University of Sussex
IJP_curcumin_acceptted version.pdf (1.41 MB)
Download file

Curcumin nanoparticles containing poloxamer or soluplus tailored by high pressure homogenization using antisolvent crystallization

Download (1.41 MB)
journal contribution
posted on 2023-06-09, 17:27 authored by Alireza Homayouni, Marjan Amini, Masoumeh Sohrabi, Jaleh Varshosaz, Ali Nokhodchi
Curcumin is a natural active constituent of Curcuma longa from Zingiberaceae family that shows many different pharmacological effects such as anticancer, antioxidant, anti-inflammatory, antimicrobial and antiviral effect. However, its bioavailability is profoundly limited by its poor water solubility. In this study antisolvent crystallization followed by freeze drying was used for the preparation of curcumin nanoparticles. The presence of different ratios of hydrophilic polymers (poloxamer 188 & soluplus) on physicochemical properties of curcumin nanoparticles was also investigated. In addition, the effect of high pressure homogenization (HPH) on solubility and dissolution properties of curcumin was investigated. All nanoparticle formulations were examined to determine their particle size distribution, saturation solubility, morphology (SEM), solid state (DSC, XRPD and FT-IR) and dissolution behavior. It was observed that curcumin crystallized in the presence of polymers exhibited better solubility and dissolution rate in comparison with original curcumin. The results showed that the concentration of the stabilizer and the method used to prepare nanoparticles can control the dissolution of curcumin. The crystallized nanoparticles showed polymorph 2 curcumin with lower crystallinity and higher dissolution rate. Curcumin nanoparticles containing 50% soluplus prepared via HPH method presented 16-fold higher solubility than its original form. In conclusion, samples crystalized and proceed with HPH technique showed smaller particle size, better redispersibility, higher solubility and dissolution rate in water compared with a sample prepared using a simple antisolvent crystallization process.


Publication status

  • Published

File Version

  • Accepted version


International Journal of Pharmaceutics







Page range


Department affiliated with

  • Chemistry Publications

Full text available

  • Yes

Peer reviewed?

  • Yes

Legacy Posted Date


First Open Access (FOA) Date


First Compliant Deposit (FCD) Date


Usage metrics

    University of Sussex (Publications)


    No categories selected