## File(s) not publicly available

# Mathematical Analysis of a Model describing Evolution of an Asexual Population in a Changing Environment

journal contribution

posted on 2023-06-07, 21:35 authored by M Broom, Qi Tang, D WaxmanWe investigate a mathematical model for an asexual population with non-overlapping (discrete) generations, that exists in a changing environment. Sexual populations are also briefly discussed at the end of the paper. It is assumed that selection occurs on the value of a single polygenic trait, which is controlled by a finite number of loci with discrete-effect alleles. The environmental change results in a moving fitness optimum, causing the trait to be subject to a combination of stabilising and directional selection. This model is different from that investigated by Waxman and Peck [Genetics 153 (1999) 1041] where overlapping generations and continuous effect alleles were considered. In this paper, we consider non-overlapping generations and discrete effect alleles. However in [Genetics 153 (1999) 1041] and the present work, there is the same pattern of environmental change, namely a constant rate of change of the optimum. From [Genetics 153 (1999) 1041], no rigorous theoretical conclusion can be drawn about the form of the solutions as t grows large. Numerical work carried out in [Genetics 153 (1999) 1041] suggests that the solution is a lagged travelling wave solution, but no mathematical proof exists for the continuous model. Only partial results, regarding existence of travelling wave solutions and perturbed solutions, have been established (see [Nonlin. Anal. 53 (2003) 683; An integral equation describing an asexual population in a changing environment, Preprint]). For the discrete case of this paper, under the assumption that the ratio between the unit of genotypic value and the speed of environment change is a rational number, we are able to give rigorous proof of the following conclusion: the population follows the environmental change with a small lag behind, moreover, the lag is represented using a calculable quantity.

## History

## Publication status

- Published

## Journal

Mathematical Biosciences## ISSN

0025-5564## External DOI

## Issue

1## Volume

186## Page range

93-108## Department affiliated with

- Mathematics Publications

## Full text available

- No

## Peer reviewed?

- Yes

## Legacy Posted Date

2012-02-06## Usage metrics

## Categories

No categories selected## Keywords

## Licence

## Exports

RefWorks

BibTeX

Ref. manager

Endnote

DataCite

NLM

DC