
Deep reinforcement learning based distributed computation offloading inDeep reinforcement learning based distributed computation offloading in
vehicular edge computing networksvehicular edge computing networks
Liwei Geng, Hongbo Zhao, Jiayue Wang, Aryan Kaushik, Shuai Yuan, Wenquan Feng

Publication datePublication date
10-06-2023

LicenceLicence
This work is made available under the Copyright not evaluated licence and should only be used in accordance
with that licence. For more information on the specific terms, consult the repository record for this item.

Document VersionDocument Version
Accepted version

Citation for this work (American Psychological Association 7th edition)Citation for this work (American Psychological Association 7th edition)
Geng, L., Zhao, H., Wang, J., Kaushik, A., Yuan, S., & Feng, W. (2023). Deep reinforcement learning based
distributed computation offloading in vehicular edge computing networks (Version 1). University of Sussex.
https://hdl.handle.net/10779/uos.23494646.v1

Published inPublished in
IEEE Internet of Things Journal

Link to external publisher versionLink to external publisher version
https://doi.org/10.1109/JIOT.2023.3247013

Copyright and reuse:Copyright and reuse:
This work was downloaded from Sussex Research Open (SRO). This document is made available in line with publisher policy
and may differ from the published version. Please cite the published version where possible. Copyright and all moral rights to the
version of the paper presented here belong to the individual author(s) and/or other copyright owners unless otherwise stated. For
more information on this work, SRO or to report an issue, you can contact the repository administrators at sro@sussex.ac.uk.
Discover more of the University’s research at https://sussex.figshare.com/

https://rightsstatements.org/page/CNE/1.0/?language=en
https://doi.org/10.1109/JIOT.2023.3247013
mailto:sro@sussex.ac.uk
https://sussex.figshare.com/

1

Deep Reinforcement Learning Based Distributed
Computation Offloading in Vehicular Edge

Computing Networks
Liwei Geng, Hongbo Zhao∗, Jiayue Wang, Aryan Kaushik, Shuai Yuan, Wenquan Feng

Abstract—Vehicular edge computing has emerged as a promis-
ing paradigm by offloading computation-intensive latency-
sensitive tasks to mobile-edge computing (MEC) servers. How-
ever, it is difficult to provide users with excellent quality-of-service
(QoS) by relying only on these server resources. Therefore, in this
paper, we propose to formulate the computation offloading policy
based on deep reinforcement learning (DRL) in a vehicle-assisted
vehicular edge computing network (VAEN) where idle resources
of vehicles are deemed as edge resources. Specifically, each task is
represented by a directed acyclic graph (DAG) and offloaded to
edge nodes according to our proposed subtask scheduling priority
algorithm. Further, we formalize the computation offloading
problem under the constraints of candidate service vehicles
models, which aims to minimize the long-term system cost
including delay and energy consumption. To this end, we propose
a distributed computation offloading algorithm based on multi-
agent DRL (DCOM), where an improved actor-critic network
(IACN) is devised to extract features, and a joint mechanism
of prioritized experience replay and adaptive n-step learning
(JMPA) is proposed to enhance learning efficiency. The numerical
simulations demonstrate that, in VAEN scenario, DCOM achieves
significant decrements in the latency and energy consumption
compared with other advanced benchmark algorithms.

Index Terms—Computation offloading, deep reinforcement
learning, mobile-edge computing, vehicular edge computing net-
works.

I. INTRODUCTION

THE Internet of Vehicles (IoV), a typical scenario of the
Internet of Things (IoT) focused on the transportation

industry, has recently attracted tremendous attention from
academia and industry [1], [2]. Constructing a network topol-
ogy among communication entities such as vehicles, pedestri-
ans, and roadside units (RSU), IoT can provide efficient and
secure information services to meet the increasing demand for
a transportation environment [3]. With the rapid development
of IoV and artificial intelligence (AI), more and more vehicles
prompt a large number of smart applications, such as smart
driving and augmented reality (AR) [4], [5], which are largely
safety-related and require ultra-low latency constraints. Some
of these applications are also computation-intensive, resulting

This work was supported by the National Natural Science Foundation of
China under Grant 61901015.

Liwei Geng, Hongbo zhao, Jiayue Wang, Shuai Yuan and Wenquan
Feng are with the School of Electronic and Information Engineering,
Beihang University, Beijing 100191, China (e-mail: liviageng@buaa.edu.cn;
bhzhb@buaa.edu.cn; wangjiayue@buaa.edu.cn; ysleon@buaa.edu.cn;
buaafwq@buaa.edu.cn).

Aryan. Kaushik is with the School of Engineering and Informat-
ics, University of Sussex, Brigthon BNI 9RH, United Kingdom (e-mail:
aryan.kaushik@sussex.ac.uk)

in a large amount of energy consumption for their execution.
However, relying solely on resource-constrained vehicle de-
vices (VDs) is not sufficient to meet the requirements of these
applications, in terms of latency or energy consumption.

As a promising solution, mobile-edge computing (MEC) has
attracted tremendous attention by extending the computation
capacity of the vehicular edge layer, which consists of fixed
edge servers and RSUs near VDs [6]. Specifically, com-
putation offloading technology, which offloads computation-
intensive and latency-sensitive tasks to the edge servers, not
only breaks the resource limits of VDs, but also reduces the
high transmission latency due to mobile cloud computing
(MCC) [7]. Nevertheless, as the vehicle density increases,
the resources required for the MEC server are not sufficient
to guarantee the quality-of-service (QoS) of all vehicles [8].
Moreover, if we only consider MEC servers as edge nodes, to
reduce the latency and energy consumption, most vehicles will
offload tasks, which causes a great burden on MEC servers.
In addition, the resources of MEC servers are expensive, and
extensive use increases the economic cost of the system. To
this end, it is necessary to fully exploit the underutilized
resources in vehicular edge computing networks (VECNs). Re-
cently, the technical enhancements in device-to-device (D2D)
communication technologies and vehicle hardware have made
it possible to leverage the idle resources of some vehicles [9].

Therefore, to make the most of such resources, in this
paper, we consider a vehicle-assisted vehicular edge com-
puting network (VAEN) scenario, where mobile edge nodes
are composed of idle vehicles with resources and fixed edge
servers. Recently, several studies have considered the private
properties of vehicles and thus utilized federal learning to
protect user privacy or designed incentives to encourage vehi-
cle participation in edge services. However, in this paper, we
focus on the resources of idle vehicles and the formulation of
offloading decisions. By utilizing the idle resources of vehicles
as edge resources and providing computation offloading ser-
vices near the request vehicles (RVs), tasks execution latencies
are reduced, the resource utilization of RVs is optimized, and
the load pressure on MEC servers is relieved with the addition
of mobile edge nodes. In addition, vehicle-to-vehicle (V2V)
communication can ensure the success of tasks, improves
the stability of the system, and enhances user experience.
Particularly, the idle resources of RVs are fully utilized in the
VAEN scenario, which is critical for VECNs with valuable
resources.

Recently, two models of computation offloading tasks have

2

been considered in VECNs, binary offloading and partial
offloading [10]. Specifically, in binary offloading, the task is
treated as a whole and either executed locally or offloaded
[11], [12]. In partial offloading, the task is arbitrarily divided
into two parts, one for local execution and the other for
offloaded execution [13]. However, due to the rapid progress
of AI, numerous computation-intensive and latency-sensitive
applications are generated that can be divided into several
subtasks with considerable and complex dependencies between
them [14]. Therefore, computation offloading faces mainly two
challenges in the VAEN scenario. 1) Designing offloading
strategies for tasks with complex subtask dependencies is a
challenge. Technically, on the one hand, the scheduling order
of subtasks is difficult to determine due to the existence of
serial and parallel dependencies of subtasks. On the other
hand, the dependencies of subtasks increase the complexity
of the system state space.

2) Considering V2V communication in the high-dynamic
VAEN scenario is another challenge. Due to the relative move-
ment of the vehicles, considering V2V communication will
make the vehicle mobility models and constraints more flexible
and dynamic. Specifically, if the communication between the
RV and the SV is interrupted, the execution of the task will
be disrupted.

Furthermore, the essence of computation offloading is to
develop an optimal offloading strategy, which means that op-
timization methods should be paid utmost attention. However,
applying conventional methods, such as convex optimization
and game theory, in large-scale scenarios leads to an ex-
ponential increase in search space and heavy computational
burdens [13]. Recently, deep reinforcement learning (DRL) has
attracted the attention of academia and industry in searching
for the optimal solutions for computation offloading problems
[5]. The actor-critic algorithm shows promising performance
in formulating offloading decisions [15], [16].

In the conventional actor-critic, both actor and critic net-
works are composed of fully connected networks (FCNs) [17],
which makes model training inefficient due to a large number
of parameters. Moreover, one-step Temporal-Difference Learn-
ing (TD) is commonly utilized to train the critic network, caus-
ing the critic network to converge slowly [18]. Additionally,
in the training phase, transitions are sampled uniformly from
the experience replay buffer, ignoring the differences in the
importance of the samples.

To address these challenges and dilemma of VAEN, in this
paper, we divide the task into multiple subtasks and depict the
dependencies with a directed acyclic graph (DAG). Moreover,
based on the DAG, we propose a subtask scheduling priority
algorithm to further reduce the task execution latency. As
for vehicle mobility, we conduct a candidate service vehicle
(CSV) model to undertake communication constraints. Further,
we propose a distributed computation offloading algorithm
based on multiagent DRL (DCOM). Specifically, to better
extract the features of system state spaces, we devise an im-
proved actor-critic network (IACN) composed of 2-D convolu-
tion (Conv2D) layers and a long short-term memory (LSTM)
layer. In addition, to improve the network learning efficiency,
we propose a joint mechanism of prioritized experience replay

and adaptive n-step learning (JMPA).
In summary, in this paper, we focus on making real-

time offloading decisions for fine-grained tasks in the VAEN
scenario, with the aim of minimizing the long-term system
cost, including delay and energy consumption. Specifically,
the contributions of the paper are as follows.

1) Modeling: We consider a VAEN scenario, wherein idle
vehicles and MEC servers are jointly utilized as edge nodes to
provide offloading services for fine-grained tasks. Specifically,
a CSV model is constructed and a subtask scheduling priority
algorithm is devised to reduce the delay of task executions.

2) Algorithm: We formulate an optimization problem with
integrated considerations of delay and energy consumption,
represent the problem as a Markovian decision process (MDP),
and design the state, action and reward specifically based
on VAEN. Furthermore, a multiagent DRL-based method,
namely DCOM, is proposed to solve the optimization problem.
Especially, IACN and JMPA are devised to extract features and
improve the learning efficiency in DCOM.

3) Simulation: We evaluate the performance of DCOM with
numerical simulations. The simulation results demonstrate that
VAEN, IACN, and JMPA are effective in increasing the re-
wards of RVs. Furthermore, DCOM significantly outperforms
other benchmarks in reducing latency and energy consumption
under different parameter settings.

The remainder of this paper is organized as follows. Section
II reviews the related work. Section III presents the system
model. The problem formulation and offloading strategy are
elaborated in Section IV and Section V, respectively. Section
VI analyzes and discusses the experimental results, and Sec-
tion VII concludes this paper.

