Discriminating, extracting and encoding temporal regularities is a critical requirement in the brain, relevant to sensory-motor processing and learning. However, the cellular mechanisms responsible remain enigmatic; for example, whether such abilities require specific, elaborately organized neural networks or arise from more fundamental, inherent properties of neurons. Here, using multi-electrode array technology, and focusing on interval learning, we demonstrate that sparse reconstituted rat hippocampal neural circuits are intrinsically capable of encoding and storing sub-second-order time intervals for over an hour timescale, represented in changes in the spatial-temporal architecture of firing relationships among populations of neurons. This learning is accompanied by increases in mutual information and transfer entropy, formal measures related to information storage and flow. Moreover, temporal relationships derived from previously trained circuits can act as templates for copying intervals into untrained networks, suggesting the possibility of circuit-to-circuit information transfer. Our findings illustrate that dynamic encoding and stable copying of temporal relationships are fundamental properties of simple in vitro networks, with general significance for understanding elemental principles of information processing, storage and replication.
Funding
Ultrastructure-function properties of recycling vesicle pools in native central synapses; G1150; BBSRC-BIOTECHNOLOGY & BIOLOGICAL SCIENCES RESEARCH COUNCIL; BB/K019015/1
INSIGHT-II Darwinian Neurodynamics; G1087; EUROPEAN UNION; 308943
Functional synaptic vesicle pool remodelling as a basis for plasticity and control of complex behaviour; G2521; BBSRC-BIOTECHNOLOGY & BIOLOGICAL SCIENCES RESEARCH COUNCIL; BB/S00310X/1