File(s) not publicly available
Discrete maximum principle for Galerkin approximations of the Laplace operator on arbitrary meshes
journal contribution
posted on 2023-06-07, 19:58 authored by Erik Burman, Alexandre ErnWe derive a nonlinear stabilized Galerkin approximation of the Laplace operator for which we prove a discrete maximum principle on arbitrary meshes and for arbitrary space dimension without resorting to the well-known acute condition or generalizations thereof. We also prove the existence of a discrete solution and discuss the extension of the scheme to convectiondiffusionreaction equations. Finally, we present examples showing that the new scheme cures local minima produced by the standard Galerkin approach while maintaining first-order accuracy in the H1-norm.
History
Publication status
- Published
Journal
Comptes Rendus MathématiqueISSN
1631-073XExternal DOI
Issue
8Volume
338Page range
641-646Department affiliated with
- Mathematics Publications
Full text available
- No
Peer reviewed?
- Yes