II. RELATED WORK

In this section, we review the related work concerning
computation offloading in cellular networks and vehicular
networks.

A. Computation Offloading in MEC

In recent years, mobile edge computing offload technologies
have received considerable attention in both academia and
industry. Initially, most work focused on single-user sce-
narios. For example, Mao et al. [19] proposed a dynamic
binary computing offloading algorithm based on Lyapunov
optimization, which aimed to minimize the delay. Mohamed
et al. [20] presented an offloading decision algorithm that
minimized energy consumption. Subsequently, to apply to the
actual application scenario, computation offloading in multi-
user scenarios was studied. In [21], a computation offloading
method based on the game theory was proposed to trade
off the energy consumption and delay in a multi-user and
multi-channel environment. Wu et al. [22] studied a multi-user
task offloading strategy based on the game theory to reduce
computational complexity. Despite the research progress, most
of the above work focused on the binary offloading method.
However, the binary offloading is a rough 0-1 offloading
method that fails to make full use of system resources, i.
e. bandwidth, computing resources. Moreover, in practice,

3

many large-scale applications, i.e., AR applications [23], are
composed of many components. Therefore, if tasks are simply
considered as a whole, the binary offload model is struggling
to satisfy the delay constraint when large-scale applications
are generated [24].

To fully utilize system resources and reduce task execution
latency, many studies considered to split these tasks and per-
formed partial offloading [25], [26]. Zhang et al. [27] formal-
ized the partial offloading decision problem as a highly com-
plex nonlinear constraint in the multi-mobile device scenario.
Mao et al. [28] used buffer stability constraints to formulate
energy minimization problems, and then proposed an online
algorithm based on Lyapunov optimization to determine the
optimal CPU frequency. Meanwhile, with the development of
IOV, many studies have extended edge networks to vehicular
networks and further proposed VECNs. Specifically, Zhao et.al
[29] constructed an intelligent offloading system for VECNs,
where the task scheduling and resource allocation strategy
were formulated as a joint optimization problem to maximize
the user’s quality-of-experience (QoE). Zhao et al. [30] studied
a computation offloading strategy to consider the cloud-edge
cooperation. In addition, the private attributes of vehicles have
attracted significant attention. Feng et al. [31] studied the
optimization design of federated learning in MEC systems and
achieved the privacy protection of private users. Lu et al. [32]
combined federated learning and blockchain in the context of
MEC to address the problem of user privacy and security. Zhou
et al. [33] proposed an auction-based incentive mechanism
to incentivize private users to utilize and participate in the
offloading service.

By simply dividing the task into two parts, the task ex-
ecution latency relative to binary offloading are reduced.
However, with the increasing complexity of IoV applications,
internal dependencies of tasks become essential. Therefore, we
divide the computation-intensive and delay-sensitive tasks into
multiple subtasks and consider the dependencies between them
to ensure the original task execution order. Further, we propose
a subtask scheduling priority algorithm to further reduce the
task execution latency. Additionally, we consider a VAEN
scenario in which idle vehicles are seen as edge nodes, which
can make fully utilize the resources of the VECNs and improve
the QoS.

B. Computation Offloading Optimization Technology
The computation offloading problem mentioned above can

be formulated optimally as a mixed-integer nonlinear program,
and thus it is critical to use an objective optimization method
applicable to VECNs to make real-time offloading decisions.

In recent years, researchers conducted extensive research
on such objective optimization problems, especially based on
the game theory [34]-[36], convex/non-convex optimization
[37], [38], and other optimization techniques for formulating
offloading decisions. However, the highly dynamic nature of
VECNs poses a challenge for these conventional optimiza-
tion methods. Furthermore, these conventional optimization
algorithms have difficulty in obtaining optimization results
when the optimization variables or constraints become more
complex [7].

Edge Cloud

Server

RSU

RSU

5G Optical Fiber

Request

Vehicle

Service

Vehicle

MEC

Server

Base

Station

RSU

MEC

Server

MEC

Server

Request VehicleService Vehicle

Fig. 1. Vehicle-assisted computation offloading network model.

Fortunately, the application of DRL in regards to dynamic
control problems has inspired researchers, and recent attention
has shifted to finding DRL-based solutions to computation
offloading problems [39]-[41]. DRL is a combination of rein-
forcement learning (RL) and deep learning (DL). Specifically,
the problem definition and objective optimization are achieved
with RL, the strategy and value function are solved by DL, and
the objective function is optimized by error backpropagation
algorithms [42]-[44].

As for the application of DRL in computation offloading,
Zhang et.al [45] considered the high dynamic of vehicular
networks, constructing a synchronized random walk model and
using a deep-Q-network (DQN) to reduce system delay. Wu
et.al [46] adopted the DQN algorithm, combining Q-Learning
and deep learning to achieve joint optimization of delay and
energy consumption. Moreover, Song et al. [47] investigated a
task offloading problem, proposing a semi-online computation
offloading model using Dueling Deep-Q networks, which
jointly considered user behavior predictions and server load
balancing. With the development of DRL, an actor-critic
algorithm was proposed by combining policy gradient and
temporal difference, consisting of an actor network and a critic
network [48]. Liu et.al [49] proposed the actor-critic algorithm
to jointly optimize the computation offloading policies and
resource allocation. Zhan et.al [14] studied the task offloading
problem and formulated it as a decentralized computation
offloading game in each time slot, by taking into account both
communication and computation costs. Additionally, actor-
critic reinforcement learning was used to obtain the optimal
offloading strategy. Geng et.al [50] used the DDPG approach
to optimize the task scheduling policy for VECNs scenarios
considering channel time variations. Lu et al. [51] considered
the QoE when constructing the computation offloading model,
and proposed an improved DDPG algorithm named Double
Duel Deterministic Policy Gradient (D(3)PG).

Although the adoption of DRL enables the agents to make
real-time offloading decisions in highly dynamic large-scale

4

TABLE I
NOTATION

Notation Description
RV/SV Set of Request vehicles/Service vehicles

R Set of all RSUs

S Road Segment

M Set of all MEC servers

N The number of RVs

G The number of SVs

FRV/FSV The computing capacity of RVs/SVs

FMEC The computing capacity of MEC servers

Ti The task generated by RV i

Gi Describe the task of RV i with a DAG

Ei All edges of a DAG

Tij The j − th subtask of RV i

dinij The size of the subtask input data

cij Required CPU cycles to accomplish the subtask

tmax
i Maximum permissible processing delay of the task

tmax
ij Maximum tolerated delay of the j − th subtask

τ Time slot

lp,mp,vp Task offloading symbolic factors

|Ti| Number of subtasks for RV i

ai,j Task offloading decision

pi The upload power of RV i

rV 2I
i,m /rV 2V

i,g Data rate between RV i and MEC server m/SV g

BV 2I/BV 2V The channel bandwidth of MEC server/SV

hV 2I
i,m Channel gain between RV i and MEC server m

hV 2V
i,g Channel gain between RV i and SV g

(xi, yi) The coordinates of RV i

(xg , yg) The coordinates of SV g

vi/vg The velocity of RV i/SV g

RC The communication range of vehicles

P i,g
cand CSV binary symbolic factor

ρ The threshold value to determine CSVs

VECNs, the use of fully-connected networks and the uniform
sampling method in the experience replay are not conducive
to feature extraction and model training.

Consequently, we propose DCOM with IACN and JMPA to
improve the learning efficiency of the network.

III. SYSTEM MODEL

In this section, we elaborate on the system model of VAEN,
which includes network, communication, computation, and
CSV models.

A. Network Model

As shown in Fig. 1, we consider an urban environment
scenario in which a one-way road has two parallel lanes with
multiple vehicles moving in the lane. In the scenario, two types
of vehicles are included, i.e., the request vehicles (RVs) and
service vehicles (SVs). We denote RVs as RV = {1, 2, ..., N}
with generation task, and SVs as SV = {1, 2, ..., G} with
spare resources to provide computation offloading services for
RVs. It is crucial to note that SVs can be both private and

Data transfer unit

Decision making unit

Central processing unit
RV

Data transfer

unit

Central

processing unit
SV

Data transfer unit

Information

collection unit

Central processing

unit

Fixed Edge

Node

Central processing unit

BS

1.Task

offloading

request

2.Available

resource

information

3.Offloading decision making

4.Input data

4.Input data

5.Result

5.Result

6.Update

vehicle

information

7.Available

resource

information
8.All available resource information

Terminal Layer

Edge Layer

Resource

Management

Layer

Edge Cloud Layer
Edge Cloud

Server

Fig. 2. Information interaction in vehicle-assisted vehicular edge computing
network scenario.

public. In other words, we only focus on the idle resources
of SVs, without considering other attributes. In addition,
we divide the time into many equal time slots, defined as
τ = {1, 2, . . . , T}, and assume that each RV generates only
one task in a time slot. Moreover, RSUs are deployed on one
side of the road, denoted as R = {R1, R2, . . . , RM}, and the
neighboring RSUs are connected via fibers. According to the
coverage of RSUs, the road is divided into different segments
S = {S1, S2, ..., SM}. MEC servers M = {1, 2, ...,M} are
connected to RSUs and possess a large number of computing
resources to provide highly reliable computation offloading
services for RVs. For simplification, an MEC server and
the connected RSU are represented by a fixed edge node.
Furthermore, a base station (BS) is responsible for managing
all RSUs and connects to RSUs via fiber optics, and the
edge cloud server serves as a backup for RVs. In this paper,
we assume that tasks can be completed depending solely on
the edge layer nodes. For a practical scenario, we define
both vehicles and MEC servers are heterogeneous, i.e., the
computing capacity set of RVs, SVs, and MEC servers are
FRV =

{
fRV
1 , fRV

2 , ..., fRV
N

}
, FSV =

{
fSV
1 , fSV

2 , ..., fSV
G

}
,

and FMEC =
{
fMEC
1 , fMEC

2 , ..., fMEC
M

}
, respectively. The

main notations used in this Section are listed in Table I.
As shown in Fig. 2, the steps for computation offloading

are as follows.
1) Task offloading requests sending: When RV i generates

a task, it sends a task execution request to its corresponding
RSU to obtain the information of the connected MEC server
and all SVs.

2) Offloading decision making and task execution: Each RV
makes its offloading strategy based on the known information
and then processes tasks based on the offloading decisions. If

5

,1ie 2iT

3iT

4iT

5iT

6iT

7iT

8iT

,2ie
,3ie

,4ie

,5ie

,6ie

,7ie

,8ie

,9ie

1iT

Fig. 3. DAG structure diagram of task Ti.

RVs decide to offload tasks, the uploading of the original data
and the downloading of the execution results are required.

3) SVs update information: After the task execution step is
completed, all SVs broadcast their information, such as loca-
tions, speeds, remaining resources, etc., to the corresponding
RSUs at regular intervals.

4) Vehicular network information summary: All RSUs trans-
mit the information of SVs to the BS for aggregation and then
the BS broadcasts to all RSUs, thus ensuring that all RSUs
have all the relevant information about SVs.

