University of Sussex
Browse
jmir-2024-1-e55302.pdf (656.19 kB)

Longitudinal assessment of seasonal impacts and depression associations on circadian rhythm using multimodal wearable sensing: retrospective analysis

Download (656.19 kB)
journal contribution
posted on 2024-07-05, 08:33 authored by Faith MatchamFaith Matcham

Background: Previous mobile health (mHealth) studies have revealed significant links between depression and circadian rhythm features measured via wearables. However, the comprehensive impact of seasonal variations was not fully considered in these studies, potentially biasing interpretations in real-world settings.

Objective: This study aims to explore the associations between depression severity and wearable measured circadian rhythms while accounting for seasonal impacts.

Methods: Data were sourced from a large longitudinal mHealth study, wherein participants' depression severity was assessed biweekly using the 8-item Patient Health Questionnaire (PHQ-8), and participants' behaviors, including sleep, step count, and heart rate (HR), were tracked via Fitbit devices for up to two years. We extracted 12 circadian rhythm features from the 14-day Fitbit data preceding each PHQ-8 assessment, including cosinor variables, such as HR peak timing (HR Acrophase), and nonparametric features, such as the onset of the most active continuous 10- hour period (M10 onset). To investigate the association between depression severity and circadian rhythms while also assessing the seasonal impacts, we employed three nested linear mixed-effects models for each circadian rhythm feature: (1) incorporating the PHQ-8 score as an independent variable; (2) adding seasonality; and (3) adding an interaction term between season and the PHQ-8 score. Results: Analyzing 10,018 PHQ-8 records alongside Fitbit data from 543 participants (76.2% female, median age 48 years [IQR: 32-58]), we found that after adjusting for seasonal effects, higher PHQ-8 scores were associated with reduced daily steps (β = -93.61, P < .001), increased sleep variability (β = 0.96, P < .001), and delayed circadian rhythms (e.g., sleep onset [β = 0.55, P = .001] and offset [β = 1.12, P < .001], M10 onset [β = 0.73, P = .003], and HR Acrophase [β = 0.71, P = .001]). Notably, the negative association with daily steps was more pronounced in spring (β of PHQ8×Spring = -31.51, P = .002) and summer (β of PHQ8×Summer = -42.61, P < .001) compared to winter. Additionally, the significant correlation with delayed M10 onset was observed solely in summer (β of PHQ8×Summer = 1.06, P = .008). Moreover, compared to winter, participants experienced a shorter sleep duration by 16.6 minutes, an increase in daily steps by 394.5, a delay in M10 onset by 20.5 minutes, and a delay in HR peak time by 67.9 minutes during summer.

Conclusions: Our findings highlight significant seasonal influences on human circadian rhythms and their associations with depression, underscoring the importance of considering seasonal variations in mHealth research for real-world applications. This study also indicates the potential of wearable-measured circadian rhythms as digital biomarkers for depression.

History

Publication status

  • Published

File Version

  • Published version

Journal

Journal of Medical Internet Research

ISSN

1438-8871

Publisher

JMIR Publications

Volume

26

Article number

e55302

Department affiliated with

  • Psychology Publications

Institution

University of Sussex

Full text available

  • Yes

Peer reviewed?

  • Yes