Engineered mannitol as an alternative carrier to enhance deep lung penetration of salbutamol sulphate from dry powder inhaler
journal contribution
posted on 2023-06-08, 19:21 authored by Waseem Kaialy, Mohammed N Momin, Martyn D Ticehurst, John Murphy, Ali NokhodchiIn this research mannitol particles were prepared by recrystallisation using non-solvent precipitation technique to investigate the effect of engineered carrier particles on their physicochemical properties and the in vitro deposition profiles of a model drug (salbutamol sulphate (SS)) from a dry powder inhaler (DPI). To this end, mannitol aqueous solution (15%, w/v) was added to different ratios of ethanol:water (100:0, 95:5, 90:10 and 85:15) to obtain mannitol particles. These crystallised mannitol particles were analysed in terms of micromeritic properties, morphology, DSC, FT-IR, and in vitro fine particle fraction (FPF) and emitted dose (ED) of SS. The results showed that the elongation ratio of all the recrystallised mannitol batches was higher than the original material giving them a needle-shaped morphology. Salbutamol sulphate deposition profiles from DPI formulation containing recrystallised needle-shaped mannitol showed enhanced performance and better delivery to the lower MSLI stages. The FPF increased from 15.4 ± 1.1 to 45.8 ± 0.7% when the commercial mannitol was replaced by mannitol crystallised from ethanol:water (90:10). This improvement could be due to the presence of elongated mannitol crystals in formulation blends. Solid state characterisation of engineered mannitol showed that the commercial mannitol was ß-form, mannitol recrystallised from ethanol:water (85:15) was a-form and that samples recrystallised in presence of pure ethanol or other ratios of ethanol:water (95:5 and 90:10) were the mixtures of a-, ß- and d-forms. Multi-solvent recrystallisation technique was proved to have potential to produce mannitol crystals suitable for enhanced aerosolisation efficiency. Comparing different crystallised mannitol formulations showed that the final form (the type of polymorph) of the crystallised mannitol does not have a substantial effect on salbutamol sulphate aerosolisation performance. © 2010 Elsevier B.V.
History
Publication status
- Published
Journal
Colloids and Surfaces B: BiointerfacesISSN
0927-7765Publisher
ElsevierExternal DOI
Issue
2Volume
79Page range
345-356Department affiliated with
- Chemistry Publications
Full text available
- No
Peer reviewed?
- Yes
Legacy Posted Date
2014-12-21Usage metrics
Categories
No categories selectedKeywords
Licence
Exports
RefWorksRefWorks
BibTeXBibTeX
Ref. managerRef. manager
EndnoteEndnote
DataCiteDataCite
NLMNLM
DCDC