B. Task Model

Considering that most applications are fine-grained tasks.
A task generated by RV i at time slot t can be represented
by a set of subtasks denoted as Ti =

{
Ti1, Ti2, ..., Ti|Ti|

}
,

∀i ∈ RV , where |Ti| denotes the number of subtasks. As
shown in Fig. 3, we apply DAG Gi = (Ti, Ei) to depict the
dependencies between subtasks, where Ei is the set of edges.
Ei is defined by Ei =

{
ei,1, ei,2, ..., ei,|Ei| | ei,e = (j, j

′
)
}

and ei,e = (j, j
′
) indicates that the execution of subtask

Tij′ depends on the result of the execution of subtask Tij .
Therefore, we consider subtask Tij as the predecessor subtask
of subtask Tij′ . Correspondingly, subtask Tij′ is the successor
subtask of subtask Tij . We assume these subtasks are atomic
and can not be subdivided, and we define the j − th subtask
of RV i as

Tij
∆
= {dinij , cij , tmax

ij , tmax
i }, (1)

where dinij is the input data size of the subtask, cij is the
number of CPU cycles to complete the subtask, tmax

ij is the
maximum allowable delay of subtask Ti,j and tmax

i is the
maximum allowable delay of task Ti.

According to the aforementioned, in the VAEN scenario,
the edge layer is composed of fixed edge servers and SVs.
Specifically, after generating task Ti, three ways can be utilized
to process it by RV i, i.e., executing locally, offloading to
a fixed service node, and offloading to a surrounding SV.
Considering that all vehicles are equipped with one radio, a
subtask can select at most one server for task processing, and
an SV can serve at most one RV in a time slot. Therefore,
for RV i, there are G + 2 offloading decisions. We define
task offloading symbolic factors for RV i are lpij ∈ {0, 1},
mpij ∈ {0, 1} and vpij ∈ {0, 1}. Specifically, lpij = 1 when

subtask Tij is executed locally, otherwise lpij = 0; mpij = 1
when subtask Tij is offloaded to a fixed edge node, otherwise
mpij = 0; vpij = 1 when subtask Tij is offloaded to SV
g, otherwise vpij = 0. The offloading decision of the Tij

is defined as ai,j ∈ {−1, 0, 1, 2, . . . , G}. Further, the task
offloading symbolic factors and the offloading decision have
the corresponding relationships as follows: If lpij = 1 then
ai,j = 0, if mpij = 1 then ai,j = −1, and if vpij = 1 then
ai,j = g(1 ≤ g ≤ G), which indicates RV i decides to offload
subtask Tij to SV g.

C. Communication Model

In the following, we discuss the vehicle-to-infrastructure
(V2I) communication model and V2V communication model.

1) V2I communication model: RVs need to communicate
with RSUs when offloading tasks to fixed edge nodes. In
VAEN scenario, we set the upload link from the RVs to the
fixed edge node as a flat Rayleigh fading channel, regardless
of channel interference. Assuming that the bandwidth of RSU
is BV 2I and there are n RVs offloading tasks to the MEC
server m. The uplink data rate between RV i and fixed edge
node m can be calculated as

rV 2I
i,m =

BV 2I

n
log2(1 +

pih
V 2I
i,m

σ2
), (2)

where pi is the upload power of RV i, hV 2I
i,m is the channel

gain between the i− th RV and the fixed edge nodes m, and
σ2 denotes the background noise power.

2) V2V communication model: We consider RVs can com-
municate directly with SVs via D2D-based V2V communica-
tions. The achievable transmission rates between RV i and SV
g can be written as

rV 2V
i,g (t) = BV 2V log2(1 +

pih
V 2V
i,g

σ2
), (3)

where BV 2V denotes the communication bandwidth of SV g
and hV 2V

i,g is the channel gain.

D. Computation Model

Based on the VAEN scenario, we analyze the computation
model of the system.

1) Processing locally: If subtask Tij is selected to be
executed locally, the execution delay is

Ti,j,l =
cij
fRV
i

, (4)

and the energy consumption of local execution is

Ei,j,l = κ(fi
RV)2cij , (5)

here κ is the effective switching capacitance in the chip [43].
2) Processing at a MEC server: If subtask Tij is offloaded

to a fixed edge node for execution, it follows a first-come-
first-serve queuing principle. Due to the high-speed mobility
of vehicles, if RV i drives away from the road segment Sm

during task execution, the result of Tij is transmitted via inter-
MEC server communication. Because the data volume of the
returned calculation result is relatively small, the download

6

delay can be ignored, and transmission delay of subtask Tij

can be calculated as

TV 2I
i,up =

dinij
rV 2I
i,m

. (6)

The queuing time can be expressed as

TV 2I
i,queue=

∑
n∈k,n ̸=i cnj

fMEC
m

, (7)

where k is the set of RVs that offload tasks to RSU m before
RV i.

The execution time of subtask Tij can be given as

TV 2I
i,exe =

cij
fMEC
m

. (8)

If RV i drives away from the road segment Sm, the
communication time between RSUs is

TV 2I
i,backhaul = ∆x ∗ tbackhaul, (9)

where △x is the number of road segments traveled by RV i,
△x = 0, 1, 2, . . . , and tbackhaul is the time of adjacent RSUs
communication, which we define as a constant.

The total time delay offloading to a MEC server for execu-
tion is

TV 2I
i,j,m = TV 2I

i,up + TV 2I
i,exe + TV 2I

i,backhaul + TV 2I
i,queue, (10)

and the energy consumption of RV i is

EV 2I
i,j,m = piT

V 2I
i,up . (11)

3) Processing at a SV: If Tij is offloaded to the SV g,
the delay consists of two parts, i.e., transmission delay and
execution delay. The transmission delay between the RV i and
SV g can be given as

TV 2V
i,g,up =

dini,j
rV 2V
i,g

, (12)

and the execution delay of subtask Tij can be expressed as

TV 2V
i,g,exe =

cij
fSV
g

. (13)

Therefore, the total delay of offloading to SV g can be
calculated as

TV 2V
i,j,g = TV 2V

i,g,up + TV 2V
i,g,exe. (14)

We consider that task transfer consumes energy, so the
energy consumption of RV i is

EV 2V
i,j,g = piT

V 2V
i,g,up. (15)

By analyzing the computation model, we can conclude that
the task delay and energy consumption of Tij can be given as

Ti,j = lpij · Ti,j,l +mpij · TV 2I
i,j,m + vpij · TV 2V

i,j,g , (16)

Ei,j = lpij · Ei,j,l +mpij · EV 2I
i,j,m + vpij · EV 2V

i,j,g . (17)

E. CSV Model
Due to the high-speed mobility of vehicles, we consider

the communication range of vehicles when RVs perform V2V
communication. Assume that the communication range of
vehicles is RC . When the task Ti is generated, the coordinates
of RV i and SV g are (xi, yi), (xg, yg), and the velocities of
them are vi, vg respectively. Accordingly, the distance between
RV i and SV g is

Di,g =

√
(xi − xg)

2
+ (yi − yg)

2
. (18)

If Di,g > RC , SV g cannot be a CSV for RV i. If Di,g <
RC , the maximum communication duration between RV i and
SV g can be calculated as

CTi,g =
RC cosα− (Di,g cosα)β

∆vi,g
, (19)

where α = arcsin(
|yi−yg|

RC
), β =

(xi−xg)(vi−vg)
|xi−xg||vi−vg| and ∆vi,g =

|vi − vg|.
We define P i,g

cand t as the effect of the mobility on SV g
becoming a CSV for RV i, and represent it as

P i,g
cand t =

1, if CTi,g > tmax

i,j + ς
CTi,g−TV 2V

i,j,g

tmax
i,j +ς−TV 2V

i,j,g
, if TV 2V

i,j,g < CTi,g < tmax
i,j + ς

0, if CTi,g < TV 2V
i,j,g

,

(20)
where ς is the guaranteed factor for successfully executing a
task.

In addition, the volume of computing resources in SVs is
a critical factor when RV i determines the CSVs. We define
P i,g
cand r as the effect of the computing resources on SV g

being a CSV for RV i.

P i,g
cand r =

{
1, if Eg > Eg

i,j

0, if Eg < Eg
i,j

, (21)

where Eg is the computing resource of SV g, Eg
i,j is the

computing resource required for Ti,j and it is defined as
Eg

i,j = κ(fg
SV)2cij .

We define ρ as a threshold value to determine whether an
SV can be a CSV and use a matrix Pcand = [P i,g

cand]N×G to
depict the candidate relationship between RVs and SVs. The
SV g is able to become a CSV for RV i when P i,g

cand = 1, and
P i,g
cand can be expressed as follows

P i,g
cand =

{
0, if P i,g

cand t · P
i,g
cand r < ρ

1, if P i,g
cand t · P

i,g
cand r > ρ

. (22)

In the next section, we discuss formulating an optimization
problem.

IV. PROBLEM FORMULATION

In this section, we formulate the optimization problem for
computation offloading in the VAEN scenario. Specifically,
we aim to seek out the optimal offloading to minimize the
task completion delay and energy consumption, and define
the system cost of RV i as

Ui=

|Ti|∑
j=1

(λtTi,j + λeEi,j), (23)

7

where λt, λe ∈ [0, 1] and λt + λe = 1.
According to the task model introduced above, we define

the task offloading symbolic factors as lp = [lpij]N×G, mp =
[mpij]N×G, vp = [vpij]N×G (0 < i ≤ N , 0 < j ≤ |Ti|),
respectively. Furthermore, we define the offloading decision
for all RVs as At = [ai,j]N×G (0 < i ≤ N , 0 < j ≤ |Ti|).
The optimization problem can be formulated as the long-term
total system cost minimization problem, described as follows:

P1 : min
{lp,mp,vp,At}

∑
i∈N

Ui

s. t. C1 :
|Ti|∑
j=1

Ti,j ≤ ti
max

C2 : lpij +mpij + vpij = 1
C3 : ai,j ∈ {−1, 0, 1, 2, ..., G}

C4 :
|Ti|∑
j=1

Ei,j ≤ Ei
max

C5 : 0 ≤ pi ≤ Pmax

. (24)

The main goal of the above optimization problem is to
minimize total system cost by making reasonable offloading
decision At. Here, constraint C1 ensures that the execution
delay does not exceed the maximum allowable delay. C2 and
C3 are constraints on the decision variables. The constraint
among lpij ,mpij and vpij indicates that a subtask can only
be executed on one server, and the aij describes further the
specific offloading destination of a subtask. Constraint C4
states that the energy consumption of RV i does not exceed its
own maximum number of resources, i.e., Emax

i . C5 constrains
that the transmission power of the RV i does not exceed the
maximum transmission power, i.e., Pmax.

To solve problem P1, it is significant to obtain an optimal
task offloading decision with minimum task delay and task
energy consumption. However, it is clear that problem P1 is
a nonlinear programming problem, which is generally NP-
hard [32], and we prove it afterwards. Moreover, in a highly
dynamic VAEN scenario, we need a time-vary task offloading
decision that can be adaptively adjusted. Therefore, solving
problem P1 with conventional methods is difficult to achieve.
To this end, we design a task offloading algorithm based on
RL to solve this problem.

Theorem 1. Problem P1 is NP-hard.
Proof: Refer to Appendix A.

V. REINFORCEMENT LEARNING-BASED SOLUTION

In this section, we consider a distributed structure to approx-
imate the optimization problem as an MDP to minimize the
system cost including delay and energy consumption. Specifi-
cally, we introduce a subtask scheduling priority algorithm,
and define state, action, and reward function. Finally, we
propose a DCOM which integrates IACN and JMPA to obtain
the optimal policy. The main notations used in this Section
are listed in Table II.

