolite DDE spectroscopic (DDES) experiments provides complementary measures from which intracellular and extracellular microscopic fractional anisotropies (µFA) and diffusivities can be estimated. Metabolites are largely confined to the intracellular space and therefore provide a benchmark for intracellular µFA and diffusivities of specific cell types. By contrast, water DDES measurements allow examination of the separate contributions to water µFA and diffusivity from the intra- and extracellular spaces, by using a wide range of b values to gradually eliminate the extracellular contribution. Here, we aimed to estimate tissue and compartment specific human brain microstructure by combining water and metabolites DDES experiments. We performed our DDES measurements in two brain regions that contain widely different amounts of white matter (WM) and gray matter (GM): parietal white matter (PWM) and occipital gray matter (OGM) in a total of 20 healthy volunteers at 7 Tesla. Metabolite DDES measurements were performed at b = 7199 s/mm2, while water DDES measurements were performed with a range of b values from 918 to 7199 s/mm2. The experimental framework we employed here resulted in a set of insights pertaining to the morphology of the intracellular and extracellular spaces in both gray and white matter. Results of the metabolite DDES experiments in both PWM and OGM suggest a highly anisotropic intracellular space within neurons and glia, with the possible exception of gray matter glia. The water µFA obtained from the DDES results at high b values in both regions converged with that of the metabolite DDES, suggesting that the signal from the extracellular space is indeed effectively suppressed at the highest b value. The µFA measured in the OGM significantly decreased at lower b values, suggesting a considerably lower anisotropy of the extracellular space in GM compared to WM. In PWM, the water µFA remained high even at the lowest b value, indicating a high degree of organization in the interstitial space in WM. Tortuosity values in the cytoplasm for water and tNAA, obtained with correlation analysis of microscopic parallel diffusivity with respect to GM/WM tissue fraction in the volume of interest, are remarkably similar for both molecules, while exhibiting a clear difference between gray and white matter, suggesting a more crowded cytoplasm and more complex cytomorphology of neuronal cell bodies and dendrites in GM than those found in long-range axons in WM.

History

Publication status

  • Published

File Version

  • Published version

Journal

NeuroImage

ISSN

1053-8119

Publisher

Elsevier

Volume

234

Page range

1-14

Article number

a117981

Event location

United States

Department affiliated with

  • BSMS Neuroscience Publications

Full text available

  • Yes

Peer reviewed?

  • Yes

Legacy Posted Date

2022-05-13

First Open Access (FOA) Date

2022-05-13

First Compliant Deposit (FCD) Date

2022-05-13