University of Sussex

File(s) not publicly available

Dual phospholipase C/diacylglycerol requirement for protein kinase D1 activation in lymphocytes.

journal contribution
posted on 2023-06-08, 11:17 authored by David WoodDavid Wood, Ulrica Marklund, Doreen A Cantrell
The serine/threonine kinase protein kinase D1 (PKD1) is a protein kinase C (PKC) substrate that mediates antigen receptor signal transduction in lymphocytes. PKC phosphorylates serines 744/748 within the PKD1 catalytic domain, and this is proposed to be necessary and sufficient for enzyme activation. Hence, a PKD1 mutant with alanine substituted at positions 744 and 748 (PKD-S744A/S748A) is catalytically inactive. Conversely, a PKD1 mutant with glutamic residues substituted at positions 744 and 748 as phospho-mimics (PKD-S744E/S748E) is constitutively active when expressed in Cos7 or HeLa cells. The present study reveals that Ser-744/Ser-748 phosphorylation is required for PKD1 activation in lymphocytes. However, PKD-S744E/S748E is not constitutively active but, like the wild type enzyme, requires antigen receptor triggering or phorbol ester stimulation. Antigen receptor activation of wild type PKD is dependent on phospholipase C (PLC)/diacylglycerol (DAG) and PKC, whereas PKD-S744E/S748E is only dependent on PLC/DAG but no longer requires PKC. Hence, substitution of serines 744 and 748 with glutamic residues as phospho-mimics bypasses the PKC requirement for PKD1 activation but does not bypass the need for antigen receptors, PLC, or DAG. In lymphocytes, PKD1 is, thus, not regulated by PLC and PKC in a linear pathway; rather, PKD1 activation has more stringent requirements for integration of dual PLC signals, one mediated by PKCs and one that is PKC-independent.


Publication status

  • Published


Journal of Biological Chemistry





Page range


Department affiliated with

  • Biochemistry Publications

Full text available

  • No

Peer reviewed?

  • Yes

Legacy Posted Date


Usage metrics

    University of Sussex (Publications)


    No categories selected