A. Priority of Task Scheduling

The fine-grained task offloading decision process is divided
into two steps, i.e., offloading order and offloading decision.
To reduce the total processing latency of an application, it is

TABLE II
NOTATION

Notation Description
λt/λe The weight of delay/energy consumption

succ(Tij) Successor subtasks set of subtask Tij

pre(Tij) Precursor subtasks set of subtask Tij

cos ti,j Execution cost of the j − th subtask

G
′
i The number of CSVs abou RV i

w
i,j,j

′ The communication overhead between subtasks

T ′
i Subtask priority sequence of Ti

si,j(t) The state space of RV i

ri,j Reward function

θπ/θπ
′

The parameters of main/target actor network

ωQ/ωQ
′

The parameters of main/target critic network

π/π
′

The main/target actor network

Q,Q
′

The main/target critic network

γ Discount factor

nbatch The mini-batch in DRL

nmax The predetermined value for the length of transitions

W The size of replay buffer

ξ Target networks updating rate

Algorithm 1 Subtask Scheduling Priority
Input: The set of RVsRV , the set of SVs SV , the set of MEC

servers M, computing capacity of RVs FRV , computing
capacity of SVs FSV , computing capacity of MEC servers
FMEC

1: for RV i = 1, 2, ..., N do
2: Generate task Gi = (Ti, Ei).
3: for j = 1, 2, ..., |Ti| do
4: Get information about a subtask

Tij = {dinij , cij , tmax
ij , tmax

i } .
5: Calculate the processing cost costi,j by (25).
6: Calculate P (Tij) by (26).
7: end for
8: Sorting subtasks by priority T ′

i =
{
T

′

i1, T
′

i2, ..., T
′

i|Ti|

}
,

∀i ∈ RV .
9: end for

Output: Subtask priority sequence T ′=
{
T ′

1 , T
′

2 , ..., T
′

N

}

necessary to obtain the optimal subtask offloading order. Two
important concepts are proposed for subtask Tij , i.e., priority
and execution cost. The subtask priority is obtained with
execution cost and internal dependencies, and the execution
cost can be formulated as

costi,j =

(Ti,j,l + TV 2I
i,j,m +

G
′
i∑

g=1
TV 2V
i,j,g)

G
′
i + 2

, (25)

where G
′

i is the number of CSVs about RV i.
In a task described by a DAG, we define the last subtask

as the exit subtask, and each subtask has at least one path to
the exit subtask, which we refer to as the exit critical path ep.
In this paper, we use a reverse recursive approach to compute
the priority of subtasks. Specifically, the priority of the exit

8

subtask is calculated first, and then the priority of each non-
export subtask is calculated in the reverse direction according
to the structure of the DAG. It should be noted that when
calculating the priority of non-export subtasks, the exit critical
path with the highest priority is chosen. The priority of subtask
Tij can be defined as

P (Tij) =

{
cos ti,j , if Tij is exit subtask
max
ep

P (Tij′) + cos ti,j + wi,j,j′ , otherwise .

(26)
Here, wi,j,j′ is the communication overhead between subtask
Tij and its successor subtask Tij′ .

Specifically, the pseudo-code of the subtask scheduling
priority algorithm is provided in Algorithm 1.

B. State, Action and Reward Definition

RL can be described as an intelligence interacting with its
environment to continuously learn for a specific goal, such
as obtaining the maximum reward value. In this paper, we
apply a distributed structure to obtain the optimal offloading
policy, with the agents referring to all RVs and the environment
referring to VAEN. In the following, the state space, action
space, and reward function of the system are defined based on
our proposed model.

1) State Space: We define the system state of RV i at time
slot t as si,j(t) =

{
Ssti
i,j (t),S

vmi
i,j (t),Svod

i,j (t)
}

, where 0 < i ≤
N and 0 < j ≤ |Ti|. The state parameters are depicted in
detail as follows.

a) Ssti
i,j (t) is the information of the current subtask, including

the data size vector of all subtasks Din
i =

[
dini1 , d

in
i2 , ..., d

in
i|Ti|

]
,

the number of CPU cycles to complete all subtask Ci =[
ci1, ci2, ..., ci|Ti|

]
, the set of predecessor subtasks pred(Tij)

of the current subtask and the set of successor subtasks
succ(Tij), which can be formulated as follows.

Ssti
i,j (t) =

{
Din

i ,Ci, pred(Tij), succ(Tij)
}
. (27)

b) Svmi
i,j (t) is the information related to the system and can

be expressed as

Svmi
i,j (t) = {RVpos, RVsp, P candi(i),MECpos, SVpos, FSV } .

(28)
Here, RVpos and RVsp denote the coordinates and velocity
of RV i, respectively. Pcand(i) denotes the CSV model and
MECpos denotes the coordinates of MEC servers. Moreover,
SVpos and FSV are the coordinates and CPU frequencies of
SVs, respectively.

c) Svod
i,j (t) denotes the offloading decisions of the previous

L subtasks of the current subtask Tij for all RVs. Note that
if j ≤ L, the tasks can be traced back to the previous time
slot. For simplicity, here we do not delve into the range of j.
Specifically, when j ≤ L, we consider the offloading decision
of the previous time slot. Therefore, Svod

i (t) can be described
as

Svod
i,j (t) =

a1,(j−1) a1,(j−2) ... a1,(j−L)

a2,(j−1) a2,(j−2) ... a2,(j−L)

...
aN,(j−1) aN,(j−2) ... aN,(j−L)

 . (29)

Improved

Target Actor

Network

Actor Network

Improved

Main Actor

Network

Improved

Main Critic

Network

Improved

Target Critic

Network

Critic Network

Sample

Soft

Update

Policy gradient

Loss Function

Soft

Update
VAEN Environment

Network Architecture (IACN)

RV1 ...

 '

i

Q 'Q

(,)Q s a

RV2 RV N

i agent

Replay memory

py

State

Action

Reward

, , , ,()()
maxi t i t i t i t+ns ,a ,r ,...s

', , , ,()
()i p i p i p i p+n
s ,a ,r ,...s

Fig. 4. The structure of the distributed computation offloading algorithm
based on multiagent DRL.

2) Action Space: In VAEN, an RV i needs to make an
offloading decision based on the system state si,j(t) and
decision policy, specifically, determining the target server for
each subtask. Technically, the action space of the RV i at time
slot t can be represented as

At
i = [ai,1, ai,2, ..., ai,j , ..., ai,|Ti|], (30)

where ai,j is the j − th subtask execution destination. In
particular, if ai,j = −1, the subtask Tij will be offloaded to the
MEC server, if ai,j = 0, then the subtask Tij will be executed
locally, and if ai,j > 0, the subtask Tij will be executed on the
corresponding SV. According to the aforementioned, the legal
action space of ai,j is {−1, 0, 1, 2, . . . , G} and the dimension
is G+ 2.

3) Reward Function: In the time slot t, the environment
gives rewards according to the actions taken by the agent. In
this work, we have R (t) = [ri,j]N×G (0 < i ≤ N , 0 <
j ≤ |Ti|, where ri,j is the improvement of the performance
brought by RV i, and can be expressed as

ri,j=λt
Ti,j,l − Ti,j

Ti,j,l
+ λe

Ei,j,l − Ei,j

Ei,j,l
. (31)

C. Distributed Computation Offloading Algorithm based on
multiagent DRL

Afterwards, the overview of the algorithm, IACN, JMPA
and DCOM descriptions are introduced.

1) Overview: To make real-time offloading decisions, we
apply an actor-critic algorithm which combines a policy-
based approach with a value-based approach. The actor-critic
technique can compensate for the drawback of policy round
update with the idea of DQN, and learn the policy function
and value function together to get an optimal behavior through
their interactions. Specifically, the actor selects an appropriate
action according to the state of the environment, which is a
policy-based approach. The critic is a value-based network that
evaluates the quality of the action, and in turn the evaluation
results act on the actor network for training, which can
accelerate the learning process and achieve satisfactory results.

9

Therefore, to obtain an optimized computation offloading
policy, we design DCOM.

Fig. 4 illustrates the overall framework of DCOM with
N agents. Each agent possesses actor networks and critic
networks. The actor networks include a main actor network
π, with parameters θπ and a target actor network π

′
with

parameters θπ
′

. The main actor network and target actor
network share the same structure, which reduces the oscillation
of DNN and achieves stable convergence. In the process
of generating action by the actor network, the conventional
greedy algorithm only selects the optimal action and fails to
achieve the purpose of full exploration. To balance the rela-
tionship between exploration and exploit, we adopt an ε greedy
strategy, which can fully explore the actions in action space.
After the main actor network outputs an action, the agent
interacts with the environment to obtain the next state and im-
mediate reward, and stores a transition (si,j , ai,j , ri,j , si,(j+1))
into the experience replay buffer for use in the subsequent
training phase. With experience replay buffer, the dependency
between sample data is broken.

As mentioned before, a critic network consists of a main
critic network Q with parameters ωQ and a target critic
network Q

′
with parameters ωQ

′

. In the training phase, a mini-
batch transition is sampled from the experience replay buffer to
train the critic network. Suppose the p− th transition sampled
from the experience replay buffer as (si,p, ai,p, ri,p, si,(p+1)),
(si,p, ai,p) is taken as the input of the main critic network, and
the output of the value estimation network can be calculated
as Q(si,p, ai,p

∣∣ωQ
)
. Further, taking (si,(p+1), π(si,(p+1))) as

the input of the target critic network, the target Q value yp
can be expressed as

yp = ri,p + γQ
′
(si,(p+1), π

′
(si,(p+1)

∣∣∣θπ′

)
∣∣∣ωQ

′

). (32)

Therefore, the TD-error can be calculated by

TDp = yp −Q(si,p, ai,p
∣∣ωQ), (33)

and loss function of the critic network is given by

loss =
1

nbatch

nbatch∑
p=1

TD2
p. (34)

Here, nbatch is the size of the mini-batch. The parameters of
the main critic network can be updated by minimizing (34).

The main actor network π updates its parameters θπ in the
direction of getting a larger cumulative discounted reward, that
is

∇θL(π) = Eπ[∇θπ(si,p)∇θQ(si,p, ai,p
∣∣ωQ)

∣∣
ai,p=π(si,p)].

(35)
Then, the parameters of the target network are updated by

soft update algorithm as follows

ωQ′ ← τ
′
ωQ + (1− τ

′
)ωQ′

θπ
′

← τ
′
θπ + (1− τ

′
)θπ

′ , (36)

where τ
′

is 0.001 in general.

State Split

Feature

Extraction

Concatenation

Different

Output Layer

Input

Convolution

layer 1 Fully

connected

layer
ReLU

Pooling layer

Convolution

layer 2

ReLU

Pooling layer

Fully

connected

layer

Convolution

layer 3

ReLU

Pooling layer

Convolution

layer 4

ReLU

Pooling layer

Fully connected layer

Fully connected

layer
Softmax

ActionValue

LSTM layer

,

vod

i jS ,

vmi

i jS ,

sti

i jS

Fig. 5. Structure of improved actor-critic network.

