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Highlights 

> Odour intensity coding in a whole population of moth receptor neurons was modelled. 

> Frequency (spikes per second) and latency of the first spike were analyzed 

> The model accounts for the statistical distributions of frequencies and latencies. 

> The same dose-frequency relation applies at the single cell and population levels. 

> Predictions based on a biophysical model of frog olfactory neurons are confirmed. 
 

Abstract. A statistical model of the population of first-order olfactory receptor neurons 

(ORNs) is proposed and analysed. It describes the relationship between stimulus intensity 

(odour concentration) and coding variables such as rate and latency of the population of 

several thousand sex-pheromone sensitive ORNs in male moths. Although these neurons 

likely express the same olfactory receptor, they exhibit, at any concentration, a relatively large 

heterogeneity of responses in both peak firing frequency and latency of the first action 

potential fired after stimulus onset. The stochastic model is defined by a multivariate 

distribution of six model parameters that describe the dependence of the peak firing rate and 

the latency on the stimulus dose. These six parameters and their mutual linear correlations 

were estimated from experiments in single ORNs and included in the multidimensional model 

distribution. The model is utilized to reconstruct the peak firing rate and latency of the 

message sent to the brain by the whole ORN population at different stimulus intensities and to 

establish their main qualitative and quantitative properties. Finally, these properties are shown 

to be in agreement with those found previously in a vertebrate ORN population.  

 

Keywords: olfactory receptor neuron; neural population; rate coding; temporal coding; insect; 

sexual pheromone.    
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1. INTRODUCTION 

 

Insects constitute well-suited model organisms to unravel olfactory codes. They share with 

vertebrates a common design of their olfactory system with similar molecular and cellular 

organizations and conserved mechanisms for olfactory coding (Davis, 2004; Hildebrand and 

Shepherd, 1997; Jacquin-Joly and Lucas, 2005; Kay and Stopfer, 2006; Strausfeld and 

Hildebrand, 1999). Odorant compounds bind to receptor proteins on the ciliary surface of 

olfactory receptor neurons (ORNs) located in a large number of antennal sensilla. The ORN 

axons project to the antennal lobe in the brain where they make synaptic contacts with 

cerebral neurons within discrete, spherical neuropils called glomeruli. In Drosophila all ORNs 

projecting to a given glomerulus express the same receptor protein and each ORN projects 

only to one or in exceptional cases a few glomeruli (Vosshall et al., 2000), which explains that 

glomeruli in insects are individually identifiable
 
(Rospars, 1988).  

This general organization is common to the generalist subsystem, which is sensitive to 

many odorants (originating from food, predators, etc.), and to the specialist subsystem, which 

is sensitive to pheromones. In moths, for example, females release specific odour blends − sex 

pheromones − to signal their presence to males. Males in turn use their pheromone subsystem 

to locate them. The population of ORNs in the pheromone subsystem (~10,000) converges 

onto a smaller number of central neurons (~100, Homberg et al., 1988). In particular, the ORNs 

sensitive to the major component of the pheromone blend, the most common in the moth 

antenna, project to a single glomerulus of the MGC, the cumulus (Hansson et al., 1992). The 

pheromone subsystem of male moths shares all major properties of the generalist olfactory 

system of both insects and vertebrates, yet in a form well amenable to investigations with 

well-characterized ligands, highly specific receptors, and a large number of specialized, 

identical and identifiable ORNs. These features account for the traditional importance of the 

moth pheromone system in olfactory research (reviewed by de Bruyne and Baker, 2008; 

Jacquin-Joly and Lucas, 2005; Kaissling 2004). 

The aim of the present work was to develop a model of the population of ORNs responding 

to the main component of the pheromone blend. Modelling the ORN population has received 

relatively little attention (Sandström et al., 2009), whereas the antennal lobe (AL) network has 

been frequently studied (see e.g. Bazhenov et al. 2001; Cleland and Linster 2005; Christensen 

et al. 2001; Martinez 2005; Rospars and Fort 1994; Simoes de Souza and Antunes 2007; Ito et 

al. 2009; Zavada et al 2011). However the two subjects are linked because modelling the 

activity of the AL neural network requires a detailed knowledge of the input it receives from 

the ORN population (Ito et al. 2009; Raman et al. 2010). There are two challenges to 

modelling this input: First, it has to be reconstructed from ORN recordings in many 

individuals because no electrophysiological technique permits its direct observation in a 

single animal. Second, any model has to take into account the heterogeneity of ORN 

responses, even for ORNs expressing the same receptor, as shown in vertebrates (Grosmaître 

et al., 2006) and in insects (Jarriault et al., 2010). It follows that the cellular level of single 

neurons must be linked to the population level and stochastic aspects must be taken into 

account. These two needs make modelling a promising approach to unravel the properties of 

the overall olfactory message. 

