Hematological Oncology - 2022 - Agnarelli - Dissecting the impact of bromodomain inhibitors on the Interferon Regulatory.pdf (1.9 MB)
Download fileDissecting the impact of bromodomain inhibitors on the IRF4-MYC oncogenic axis in multiple myeloma
journal contribution
posted on 2023-06-12, 07:48 authored by Alessandro AgnarelliAlessandro Agnarelli, Simon MitchellSimon Mitchell, Gillian Caalim, David WoodDavid Wood, Leanne Harris, Timothy ChevassutTimothy Chevassut, Michelle WestMichelle West, Erika ManciniErika ManciniB-cell progenitor fate determinant interferon regulatory factor 4 (IRF4) exerts key roles in the pathogenesis and progression of multiple myeloma (MM), a currently incurable plasma cell malignancy. Aberrant expression of IRF4 and the establishment of a positive auto-regulatory loop with oncogene MYC, drives a MM specific gene-expression programme leading to the abnormal expansion of malignant immature plasma cells. Targeting the IRF4-MYC oncogenic loop has the potential to provide a selective and effective therapy for MM. Here we evaluate the use of bromodomain inhibitors to target the IRF4-MYC axis through combined inhibition of their known epigenetic regulators, BRD4 and CBP/EP300. Although all inhibitors induced cell death, we found no synergistic effect of targeting both of these regulators on the viability of MM cell-lines. Importantly, for all inhibitors over a time period up to 72 hours, we detected reduced IRF4 mRNA, but a limited decrease in IRF4 protein expression or mRNA levels of downstream target genes. This indicates that inhibitor-induced loss of cell viability is not mediated through reduced IRF4 protein expression, as previously proposed. Further analysis revealed a long half-life of IRF4 protein in MM cells. In support of our experimental observations, gene network modelling of MM suggests that bromodomain inhibition is exerted primarily through MYC and not IRF4. These findings suggest that despite the autofeedback positive regulatory loop between IRF4 and MYC, bromodomain inhibitors are not effective at targeting IRF4 in MM and that novel therapeutic strategies should focus on the direct inhibition or degradation of IRF4. This article is protected by copyright.
History
Publication status
- Published
File Version
- Published version
Journal
Hematological OncologyISSN
0278-0232Publisher
WileyExternal DOI
Issue
3Volume
40Page range
417-429Event location
EnglandDepartment affiliated with
- Clinical and Experimental Medicine Publications
Full text available
- Yes
Peer reviewed?
- Yes