TABLE III
SETTING OF THE NETWORK STRUCTURE

CORRESPONDING TO Ssti
i,j

Layer Kernels Pooling Stride Output

Input / / / 10× 20

Convolution layer1 5× 5× 32 / 1 10× 20× 32

Pooling layer / 2× 2 2 5× 10× 32

Convolution layer2 5× 5× 32 / 1 5× 10× 32

Pooling layer / 2× 2 1 2× 5× 32

2) IACN: The size of the state space is very large due
to Ssti

i,j (t) and Svod
i,j (t), and the parameters of Svod

i,j (t) are
temporal variations. Specifically, we assume that the number
of RVs is 20, and each task can be partitioned into up to
10 interdependent subtasks. The parameter Ssti

i,j (t) represents
the structure information of a DAG with dimension 10 × 20,
and Svod

i,j (t) possesses temporal correlation. However, in a
conventional actor-critic network, both its actor network and
critic network are composed of FCNs. Although the FCNs can
achieve feature extraction, it has inherent disadvantages. On
the one hand, a large number of parameters are contained in

10

TABLE IV
SETTING OF THE NETWORK STRUCTURE

CORRESPONDING TO Svod
i,j

Layer Kernels Pooling Stride Output

Input / / / 20× 5

Convolution layer1 5× 5× 16 / 1 20× 5× 16

Pooling layer / 2× 2 2 10× 2× 16

Convolution layer2 5× 5× 16 / 1 10× 2× 16

Pooling layer / 2× 2 2 5× 1× 16

FCN, making it difficult to train, especially in a large-scale
and highly dynamic VAEN scenario. On the other hand, using
FCNs for feature extraction makes it difficult to capture the
time-varying features of task sequences. Therefore, the training
efficiency and results of fitting offloading strategies using only
FCNs can not apply for the VAEN scenario.

As shown in Fig. 5, to solve this problem, we first divide the
state space into three parts, and then design the IACN using 2-
D convolution layers and an LSTM network. Taking the actor
network as an example, for Ssti

i,j (t), we consider 5 × 5 2D
convolution filters to extract features as the input of a rectified
linear unit (ReLU). Further, the max-pooling with 2×2 filters
and stride 2 in the pooling layer is applied, and a convolution
layer 2, ReLU and a pooling layer are followed. The details
of the network structure corresponding to the Ssti

i,j (t) state are
shown in Table III. Moreover, we use two 2-D convolution
layers and an LSTM network to extract features of Svod

i,j (t),
and the detailed settings of the network structure are shown in
Table IV. Other information in the state space is fed directly
into the FCNs. Finally, the state space is spliced and inputted
to an FCN. Note that the actor network and the critic network
are different, where the former obtains the offloading decision
through a Softmax layer and the letter connects an FCN to
output the state value information.

3) JMPA: In the conventional actor-critic algorithm, a
transition is stored as (si,p, ai,p, ri,p, si,(p+1)), i.e., one-step
TD learning is applied to estimate the long-term reward.
However, Q(si,p+1, π((si,(p+1) | θπ

′

) | ωQ
′

) is an inaccurate
estimate of the future reward, so it is easy to have high bias
and low efficiency at the early stage of training. In other
words, the critic network will converge more slowly, which
makes it difficult to give an accurate evaluation of the actor
network. In addition, we observe that the uniform sampling
in conventional actor-critic algorithm impacts the convergence
of model training. Specifically, the model presents different
performance when learning with different transitions in its
replay buffer, which reveals different significance of these
transitions for model training. To improve the speed and
stability of convergence, we propose a JMPA which integrates
prioritized experience replay and adaptive n-step learning. On
the one hand, the importance of transitions is fully considered.
On the other hand, the network is trained utilizing n-step
transitions which can estimate the long-term reward adaptively.

In terms of n-step learning, n-step transitions, i.e.
(si,p, ai,p, ri,p, si,(p+1), ..., ai,(p+n−1), ri,(p+n−1), si,(p+n)),

Algorithm 2 JMPA
Input: The size of mini-batch nbatch, the prioritization param-

eter α, correction parameter φ
1: for RV i = 1, 2, ..., N do
2: Sample a prioritized mini-batch of nbatch transitions with

length nmax from replay buffer.
3: for p = 1, 2, ..., nbatch do
4: Compute the adaptive n-step for the p− th transition

and return n
′

using (38).
5: Replace the p − th transition with(

si,p, ai,p, ri,p, ..., si,(p+n′)

)
.

6: end for
7: end for

Output: Selected transition
(
si,p, ai,p, ri,p, ..., si,(p+n′)

)

are cached in the experience replay memory, and the update
objective can be described as

Q(si,p, ai,p|ωQ
) = ri,p + γri,(p+1) + ...+ γn−1ri,(p+n−1)

+ γnE[Q(si,(p+n), π(si,(p+n)

∣∣∣θπ′

)|ωQ
′

)]
,

(37)
where n is a predetermined value, and discount factor γ ∈
[0, 1] controls the degree of how far the MDP looks into the
future.

Since the transition we select may be under a different
strategy, to introduce an update with a fixed value of n directly
may cause a large variance. Therefore, we calculate the update
value n

′
for the selected transition, namely adaptive n-step

learning, which can adjust the value of n
′

dynamically to
correct the ”policy gap”. In the initialization process, the
maximum value of n is set to nmax . In each training iteration,
a trajectory of length is chosen to update the parameters. Sup-
pose (si,p, ai,p, ri,p, ..., si,(p+nmax))is a trajectory that exists in
experience replay buffer, n

′
can be calculated as

n
′
=

nmax, if{arg

k
Γ{k >

k∑
j=1

I j} = 1} = Φ

min{{arg
k

Γ{k >
k∑

j=1

Ij} = 1}, otherwise
. (38)

where k ∈ (1, 2, ..., nmax−1), Ij = Γ{ai,(p+j) = π(si,(p+j) |
θπ)} and Γ{∗} is an expressivity function. When ∗ is true,
Γ{∗} = 1, otherwise Γ{∗} = 0.

According to JMPA, in the training phase, we can rank the
importance of the sample based on the absolute TD-error, i.e.,
a larger absolute TD-error indicates higher importance. The
absolute TD-error of sample p can be calculated by (33). Note
that target Q value yp in JMPA is

yp = ri,p + ...+ γn
′
−1ri,(p+nmax−1)

+ γnmaxQ′(si,(p+nmax), π
′
(si,(p+nmax)

∣∣∣θπ′

)
∣∣∣ωQ′

)
.

(39)
Based on absolute TD-error, priority rank(p) of the p− th

transition is can be obtain.

11

Algorithm 3 DCOMSDRL: Interaction process
Input: The set of RVs RV , the set of SVs SV , the set of

MEC serversM, road segment R, computing capacity of
RVs FRV , computing capacity of SVs FSV , computing
capacity of MEC servers FMEC , the size of replay buffer
W , predetermined value nmax

1: Initialize locations and velocities of all vehicles
2: Initialize main actor network with θπ and main critic

network with ωQ

3: Initialize target actor network with θπ
′

← θπ; target critic
network with ωQ

′

← ωQ

4: for episode = 1, 2, ...,Emax do
5: for RV i = 1, 2, ..., N do
6: get subtask scheduling priority (see Algorithm 1).
7: obtain initial state si,1 of the VAEN.
8: end for
9: for t = 1, 2, ..., |Ti| do

10: for RV i = 1, 2, ..., N do
11: Select action ai,t according to ε-greedy policy.
12: Execute action ai,t and interact with the environ-

ment.
13: Obtain reward ri,t and the next state si,(t+1).
14: Store transition

(
si,t, ai,t, ri,t, ..., si,(t+nmax)

)
in

replay memory buffer and calculate initial prior-
ities using (40).

15: end for
16: end for
17: BS broadcasts the information to all RSU.
18: end for
Output: Offloading desicion ai,t

Further, the probability of sampling transition p is

P (p) =
(zp)

α∑
g∈W

(zg)
α , (40)

where zj = 1/rank(p), and α is the prioritization parameter.
Finally, to correct the bias introduced by changing the state

visitation frequency, [52] introduces the importance-sampling
weights, which can be calculated by

ϕp =
1

Wφ · P (p)
φ . (41)

Here, W is the size of the replay buffer, P (p) is the probability
of the sampled experience p, and the parameter φ controls to
the extent of used corrections.

The pseudocode of JMPA is summarized in Algorithm 2.
4) DCOM Descriptions: In DCOM, we divide it into two

phases, i.e., the interaction phase and learning phase.
a) Interaction phase: The detail of the interaction phase is

described in Algorithm 3. Each RV initializes the parameters
of the actor network and critic network (Lines 1-3). For each
episode, each RV generates fine-grained tasks, obtains the
scheduling priority of subtasks according to Algorithm 1(Lines
4-6), and acquires the initial state of the environment (Line 7).
At the beginning of a time slot, each RV selects an action based
on the obtained state of the environment, and interacts with

Algorithm 4 DCOMSDRL: Learning process
Input: The size of mini-batch nbatch, target networks updating

rate ξ, the prioritization parameter α, correction parameter
φ, soft update parameter τ

′

1: for RV i = 1, 2, ..., N do
2: Sample nbatch transitions from the replay buffer accord-

ing to JMPA (see Algorithm 2).
3: Calculate the yp in the target critic network with (39).
4: Update main critic network according to (34).
5: Update main actor network according to (35).
6: Update the target policy network and target Q networks

according to (36) with an updating rate ξ.
7: end for

Output: Updated parameters θπ of main actor network π,
updated parameters θπ

′

of target actor network, updated
parameters ωQ of main critic network Q, updated param-
eters ωQ

′

of main critic network Q
′

the environment to obtain a reward and the next state(Lines 9-
13). Further, transition

(
si,t, ai,t, ri,t, ..., si,(t+nmax)

)
is stored

in the replay buffer and the priority is calculated by (40) (Line
14). Finally, after each task is processed completely, the BS
broadcasts the information to all RSU (Lines 17).

b) Learning phase: We provide the details of the learning
phase in Algorithm 4. The learning phase is started based on
known actor network and critic network parameters and other
parameters. For each RV, we sample transitions in the replay
buffer according to the priority, and the detailed procedure of
the algorithm is described in Algorithm 2 (Line 2). Further, the
value of the target critic network is calculated by (39) (Line
3). Then the mian critic network and main actor network are
updated by (34) and (35), respectively (Lines 4-5). Finally,
the target actor network and target critic network are updated
based on (37) (Line 6).

VI. NUMERICAL RESULT AND ANALYSIS

In this section, we first introduce detailed parameter settings
for simulation. Moreover, we verify the convergence of DCOM
as well as the effectiveness of IACN and JMPA. Finally, we
compare DCOM with other benchmark algorithms.

A. Simulation Settings

We perform the distributed computing offload algorithm
with tensorflow 1.5 in python 3.7. In our simulations, we
set up 3 edge servers, 20 RVs, and 8 SVs distributed on a
1000-meter one-way road. Each RV generates a computation-
intensive latency-sensitive task at each time slot, which can be
divided into inter-dependent subtasks with an upper limit of
10 subtasks. We assume that the size of each subtask’s input
data is limited by [100, 500] KB, and its volume ratio ranges
from [100, 500] cycles/byte. In addition, the maximum time
delay allowed by task Ti is selected from [0.5, 2] s, and the
bandwidth of an RSU is 30 MHz. The transmission power and
the CPU cycle frequency of each RV range from [0.1, 0.5] W
and [0.5, 2] GHz, respectively. Moreover, the CPU frequency
of the MEC server is selected from 4 GHz to 8 GHz, the CPU

12

(a) Critic network learning. (b) Actor network learning.