The present modelling work was based on statistical data obtained from experimental 

recordings of first-order neurons responding to the main pheromone component in the moth 

Agrotis ipsilon. These data (Grémiaux et al., in preparation) were utilized to constrain and 

validate the model of the ORN population presented here. The resulting model differs from 

our previous work on population coding (Sandström et al., 2009) in two aspects: the 

biological substrate, which previously was the frog generalist olfactory system, and the 

modelling approach, which previously was based on a biophysical ORN model and did not 
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take latency into account. Although the absolute latency cannot be known by the brain, it has 

been shown that the first responding neurons can be a reliable cue to generate an internal 

reference for stimulus onset (Chase and Young, 2007) and that the relative latencies between 

neurons in a population can code for both odour identity and concentration (Krofczik et al., 

2009; Junek et al., 2010). Here, the model is essentially phenomenological and does not 

consider the molecular and cellular mechanisms that give rise to the observed trains of action 

potentials. The comparison of the overall properties of the peripheral olfactory rate code 

derived from these almost independent approaches, and the extension to the latency code, 

were two motivations for the present work.  

 

 

2. MODEL 

 

2.1. Experimental data 

 

All experimental data (nature of dose-response functions, their parameter values and 

statistical distributions) were reported elsewhere (Grémiaux et al., in preparation). Only 

information needed to understand the stochastic model described in section 2.3 are given here. 

The experimental data come from single-sensillum electrophysiological recordings of ORNs 

sensitive to the main pheromone compound (cis-7-dodecenyl acetate, Z7-12:OAc) of the moth 

Agrotis ipsilon, using the tip recording technique (Jarriault et al. 2010; Grémiaux et al., in 

preparation). Briefly, the stimulus was delivered as square pulses of 200 ms duration at 

different doses. The dose C was expressed as the decimal logarithm of the mass m of Z7-

12:OAc (in ng) deposited on a filter paper in the stimulating device, C = log m. (Throughout 

the paper we denote the decimal logarithm as „log‟ and the natural logarithm as „ln‟). The 

experimental relative variability on C at the vicinity of the sensillum was estimated to ~20%, 

so σC = 0.2C. This uncertainty is relatively small with respect to the interval between the 

successive doses tested (δC = 1) and their wide overall range.     

Each ORN was tested at six doses from -1 to 4 log ng  yielding recordings as shown in Fig. 

1. An ORN was considered as responding if a peak firing rate at least 1.25-fold higher than  

its mean spontaneous activity was fired after stimulus onset. When a response was detected, 

the instantaneous frequency f of each spike was calculated as the inverse of the corresponding 

inter-spike interval. The frequency F of the peak was determined as the mean of the first 3 

instantaneous frequencies in the subset of the 20% largest f‟s. Latency L was determined as 

the time elapsed from odorant delivery to the first spike in the response. If no response was 

detected, F was considered as zero and L was not defined. 

 

2.2. Model of a single ORN 

 

All aspects of the spike train fired by an ORN in response to a short constant stimulation of 

pheromone depend on the applied dose C (Fig. 1), especially variables F and L defined above. 

The dose-response functions F(C) and L(C) of each ORN were characterized by a set of 6 

response parameters: FM, C1/2, n, La, Lm and λ as done previously for frog recordings (Rospars 

et al., 2003).  

The frequency F (AP.s
−1

) at which an ORN fires action potentials increases with the 

pheromone dose C from zero to a horizontal asymptote FM. This sigmoid function F(C) is 

well described by a Hill function with 3 parameters FM, C1/2 and n (Fig. 2a): 
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where FM is the asymptotic maximum frequency, C1/2 is the dose at half-maximum frequency 

(inflection point) and n (Hill coefficient) determines the slope of the curve at the inflection 

point (Rospars et al. 1996). A spontaneous activity was attributed to each simulated neuron. 

Its rate F0 was drawn from the distribution of the observed spontaneous firing rates. When 

F(C) given by (1) was less than 1.25∙F0, the ORN was considered as not responding and F 

was set to 0 at dose C and lower.  

Latency L(C) decreases to a horizontal asymptote Lm. It can be described by a decreasing 

exponential with 3 parameters λ, La and Lm (Fig. 2b): 

 

 L(C) = La exp(−λ(C – Ca)) + Lm (2) 

 

where Lm is the asymptotic latency at high dose, Lm + La is the latency at reference dose Ca 

(we took Ca = −1 log ng for all neurons) and λ determines the “slope” of the curve. When 

L(C) given by (2) was more than 5 s, the ORN was considered as not responding at dose C 

and lower.  

