University of Sussex

File(s) under permanent embargo

Do insect metabolic rates at rest and during flight scale with body mass?

journal contribution
posted on 2023-06-08, 13:43 authored by Jeremy NivenJeremy Niven, Jörn P W Scharlemann
Energetically costly behaviours, such as flight, push physiological systems to their limits requiring metabolic rates (MR) that are highly elevated above the resting MR (RMR). Both RMR and MR during exercise (e.g. flight or running) in birds and mammals scale allometrically, although there is little consensus about the underlying mechanisms or the scaling relationships themselves. Even less is known about the allometric scaling of RMR and MR during exercise in insects. We analysed data on the resting and flight MR (FMR) of over 50 insect species that fly to determine whether RMR and FMR scale allometrically. RMR scaled with body mass to the power of 0.66 (M-0.66), whereas FMR scaled with M-1.10. Further analysis suggested that FMR scaled with two separate relationships; insects weighing less than 10 mg had fourfold lower FMR than predicted from the scaling of FMR in insects weighing more than 10 mg, although both groups scaled with M-0.86. The scaling exponents of RMR and FMR in insects were not significantly different from those of birds and mammals, suggesting that they might be determined by similar factors. We argue that low FMR in small insects suggests these insects may be making considerable energy savings during flight, which could be extremely important for the physiology and evolution of insect flight


Publication status

  • Published

File Version

  • Published version


Biology Letters




The Royal Society





Page range


Department affiliated with

  • Evolution, Behaviour and Environment Publications

Full text available

  • No

Peer reviewed?

  • Yes

Legacy Posted Date


First Compliant Deposit (FCD) Date


Usage metrics

    University of Sussex (Publications)


    No categories selected