Fig. 6. Average reward with different learning rate.

frequency of each SV is selected from 2 GHz to 4 GHz and
the maximum communication range of SVs is 200 m.

As for the design of four networks of DCOM, the specific
network structure parameters are presented in Tables II and
Tables III. The size of the experience replay buffer is set to
1000, the mini-batch is set to 128 and the discount factor is
set to 0.9, respectively. During training, an Adam optimizer is
adopted to optimize the loss function.

B. Convergence Performance

We first verify the convergence of the proposed DCOM
at different learning rates of its actor network and critic
network. Fig. 6 illustrates the relationship between episodes
and the average reward at different learning rates. By fixing the
actor network’s learning rate to 0.01 and increasing the critic
network’s learning rate from 0.0001 to 0.1, it is observed that
the best convergence and reward values are achieved when the
actor network’s learning rate is 0.01. Similarly, by fixing the
learning rate of the critic network at 0.01 and increasing the
learning rate of the actor network from 0.0001 to 0.01, the
average reward curve converges accelerated and the reward
value increases gradually. If the actor network’s learning rate
is increased by 0.1, the reward value is significantly decreased,
which is caused by the local optimum of the algorithm due to a
large learning rate. Therefore, in our subsequent experiments,
we fix the learning rate of the actor network and critic network
to 0.01.

C. Effectiveness simulations

To evaluate the effectiveness of the proposed VAEN, IACN,
and JMPA, we design the following benchmark algorithms for
comparison.

1) DCOM-without-V2V: DCOM is used to formulate of-
floading decisions without considering V2V communication,
where only MEC servers are considered as edge nodes.

2) AC-JMPA: JMPA is adopted on the basis of a conven-
tional AC. Note that the network structures are FCNs. As for

Fig. 7. Comparison of the reward of the two scenarios.

the design of the four networks, an input layer, two hidden
fully-connected layers, and an output layer are conducted.
The two hidden layers contain 200 nodes and 100 nodes,
respectively.

3) AC-IACN: IACN is used based on a conventional AC.
It is noted that this algorithm applies uniform sampling for
one-step transition.

4) AC: The conventional AC algorithm applies an FCN
structure and uniform sampling.

Fig. 7 illustrates the curves of the average reward, and
depict the average reward for the VAEN scenario and the
computation offloading scenario without considering V2V
communication. In Fig. 8, with the increase of episodes,
both DCOM and DCOM-without-V2V achieve convergence.
However, due to the action space dimension is large in VAEN
scenario, DCOM converges faster than DCOM-without-V2V.
Specifically, DCOM achieves convergence at around the 500-
th episode, while the DCOM-without-V2V converges at about
the 400-th episode. In comparison, the DCOM can achieve

13

Fig. 8. Average reward for different algorithms.

a higher reward value, which is increased by about 13%.
That is because RVs reduce the queuing time at fixed MEC
servers by offloading tasks to SVs, thus the task completion
delay is shortened and the reward is increased. Therefore, it
is necessary to consider the resources of SVs in multi-vehicle
offloading scenarios to enhance the system utility.

Fig. 8 illustrates the reward curves for the four benchmark
algorithms of DCOM, AC, AC-JMPA, and AC-IACN. It is
observed that the agents of different algorithms achieve con-
vergence by interacting with the environment, but the speeds of
convergence and the average reward values after stabilization
reveal different. Moreover, AC converges around 800 episodes
and AC-JMPA converges around 600 episodes. The reason
is that AC-JMPA adopts JMPA, where prioritized experience
replay (PER) can make full use of valuable transitions and
the adaptive n-step method accelerate the convergence of the
critic network. Compared with AC, the average reward value of
AC-JMPA is increased by about 4.5%, and AC-IACN achieves
convergence at around 730 episodes and the average reward
increases by about 5%. The reason behind that is the network
structure that replaces FCN with Conv2D helps the agent
to extract the features of its state space. In addition, LSTM
captures the long-term changes of time-dependent data, which
helps the agent to select an appropriate action and get the best
reward. DCOM combines IACN and JMPA, not only has a
substantial improvement in convergence speed compared with
AC but also improves the average reward value by about 9%.
In summary, IACN and JMPA are effective in speeding up
convergence and improving the system utility.

D. Overall Performance Comparison

To evaluate the performance of DCOM, we design three
benchmark algorithms to investigate the impact of the number
of RVs, the weight of delay, the bandwidth and total computing
capacity of fixed MEC servers, and the task data size on system
performance. The settings of these benchmark algorithms are
as follows.

1) AC: A conventional AC algorithm with an FCN structure
and uniform sampling.

Fig. 9. Average delay with different numbers of RVs.

2) DQN: A value-based conventional DQN algorithm,
which utilize value functions to guide the agent selection
strategy in the VAEN scenario.

3) AllOff: The agent’s action space is G+1, i.e., it only
selects to offload to the nearest fixed MEC server or SV g for
execution according to DCOM.

4) AL: All tasks generated by RVs are processed locally.
1) Impact of the number of RVs: Fig. 9 depicts the task

average delay of DCOM, AC, DQN, AllOff, and AL with
different numbers of RVs. The number of RVs is varied from
10 to 30 with an increment of 5. As illustrated in Fig. 9,
the task average delay of DCOM, AC, DQN, and AllOff
increases with the number of RVs, because as the number of
RVs become larger, the RVs get less upload bandwidth from
the fixed MEC server and the queuing time becomes longer.
Therefore, the transmission and computation delay in the fixed
MEC server become large which results in an increase in
the average delay of those tasks. In addition, as the number
of RVs increases, the delay is impacted more and more.
When the increment of RVs is small, the system resources
are still relatively sufficient, thus the delay is not highly
impacted. However, when the number of RVs is large enough,
the system’s bandwidth and computation resources are highly
competitive, and the delay is greatly impacted. Compared with
AC, DQN and AllOff, the delay of DCOM is the smallest
all the time. On average, the DCOM reduces the latency by
40% compared with AC. Compared with DQN and AllOff, the
latency of DCOM is reduced by 61% and 38%, respectively.
Unlike the trends of the four curves mentioned above, the
average task latency of AL is not significantly impacted by the
number of RVs, because AL processes all tasks locally and is
only related to the computation capabilities of RVs instead of
their number. We can conclude that the latency performance
of DCOM consistently outperforms the other four benchmark
algorithms as the number of RVs increases.

2) Impact of the weight of delay: In Fig. 10, we illustrate
the trade-off between the average delay and average energy
consumption of tasks with different delay weights, which

14

Fig. 10. The tradeoff between the average delay and average energy under
different weights of delay.

TABLE V
COMPARISON OF AVERAGE SYSTEM COST

FOR DIFFERENT WEIGHTS OF DELAY

Algorithm/λ 0.1 0.3 0.5 0.7 0.9

DCOM 0.141 0.133 0.130 0.129 0.133

AC 0.267 0.258 0.257 0.255 0.277

DQN 0.436 0.428 0.427 0.416 0.442

AL 1.989 1.989 1.989 1.989 1.989

AllOff 0.198 0.186 0.181 0.169 0.175

varies from 0.1 to 0.9 with an increment of 0.1. Based on the
previous description in Section IV, it is known that λt+λe = 1.
As illustrated in Fig. 10, with the increase of λt, RVs achieve
a low delay but high energy consumption. This is because a
large λt indicates that the agent is concerned with reducing
the execution delay of delay-sensitive tasks, and the demand
for low energy consumption has a lower priority. Therefore, in
practical applications, the weights can be adjusted according
to the state of RVs when tasks are highly latency-sensitive,
such as driving safety-related tasks, λt can be increased. For
example, when the battery energies of RVs are low, λt can be
decreased to maintain the power level.

We further compare the system cost performance with
different offloading algorithms under different delay weights.
Table IV records the system cost of DCOM, AC, DQN, AllOff,
and AL when λt takes different values. It is observed that the
system cost values of DCOM, AC, DQN, and AllOff reveal
undulatory as λt increases, and the minimum system cost is
achieved when λt=0.7. In addition, the system cost values of
DCOM are smaller than the other four benchmark algorithms
regardless of the value of λt. In the subsequent simulations,
we consider λt=0.5 because the scenario studied in this work
is equally significant in terms of the time delay and energy
consumption.

3) Impact of bandwidth of MEC server: We evaluate the
impact of total bandwidth of MEC server on the average

delay and average energy consumption. Fig. 11 illustrates
the average delay and average energy consumption of tasks
for DCOM, AC, DQN, AllOff, and AL with different total
bandwidths of MEC server. The total bandwidth of MEC
server is varied from 10 MHz to 40 MHz with an increment
of 10 MHz. It is observed from Fig. 11(a)-(d) that as the total
bandwidth increases, the average delay and average energy
consumption of the task decreases. This is because the larger
the total bandwidth, the higher the upload rate of the task
is offloaded, resulting in lower transmission delay and lower
transmission energy consumption. Therefore, increasing the
total bandwidth results in small average latency and low
average energy consumption of the task. In addition, when the
bandwidth is increased from 30 MHz to 40 MHz, the average
delay and average energy consumption of DCOM, AC, DQN,
and AllOff almost no change. The reason for this is when
the total bandwidth increases to a certain value, the effect of
bandwidth on system utility is no longer obvious, that is, in the
current environment, the competition for bandwidth resources
is no longer intense and the magnitude of system utility is
constrained by other factors in the environment. From Fig.11
(a)-(d), it is observed that DCOM has the lowest latency and
energy consumption compared with the other four benchmark
algorithms regardless of any value of the total bandwidth. In
this experiment, we can infer that larger the total bandwidth
leads to smaller the average latency and energy consumption
of the task.

4) Impact of total computing capacity of MEC server : We
consider the impact of different computing capacities of the
MEC server. Fig. 12 illustrate the average delay of DCOM,
AC, DQN, AllOff, and AL with the MEC server’s computing
capacity, which varied from 1 to 9 with an increment of 2.
In Fig. 12, the average delay of tasks decreases with the
computing capacity of MEC server increases. This is because
larger the computing capacity of the MEC server leads to
smaller the task execution delay at the MEC server. Since AL
is independent of the MEC server, it is not impacted by its
computing capacity. In addition, the latency of the DCOM
is lower than that of the other four benchmark algorithms
regardless of the variation of the computing capacity of the
MEC server.

Fig. 13 shows the variation of the average energy con-
sumption of the five algorithms with the computing capacity
of the MEC server. For DCOM, AC, DQN, and AllOff, the
energy consumption decreases significantly when the comput-
ing capacity of MEC server increases from 1GHz to 3GHz,
but it reveals little changes when it continues to increase.
Intrinsically, when the computing capacity of MEC server
reaches 1GHz, most of RVs choose to offload to SVs or local
execution due to the insufficient resources of MEC, which
results in high energy consumption. When the computing
capacity of MEC server is increased to 3GHz, the resources
of MEC are sufficient, and the energy consumption of the
system drops significantly. When the computing capacity of
MEC server continues to be increased, the impact is on the
processing time of the task on MEC, and the impact on both
the transmission delay and energy consumption are small.

