File(s) not publicly available
Learning non-local dependencies.
journal contribution
posted on 2023-06-07, 17:49 authored by Gustav Kuhn, Zoltan DienesZoltan DienesThis paper addresses the nature of the temporary storage buffer used in implicit or statistical learning. Kuhn and Dienes [Kuhn, G., & Dienes, Z. (2005). Implicit learning of nonlocal musical rules: implicitly learning more than chunks. Journal of Experimental Psychology-Learning Memory and Cognition, 31(6) 14171432] showed that people could implicitly learn a musical rule that was solely based on non-local dependencies. These results seriously challenge models of implicit learning that assume knowledge merely takes the form of linking adjacent elements (chunking). We compare two models that use a buffer to allow learning of long distance dependencies, the Simple Recurrent Network (SRN) and the memory buffer model. We argue that these models as models of the mind should not be evaluated simply by fitting them to human data but by determining the characteristic behaviour of each model. Simulations showed for the first time that the SRN could rapidly learn non-local dependencies. However, the characteristic performance of the memory buffer model rather than SRN more closely matched how people came to like different musical structures. We conclude that the SRN is more powerful than previous demonstrations have shown, but its flexible learned buffer does not explain peoples implicit learning (at least, the affective learning of musical structures) as well as fixed memory buffer models do.
History
Publication status
- Published
Journal
CognitionISSN
0010-0277External DOI
Issue
1Volume
106Page range
184-206Pages
23.0Department affiliated with
- Psychology Publications
Full text available
- No
Peer reviewed?
- Yes