NatCommun2017.pdf (1.15 MB)
Living GenoChemetics by hyphenating synthetic biology and synthetic chemistry in vivo
journal contribution
posted on 2023-06-09, 15:48 authored by Sunil V Sharma, Xiaoxue Tong, Cristina Pubill Ulldemolins, Christopher Cartmell, Emma J A Bogosyan, Emma J Rackham, Enrico Marelli, Refaat B Hamed, Rebecca J M GossMarrying synthetic biology with synthetic chemistry provides a powerful approach toward natural product diversification, combining the best of both worlds: expediency and synthetic capability of biogenic pathways and chemical diversity enabled by organic synthesis. Biosynthetic pathway engineering can be employed to insert a chemically orthogonal tag into a complex natural scaffold affording the possibility of site-selective modification without employing protecting group strategies. Here we show that, by installing a sufficiently reactive handle (e.g., a C–Br bond) and developing compatible mild aqueous chemistries, synchronous biosynthesis of the tagged metabolite and its subsequent chemical modification in living culture can be achieved. This approach can potentially enable many new applications: for example, assay of directed evolution of enzymes catalyzing halo-metabolite biosynthesis in living cells or generating and following the fate of tagged metabolites and biomolecules in living systems. We report synthetic biological access to new-to-nature bromo-metabolites and the concomitant biorthogonal cross-coupling of halo-metabolites in living cultures
History
Publication status
- Published
File Version
- Published version
Journal
Nature CommunicationsISSN
2041-1723Publisher
Nature ResearchExternal DOI
Issue
229Volume
8Page range
1-10Department affiliated with
- Chemistry Publications
Full text available
- Yes
Peer reviewed?
- Yes