 

2.3. Stochastic model of a population of ORNs 

 

The responses of the ORN population were summarized as a set of 6 statistical 

distributions, one distribution for each parameter of F(C) and L(C) functions. The 

distributions of FM, C1/2, ln n, ln λ, ln La and ln Lm were shown to be Gaussian. Each 

distribution was characterized by its mean µi and standard deviation σi. This is illustrated for 

FM and Lm in Fig. 3.  

However, these distributions were not independent. For example the dose at half-

maximum frequency and the Hill coefficient n were significantly correlated (for a complete 

study of parameter distributions and correlations, see Grémiaux et al., in preparation). 

Standard deviations σi and correlations rij between pairs of parameters i and j were gathered 

into the symmetric variance-covariance matrix Σ. For example, if there were only three 

random variables, FM (i = 1), C1/2 (i = 2) and ln n (i = 3), Σ would be 
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Σ  (3) 

 

The tri-normal distribution that gives the probability to have a certain triplet of parameters 

(and therefore a certain dose-frequency curve) is completely given by its mean (μ1, μ2, μ3) and 

its matrix Σ. All parameter triplets with a probability higher than any predefined value are 

located within an ellipsoid centred on point (μ1, μ2, μ3) in the parameter space (Fig. 4).  

Generalization to 6 parameters is straightforward. It involves the 6-dimensional 

multinormal distribution of mean M and variance-covariance matrix Σ, where M is a 6-

element vector including the means of parameters FM, C1/2, ln n, ln λ, ln La and ln Lm, and Σ is 

a 6-by-6 matrix in which all terms are of the form rijσiσj as in (3). Each set of 6 values drawn 

at a time from the multinormal (M, Σ) distribution defines simultaneously the Hill F(C) and 

exponential L(C) response functions of a given ORN. The drawn values located outside the 

interquantile range including 95% of possible sets were discarded (Fig. 4).  

 

2.4. Statistics 
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Normal and lognormal distributions were used. Both depend on two parameters, mean µ 

and standard deviation σ. The lognormal distribution is related to the normal distribution: if X 

is log-normally distributed, with parameters µ and σ, ln X follows a normal distribution of 

mean µ and standard deviation σ. Comparisons between distributions were tested using the 

Kolmogorov-Smirnov test at level 1%. All algorithms were written in Matlab and statistical 

analyses were done with the Matlab Statistics Toolbox (The MathWorks, Natick, USA). 

 

2.5. Estimates of model parameters 
 

From experimental recordings of ORNs stimulated with the main pheromone component 

(see section 2.1) we determined the frequencies F and latencies L at various doses C.  The 

data points of the corresponding plots were fitted with three-parameter Hill (eq. 1) and 

exponential (eq. 2) functions respectively. Thus, each fitted ORN was fully characterized by a 

set of 6 parameters: its maximum firing rate (FM), its apparent affinity for the pheromone 

(C1/2), the “slope” (Hill coefficient n) of the F(C) curve, its maximum (La) and minimum (Lm) 

latencies, and the “slope” (λ) of the L(C) curve. All these parameters were well fitted to 

lognormal distributions, except FM and C1/2 which were Gaussian (Grémiaux et al., in 

preparation; see examples in Fig. 3). So each distribution could be completely described by 

only two parameters, mean µi and standard deviation σi. The 15 coefficients of correlation rij 

between the parameters were also taken into account. The resulting vector M of 6 elements 

(µi) and a variance-covariance matrix Σ of 21 different elements (σi and rij) are given in Table 

1. These 27 numbers give a complete statistical description of the responses (F, L) yielded by 

any ORN at any dose. Interestingly, all rij between the groups of F and L parameters were 

shown to be nonsignificant (Grémiaux et al., in preparation), indicating that the rate and the 

latency parameters are independent as they are jointly normally distributed.  

 

 

3. RESULTS 

 

3.1. Validation of the stochastic model  

 

For simulating the ORN population, the 6 parameters defining each ORN were drawn 

N = 20 000 times from the multinormal distribution (M, Σ) defined in Table 1 (Fig. 4). The N 

dose-response curves obtained (Fig. 5) were examined at the six doses studied 

experimentally. For example, the N frequencies F(1) at dose C = 1 were determined (see Fig. 

5a) and their cumulated distribution was plotted (Fig 6c). The distribution of latencies L(1) 

(Fig. 5b) was also plotted (Fig. 7c). The same procedure was applied at the five other doses. 

