__smbhome.uscs.susx.ac.uk_bw233_Desktop_SRO_SRO - Ali Taheri_FINAL-SDAYSphTw.pdf (478.89 kB)
Geodesics on SO(n) and a class of spherically symmetric maps as solutions to a nonlinear generalised harmonic map problem
We address questions on existence, multiplicity as well as qualitative features including rotational symmetry for certain classes of geometrically motivated maps serving as solutions to the nonlinear system $$ \begin{cases} -\text{\rm div}[ F'(|x|,|
abla u|^2)
abla u] = F'(|x|,|
abla u|^2) |
abla u|^2 u &\text{in } \mathbb{X}^n,\\ |u| = 1 &\text{in } \mathbb{X}^n ,\\ u = \varphi &\text{on } \partial \mathbb{X}^n. \end{cases} $$% Here $\varphi \in \mathscr{C}^\infty(\partial {\mathbb{X}}^n, \mathbb S}^{n-1})$ is a suitable boundary map, $F'$ is the derivative of $F$ with respect to the second argument, $u \in W^{1,p}(\mathbb{X}^n, \mathbb S}^{n-1})$ for a fixed $1< p< \infty$ and ${\mathbb{X}}^n=\{x \in \mathbb R^n : a< |x|< b\}$ is a generalised annulus. Of particular interest are spherical twists and whirls, where following \cite{Taheri2012}, a spherical twist refers to a rotationally symmetric map of the form $u\colon x \mapsto \rom{Q}(|x|)x|x|^{-1}$ with $\rom{Q}$ some suitable path in $\mathscr{C}([a, b], {\rm SO}(n))$ and a whirl has a similar but more complex structure with only $2$-plane symmetries. We establish the existence of an infinite family of such solutions and illustrate an interesting discrepancy between odd and even dimensions.
abla u|^2)
abla u] = F'(|x|,|
abla u|^2) |
abla u|^2 u &\text{in } \mathbb{X}^n,\\ |u| = 1 &\text{in } \mathbb{X}^n ,\\ u = \varphi &\text{on } \partial \mathbb{X}^n. \end{cases} $$% Here $\varphi \in \mathscr{C}^\infty(\partial {\mathbb{X}}^n, \mathbb S}^{n-1})$ is a suitable boundary map, $F'$ is the derivative of $F$ with respect to the second argument, $u \in W^{1,p}(\mathbb{X}^n, \mathbb S}^{n-1})$ for a fixed $1< p< \infty$ and ${\mathbb{X}}^n=\{x \in \mathbb R^n : a< |x|< b\}$ is a generalised annulus. Of particular interest are spherical twists and whirls, where following \cite{Taheri2012}, a spherical twist refers to a rotationally symmetric map of the form $u\colon x \mapsto \rom{Q}(|x|)x|x|^{-1}$ with $\rom{Q}$ some suitable path in $\mathscr{C}([a, b], {\rm SO}(n))$ and a whirl has a similar but more complex structure with only $2$-plane symmetries. We establish the existence of an infinite family of such solutions and illustrate an interesting discrepancy between odd and even dimensions.
History
Publication status
- Published
File Version
- Accepted version
Journal
Topological Methods in Nonlinear AnalysisISSN
1230-3429Publisher
Nicolaus Copernicus University in Torun, Juliusz Schauder Centre for Nonlinear StudiesExternal DOI
Issue
2Volume
51Page range
637-662Department affiliated with
- Physics and Astronomy Publications
Full text available
- Yes
Peer reviewed?
- Yes