University of Sussex
6520.full.pdf (1.41 MB)

Modeling co-operative volume signaling in a plexus of nitric oxide synthase-expressing neurons

Download (1.41 MB)
journal contribution
posted on 2023-06-07, 19:43 authored by Andy PhilippidesAndy Philippides, Swidbert R. Ott, Phil HusbandsPhil Husbands, Thelma A. Lovick, Michael O'Shea
In vertebrate and invertebrate brains, nitric oxide (NO) synthase (NOS) is frequently expressed in extensive meshworks (plexuses) of exceedingly fine fibers. In this paper, we investigate the functional implications of this morphology by modeling NO diffusion in fiber systems of varying fineness and dispersal. Because size severely limits the signaling ability of an NO-producing fiber, the predominance of fine fibers seems paradoxical. Our modeling reveals, however, that cooperation between many fibers of low individual efficacy can generate an extensive and strong volume signal. Importantly, the signal produced by such a system of cooperating dispersed fibers is significantly more homogeneous in both space and time than that produced by fewer larger sources. Signals generated by plexuses of fine fibers are also better centered on the active region and less dependent on their particular branching morphology. We conclude that an ultrafine plexus is configured to target a volume of the brain with a homogeneous volume signal. Moreover, by translating only persistent regional activity into an effective NO volume signal, dispersed sources integrate neural activity over both space and time. In the mammalian cerebral cortex, for example, the NOS plexus would preferentially translate persistent regional increases in neural activity into a signal that targets blood vessels residing in the same region of the cortex, resulting in an increased regional blood flow. We propose that the fineness-dependent properties of volume signals may in part account for the presence of similar NOS plexus morphologies in distantly related animals.


Publication status

  • Published

File Version

  • Published version


Journal of Neuroscience




Blackwell Publishing





Page range




Department affiliated with

  • Neuroscience Publications


MO initiated and directed the research and wrote the paper which shows how a plexus of NO sources translates local enhance brain activity into a well-centred and uniform cloud of NO. The work contributes to our understanding of how cortical blood flow reflects neural activity - the basis for fMRI.

Full text available

  • Yes

Peer reviewed?

  • Yes

Legacy Posted Date


First Open Access (FOA) Date


First Compliant Deposit (FCD) Date


Usage metrics

    University of Sussex (Publications)


    No categories selected