Version 2 2023-06-12, 09:04Version 2 2023-06-12, 09:04
Version 1 2023-06-09, 17:28Version 1 2023-06-09, 17:28
journal contribution
posted on 2023-06-12, 09:04authored byHaruhisa Okawa, Wan-Qing Yu, Ulf Matti, Karin Scwarz, Benjamin Odermatt, Haining Zhong, Yoshihiko Tsukamoto, Leon LagnadoLeon Lagnado, Fred RIeke, Frank Schmitz, Rachel O L Wong
Ribbon synapses transmit information in sensory systems, but their development is not well understood. To test the hypothesis that ribbon assembly stabilizes nascent synapses, we performed simultaneous time-lapse imaging of fluorescently-tagged ribbons in retinal cone bipolar cells (BCs) and postsynaptic densities (PSD95-FP) of retinal ganglion cells (RGCs). Ribbons and PSD95-FP clusters were more stable when these components colocalized at synapses. However, synapse density on ON-alpha RGCs was unchanged in mice lacking ribbons (ribeye knockout). Wildtype BCs make both ribbon-containing and ribbon-free synapses with these GCs even at maturity. Ribbon assembly and cone BC-RGC synapse maintenance are thus regulated independently. Despite the absence of synaptic ribbons, RGCs continued to respond robustly to light stimuli, although quantitative examination of the responses revealed reduced frequency and contrast sensitivity.
Funding
Synaptic computation in the visual system; G1321; WELLCOME TRUST; 102905/Z/13/Z