Similar to Fig. 12, the average energy consumption of

15

(a) Bandwidth=10MHz (b) Bandwidth=20MHz (c) Bandwidth=30MHz (d) Bandwidth=40MHz

Fig. 11. Impact of total bandwidth on average delay and average energy.

Fig. 12. Impact of total computing capacity of MEC server on average delay.

Fig. 13. Impact of total computing capacity of MEC server on average energy.

DCOM is lower than that of the other four benchmark algo-
rithms regardless of the variation of MEC servers’ computing
capacities. As illustrated in Fig. 13, averagely, DCOM reduces
35.8% of the average energy consumption compared with AC.
In comparison with DQN and AllOff, DCOM reduces 74.4%
and 23% of the average energy consumption, respectively.

5) Impact of task data size: Figs. 14 and 15 depict the
effect of subtask data size on the average delay and average
energy consumption of the system. The data size is varied

Fig. 14. Impact of subtask data size on average delay.

from [10-100] KB to [1000-1500] KB. It is observed that
the average delay and average energy consumption increase
as the task data size increases. The key reason is larger
the amount of task data leads to greater processing and
transmission latency when the task is offloaded. When the
subtask data size is [500-1000] KB, the delay of AL exceeds
the maximum time delay allowed by the task, which causes
the task execution to fail. Similarly, it also causes large
energy consumption during local execution and transmission.
In addition, it is observed that the average delay and average
energy consumption of DCOM are minimized compared with
other four benchmark algorithms. DCOM, AC, DQN, and
AllOff are optimal because they can adaptively learn to make
decisions, which are different from AL. However, DCOM, AC
and AllOff achieve better performance than DQN because
the actor network and critic network are utilized to make
decisions. Furthermore, DCOM achieves better performance
than AC because DCOM combines IACN and JMPA, which
reduces the average delay and average energy consumption
and improves the learning efficiency. Compared with AllOff,
DCOM utilizes more system resources, such as RV local
resources. Moreover, the average delay and average energy
consumption of AL increase rapidly with the increase of its
task data size, which indicates that the impact of task data
size on AL is significant. Therefore, it is necessary for RVs to
make appropriate offloading decisions when generating tasks
with large data volumes.

16

Fig. 15. Impact of subtask data size on average energy consumption.

VII. CONLUSION

In this paper, we investigate the computation offloading
problem in VAEN scenario with multi-vehicle, where both
MEC servers and SVs are considered as edge nodes to
provide computation resources. We consider each RV having
a computation-intensive and latency-sensitive task that could
be partitioned into interdependent subtasks and need to be
completed within a time slot. Moreover, under the CSV model
constraint, we have formulated the optimization problem by
minimizing the delay and energy consumption. Further, to
tackle this problem, we propose DCOM adopting IACN and
JMPA to make an offloading decision in real-time. Simulation
results demonstrate the effectiveness of the VAEN scenario,
IACN, and JMPA, and validate the superiority of DCOM
compared with other benchmark algorithms. Although satis-
factory results are achieved by this work, it is still necessary
to take care of the privacy issues during data transmission. In
the future, we will further explore the computation offloading
based on federated learning.

APPENDIX A
PROOF OF THEOREM 1

First, we introduce the 0-1 knapsack problem which is a
typical NP-hard problem. In the 0-1 knapsack problem, it is
known that there are N items with the value (v1, v2, ..., vN).
Moreover, the weights of the items are (w1, w2, ..., wN) and
the total weight cannot exceed W . Mathematically, the prob-
lem can be expressed as

Knap : max
∑
i∈N

xivi

s. t.
∑
i∈N

xiwi ≤W xi ∈ {0, 1}
. (42)

To simplify the problem P1, we consider an RV, an MEC
server in our scenario, and ignore the transmission delay and
energy consumption when RV i offloads the task to the MEC
server. In addition, we consider task delay minimization under

energy constraints. Therefore, the problem P1 can be expressed
as

P1 : min
∑

j∈|Ti|
lpij · cij

fRV
i

+ (1− lpij) · TV 2I
i,exe

s.t.
∑

j∈|Ti|
lpij · κ(fRV

i)
2
cij ≤ Ei

max lp ∈ {0, 1}
.

(43)
For each subtask, we define aj = −cij/fRV

i , then P1 can be
formulated as

P1 : max
∑

j∈|Ti|
lpij · aj + (1− lpij) · TV 2I

i,exe

s.t.
∑

j∈|Ti|
lpij · κ(fRV

i)
2
cij ≤ Ei

max lpij ∈ {0, 1}
.

(44)
Next, we make the following assumptions

TV 2I
i,exe = 0, (45)

κ(fRV
i)2cij = wj . (46)

Knap can be reduced to problem P1. Therefore, Theorem 1
is proved.

REFERENCES

[1] Q. Luo, C. Li, T. H. Luan, W. Shi and W. Wu, “Self-Learning Based
Computation Offloading for Internet of Vehicles: Model and Algorithm,”
IEEE Trans. Wirel. Commun., vol. 20, no. 9, pp. 5913-5925, Sept. 2021.

[2] Y. Zhai, W. Sun, J. Wu, L. Zhu, J. Shen and X. Du, “An Energy Aware
Offloading Scheme for Interdependent Applications in Software-Defined
IoV With Fog Computing Architecture,” IEEE Trans. Intell. Transp. Syst.,
vol. 22, no. 6, pp. 3813-3823, Jun. 2021.

[3] B. Hazarika, K. Singh, S. Biswas and C. -P. Li, “DRL-Based Resource
Allocation for Computation Offloading in IoV Networks,” IEEE Trans.
Ind. Inform., vol. 18, no. 11, pp. 8027-8038, Nov. 2022.

[4] Z. Cheng, M. Min, Z. Gao, and L. Huang, “Joint task offloading and
resource allocation for mobile edge computing in ultra-dense network,”
in Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec. 2020, pp.
1-6.

[5] H. Zhou, K. Jiang, X. Liu, X. Li and V. Leung, “Deep Reinforcement
Learning for Energy-Efficient Computation Offloading in Mobile-Edge
Computing,” IEEE Internet Things J., vol. 9, no. 2, pp. 1517-1530, Jan.
2022.

[6] H. Liu, H. Zhao, L. Geng and W. Feng, “A Policy Gradient Based Of-
floading Scheme with Dependency Guarantees for Vehicular Networks,”
in Proc. IEEE Global Commun. Conf. Wkshps, Dec. 2020, pp. 1-6.

[7] H. Ke, H. Wang, W. Sun, and H. Sun, “Adaptive Computation offloading
policy for Multi-Access Edge Computing in Heterogeneous Wireless
Networks,” IEEE Trans. Netw. Serv. Manag., vol. 19, no. 1, pp. 289-305,
Mar. 2022.

[8] J. Shi, J. Du, J, Wang, J. Wang and J. Yuan, “Priority-Aware Task
Offloading in Vehicular Fog Computing Based on Deep Reinforcement
Learning”, IEEE Trans. Veh. Technol., vol. 69, no. 12, pp. 16067-16081,
Dec. 2021.

[9] Y. Cheng, C. Liang, Q. Chen, and F. Yu, “Energy-Efficient D2D-Assisted
Computation Offloading in NOMA-Enabled Cognitive Networks,” IEEE
Trans. Veh. Technol., vol. 70, no. 12, pp. 13441-13446, Dec. 2021.

[10] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Commun. Surv. Tutor., vol. 19, no. 4, pp. 2322–2358, 2017.

[11] S. Bi and Y. J. Zhang, “Computation rate maximization for wireless
powered mobile-edge computing with binary computation offloading,”
IEEE Trans. Wirel. Commun., vol. 17, no. 6, pp. 4177–4190, Jun. 2018.

[12] F. Wang, J. Xu and Z. Ding, “Multi-Antenna NOMA for Computation
Offloading in Multiuser Mobile Edge Computing Systems,” IEEE Trans.
Commun., vol. 67, no. 3, pp. 2450-2463, Mar. 2019.

[13] C. You, K. Huang, H. Chae, and B.-H. Kim, “Energy-efficient resource
allocation for mobile-edge computation offloading,” IEEE Trans. Wirel.
Commun., vol. 16, no. 3, pp. 1397–1411, Mar. 2017.

[14] Y. Zhan, S. Guo, P. Li and J. Zhang, “A Deep Reinforcement Learning
Based Offloading Game in Edge Computing,” IEEE Trans. Comput., vol.
69, no. 6, pp. 883-893, Jun. 2020.

17

[15] J. Wang, T. Lv, P. Huang, and P. Mathiopoulos, “Mobility Aware Partial
Computation Offloading in Vehicular Networks: A Deep Reinforcement
Learning Based Scheme,” China Commun., vol. 17, no. 10, pp. 31–49,
Oct. 2020.

[16] Z. Ning, P. Dong, X. Wang, L. Guo, J. Rodrigues, X. Kong, J. Huang,
and R. Kwok, “Deep Reinforcement Learning for Intelligent Internet of
Vehicles: An Energy-Efficient Computational Offloading Scheme,” IEEE
Trans. Cogn. Commun. Netw., vol. 5, no. 4, pp. 1060-1072, Dec. 2019.

[17] F. Fu, Y. Kang, Z. Zhang, F. Yu and T. Wu, “Soft Actor-Critic DRL for
Live Transcoding and Streaming in Vehicular Fog-Computing-Enabled
IoV,” IEEE Internet Things J., vol. 8, no. 3, pp. 1308-1321, Feb. 2021.

[18] W. Zhan, C. Luo, J. Wang, C. Wang, G.Min, H. Duan, and Q. zhu,
“Deep-Reinforcement-Learning-Based Offloading Scheduling for Vehic-
ular Edge Computing,” IEEE Internet Things J., vol. 7, no. 6, pp. 5449-
5465, Jun. 2020.

[19] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation offloading
for mobile-edge computing with energy harvesting devices,” IEEE J. Sel.
Areas Commun., vol. 34, no. 12, pp. 3590-3605, Dec. 2016.

[20] K. Mohamed, L. Wael, and S. Mireille, “Joint resource allocation and
offloading strategies in cloud enabled cellular networks,” in Proc. IEEE
Int. Conf. Commun. (ICC), Jun. 2015, pp. 5529-5534.

[21] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE-ACM Trans. Netw.,
vol. 24, no. 5, pp. 2827-2840, Oct. 2016.

[22] G. Wu and Z. Li, “Task Offloading Strategy and Simulation Platform
Construction in Multi-User Edge Computing Scenario,” Electronics, vol.
10, no. 23, Dec. 2021.

[23] M. Guo, W. Wang, X. Huang, Y. Chen, L. Zhang and L. Chen,
“Lyapunov-Based Partial Computation Offloading for Multiple Mobile
Devices Enabled by Harvested Energy in MEC,” IEEE Internet of Things
J., vol. 9, no. 11, pp. 9025-9035, Jun. 2022.

[24] H. Ke, J. Wang, L. Deng,Y. Ge and H. Wang, “Deep Reinforcement
Learning-based Adaptive Computation Offloading for MEC in Heteroge-
neous Vehicular Networks,” IEEE Trans. Veh. Technol., vol. 69, no. 7,
pp. 7916-7929, Jul. 2020.

[25] C. You and K. Huang, “Multiuser Resource Allocation for Mobile-
Edge Computation Offloading,” in Proc. IEEE Global Commun. Conf.
(GLOBECOM), Dec. 2016, pp. 1-6.

[26] Y. Chen, Z. Liu, Y. Zhang, Y. Wu, X. Chen and L. Zhao, “Deep Rein-
forcement Learning-Based Dynamic Resource Management for Mobile
Edge Computing in Industrial Internet of Things,” IEEE Trans. Ind.
Inform., vol. 17, no. 7, pp. 4925-4934, Jul. 2021.

[27] Z. Zhang, C. Li, S. Peng, and X. Pei, “A new task offloading algorithm
in edge computing,” EURASIP J. Wirel. Commun. Netw., vol. 2021, no.
1, pp. 1-21, Jan. 2021.

[28] Y. Mao, J. Zhang, S. Song and K. B. Letaief, “Power-Delay Tradeoff
in Multi-User Mobile-Edge Computing Systems,” in Proc. IEEE Global
Commun. Conf. (GLOBECOM), pp. 1-6, Dec. 2016.

[29] N. Zhao, P. Dong, X. Wang, J. Rodrigues, and F. Xia, “Deep Reinforce-
ment Learning for Vehicular Edge Computing: An Intelligent Offloading
System,” ACM Trans. Intell. Syst. Technol., vol. 10, no. 6, pp. 1-24, Dec,
2019).

[30] J. Zhao, Q. Li, Y. Gong, and K. Zhang, “Computation offloading and
resource allocation for cloud assisted mobile edge computing in vehicular
networks,” IEEE Trans. Veh. Technol., vol. 68, no. 8, pp. 7944–7956, Jun.
2019.

[31] C. Feng, Z. Zhao, Y. Wang, T. Quek and M. Peng, “On the Design
of Federated Learning in the Mobile Edge Computing Systems,” IEEE
Trans. Commun., vol. 69, no. 9, pp. 5902-5916, Sept. 2021.

[32] Y. Lu, X. Huang, K. Zhang, S. Maharjan and Y. Zhang, “Blockchain
Empowered Asynchronous Federated Learning for Secure Data Sharing
in Internet of Vehicles,” IEEE Trans. Veh. Technol., vol. 69, no. 4, pp.
4298-4311, Apr. 2020.

[33] B. Zhou, S. Srirama and R. Buyya, “An auction-based incentive mech-
anism for heterogeneous mobile clouds,” J. Syst. Softw., vol. 152, pp.
0164-12126, Jun. 2019.

[34] J. Sladana and D. Gyorgy, “Wireless and computing resource allocation
for selfish computation offloading in edge computing,” in Proc. IEEE Int.
Conf. Comput. Commun. (INFOCOM), Sept. 2019, pp. 2467-2475.

[35] Z. Hong, W. Chen, H. Huang, S. Guo, and Z. Zheng, “Multi-hop coop-
erative computation offloading for industrial IoT–edge–Cloud computing
environments,” IEEE Trans. Parallel Distrib. Syst., vol. 30, no. 12, pp.
2759–2774, Dec. 2019.

[36] J. Zheng, Y. Cai, Y. Wu, and X. Shen, “Dynamic computation offloading
for mobile cloud computing: A stochastic game-theoretic approach,”
IEEE. Trans. Mob. Comput., vol. 18, no. 4, pp. 771–786, Apr. 2019.

[37] A. Bi and Y. Zhang, “Computation rate maximization for wireless
powered mobile-edge computing with binary computation offloading,”
IEEE Trans. Wirel. Commun., vol. 17, no. 6, pp. 4177–4190, Jun. 2018.

[38] G. Ahani and D. Yuan, “BS-Assisted Task Offloading for D2D Networks
with Presence of User Mobility,” in Proc. IEEE 89th Veh. Technol. Conf.
(VTC2019-Spring), Apr. 2019, pp. 1-5.

[39] Z. Cheng, M. Min, M. Liwang, L. Huang and Z. Gao, “Multiagent
DDPG-Based Joint Task Partitioning and Power Control in Fog Comput-
ing Networks,” IEEE Internet Things J., vol. 9, no. 1, pp. 104-116, Jan.
2022.

[40] J. Yan, S. Bi, and Y. Zhang, “Offloading and resource allocation with
general task graph in mobile edge computing: A deep reinforcement
learning approach,” IEEE Trans. Wirel. Commun., vol. 19, no. 8, pp.
5404–5419, Aug. 2020.

[41] L. Xiao, X. Lu, T. Xu, X. Wan, W. Ji, and Y. Zhang, “Reinforcement
learning-based mobile offloading for edge computing against jamming
and interference,” IEEE Trans. Commun., vol. 68, no. 10, pp. 6114–6126,
Oct. 2020.

[42] M. Min, X. Wan, X. Liang and C. Ye, “Learning-based privacy-aware
offloading for healthcare IoT with energy harvesting,” IEEE Internet
Things J., vol. 6, no. 3, pp. 4307–4316, Jun. 2019.

[43] M. Hu, L. Zhuang, D. Wu, Y. Zhou, X. Chen, and L. Xiao, “Learning
driven computation offloading for asymmetrically informed edge comput-
ing,” IEEE Trans. Parallel Distrib. Syst., vol. 30, no. 8, pp. 1802–1815,
Aug. 2019.

[44] J. Baek and G. Kaddoum, “Heterogeneous task offloading and resource
allocations via deep recurrent reinforcement learning in partial observable
multifog networks,” IEEE Internet Things J., vol. 8, no. 2, pp. 1041–1056,
Jan. 2021.

[45] J. Zhang, H. Guo, and J. Liu, “Adaptive Task Offloading in Vehicular
Edge Computing Networks: a Reinforcement Learning Based Scheme,”
Mobile Netw. Appl., vol. 25, no. 5, pp. 1736–1745, Jun. 2020.

[46] Y. Wu, T, Dinh, Y, Fu, C, Lin, and T, Quek, “A Hybrid DQN
and Optimization Approach for Strategy and Resource Allocation in
MEC Networks,”IEEE Trans. on Wirel. Commun., vol. 20, no. 7, pp.
4282–4295, Jul. 2021.

[47] S. Song, Z. Fang, Z. Zhang, C. Chen and H. Sun, “Semi-Online
Computational Offloading by Dueling Deep-Q Network for User Behavior
Prediction,” IEEE Access, vol. 8, pp. 118192-118204, Jul. 2020.

[48] B. R. Kiran et al., “Deep Reinforcement Learning for Autonomous
Driving: A Survey,” IEEE Trans. on Intell. Transp. Syst., vol. 23, no.
6, pp. 4909-4926, Jun. 2022.

[49] K. Liu and W. Liao, “Intelligent offloading for multi-access edge
computing: A new actor–critic approach,” in Proc. IEEE Int. Conf.
Commun. (ICC), Jun. 2020. pp. 1–6.

[50] Geng, H. Zhao, H. Liu, Y. Wang, W. Feng and L. Bai, “Deep Reinforce-
ment Learning-based Computation Offloading in Vehicular Networks,” in
Proc. IEEE International Conference on Edge Computing and Scalable
Cloud, May 2021, pp. 200-206.

[51] H. Lu, X. He, M. Du, X. Ruan, Y. Sun, and K. Wang, “Edge QoE:
Computation offloading with deep reinforcement learning for Internet of
Things,” IEEE Internet Things J., vol. 7, no. 10, pp. 9255–9265, Oct.
2020.

[52] Y. Hou, L. Liu, Q. Wei, X. Xu and C. Chen, “A novel DDPG method
with prioritized experience replay,” in Proc. 2017 IEEE International
Conference on Systems, Man, and Cybernetics, Oct. 2017, pp. 316-321.

Liwei Geng received the master’s degree from
Beihang University, Beijing, China, in 2019, where
she is currently pursuing the Ph.D. degree in elec-
tronic and information engineering with the School
of Electronic and Information Engineering. She is
currently doing research on mobile edge computing
and deep reinforcement learning.

18

Hongbo Zhao is a professor in the School of
Electronic and Information Engineering, Beihang
University, Beijing, China. He received Ph.D. degree
in communication and information system from Bei-
hang University in 2012. He has been teaching there
since 2012. His current research interests include
vehicular networks, mobile edge computing and
non-terrestrial communication network.

Jiayue Wang received the B.Sc. degree from the
School of Electronic and Information Engineering,
Beihang University, Beijing, China, in 2020. He is
currently pursuing the Master’s degree at Beihang
University, Beijing. His current research interests
include mobile edge computing.

Aryan Kaushik is an Assistant Professor at the
University of Sussex, UK. He has been a Research
Fellow at the University College London (UCL),
UK, from 2020-21, and completed PhD degree in
Communications Engineering from the University
of Edinburgh, UK, in 2019. He received MSc in
Telecommunications from the Hong Kong Univer-
sity of Science and Technology, Hong Kong, in
2015. He has held visiting appointments at the
Imperial College London, UK, Shenzhen Institute
of Beihang University, China, University of Luxem-

bourg, Luxembourg, Athena Research and Innovation Center, Greece, and
Beihang University, Beijing, China. He has been involved as research lead/PI
or Co-I in several UK-wide and international collaborative projects. His
research interests include signal processing for 5G Adv/6G wireless commu-
nications, integrated sensing and communications, reconfigurable intelligent
and holographic surfaces, energy efficient communications, millimeter wave
massive MIMO and satellite communication networks. He is a member of the
IEEE, IEEE ComSoc and the IET. He serves as an Associate Editor in the
Editorial Boards of the IEEE Open Journal of the Communications Society,
IEEE Communications Letters, IET Signal Processing and IET Networks.
He has been the Lead Guest Editor for Special Issues on reconfigurable
intelligent and holographic surfaces topics in the IEEE Open Journal of
the Communications Society and IET Signal Processing, Tutorial Speaker
at IEEE WCNC 2023, Track Chair for the Backhaul/Fronthaul Networking
and Communications SAC symposium at IEEE ICC 2024 and Track Co-
Chair for the Emerging Technologies, Standards and Applications track at
IEEE WCNC 2023. He has also been serving as General Chair for IEEE
international workshops such as IEEE WCNC 2023, IEEE PIMRC 2022 and
IEEE SECON 2022, TPC Member at IEEE ICC 2021-23 including RISSE
SAC (ICC 2023), and Conference Champion for IEEE PIMRC 2020.

Shuai Yuan received the B.Sc. degree from the Col-
lege of Information Science and Engineering, Ocean
University of China, Qingdao, China, in 2020. He is
currently pursuing the Master’s degree at Beihang
University, Beijing. His current research interests
include fault diagnosis and computing offloading in
the Internet of vehicles.

Wenquan Feng is a professor in the School of
Electronic and Information Engineering, Beihang
University, Beijing, China. He received a Ph.D.
degree in communication and information system
from Beihang University. He has been teaching as
the dean of studies at Beihang University since
2011. His current research interests include signal
processing, deep learning, and fault diagnosis.

	Deep reinforcement learning based distributed computation offloading in vehicular edge computing networks