The simulated distributions obtained with the multinormal (M, Σ’) (dotted lines), where Σ’ is 

the matrix with all nonsignificant correlations put to zero (Table 1), were practically identical 

to those obtained with Σ  (solid lines).  

These simulated distributions at six doses were then compared to the distributions of F and 

L determined from experimental recordings (Figs. 6 and 7). To take into account the 

uncertainty on the dose C delivered to the sensillum, we determined also the distributions of F 

and L at doses C ± 2.5σC (with σC = 0.2C) including 99% of C values. The simulated 

distributions are included in the 95% confidence interval of the experimental distributions and 

Kolmogorov-Smirnov tests confirmed that the simulated and observed distributions do not 

significantly differ, except for the upper limit of the confidence interval at dose -1.5 log ng for 

F (Fig. 6c). Overall, the predicted firing frequencies and latencies are in agreement with their 

experimental counterparts.  
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3.2. Main features of the model 

 

Next, we utilized the stochastic model to analyse the properties of the overall response of 

the whole population of pheromone-sensitive ORNs. The results obtained can be summarized 

as follows:  

First, the modelled firing frequencies (Figs. 6, 8a) and the logarithms of the modelled 

latencies (Figs. 7, 8b) can be well approximated with normal (or truncated normal) 

distributions. Thus, the distributions of modelled F and L at various doses can be described by 

the means (µF, µL), standard deviations (σF, σL) and amplitudes (AF, AL) of their fitted 

(truncated) normal distributions (Fig. 8a, b). 

 Second, the distributions of F are narrow and low at low doses and tend to become wider 

and higher at high doses (Fig. 8a). The reverse is found for ln L (Fig. 8b). These effects show 

that the means µF and µL, standard deviations σF and σL, and amplitudes AF and AL of both 

distributions depend on the dose. Function µF(C) follows very closely a Hill function (Figs. 

8c, 9a) and σF(C) grows also according to a sigmoid curve (Fig. 8e). Function µL(C) (Fig. 8d) 

decreases exponentially (Fig. 9b), and σL(C) (Fig. 8f) also quickly decreases on the same dose 

range. The amplitude function AF(C), which reflects the proportion of ORNs close to the 

mean population frequency decreases  then stays approximately constant above C = 1 log ng 

(Fig. 8g), whereas the amplitude of the ln L distribution is practically zero below C = −1 log 

ng and then increases above according to a sigmoid curve  (Fig. 8h). At all doses, the 

modelled properties (µ, σ, A) are in good agreement with the corresponding properties 

determined from the normal distributions fitted to the experimental distributions of F and L 

(crosses in Fig. 8c-h).  

Third, the variability of responses across ORNs in the population can also be quantified by 

selecting the 5% most extreme responses at each dose, i.e. the lowest and highest frequencies 

and the shortest and longest latencies. Their plotted means show that the range between the 

extremes increases with the dose for frequencies (Fig. 9a), whereas it decreases for latencies 

(Fig. 9b) in accordance with the conclusions above based on standard deviations. However, 

although responses with high rates have short latencies (Fig. 9c), it is noteworthy that the 

ORNs with the highest frequencies are rarely those with the shortest latencies (Fig. 9d). This 

is confirmed by plotting the modelled latencies of the 5% ORNs with highest frequencies at 

various doses (one example is shown at C = 0 log ng in Fig. 9e); and similarly, the 

frequencies of the 5% ORNs with shortest latencies (Fig. 9f). These plots indicate that F and 

L are uncorrelated in the same ORNs. So, according to the model, a fast responding neuron 

can have a low firing rate and vice versa.   

 

 

4. DISCUSSION 

 

The model presented here focuses on ORNs in the moth antenna that respond to the main 

pheromone component. It summarizes in a few rules the essence of extracellular 

electrophysiological measurements performed on theses neurons and generalizes them to 

describe the whole neural population. In short, the most significant part of the information 

contained in the original experimental data were summarized as (i) the dose-response 

functions, Hill functions for the peak frequency F(C) and exponential functions for the 

latency of the first spike L(C), (ii) the Gaussian nature of the statistical distributions of the six 

response parameters (or their logarithm) that appear in functions F(C) and L(C), and (iii) the 

mean vector M and variance-covariance matrix Σ that characterize the Gaussian distributions 

and their correlations. Although perfectible, this model appears reliable and of more general 

applicability.  
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4.1. Properties of the model 

 

As shown in Figs. 6 and 7 the distributions of firing rates and latencies predicted by our 

model at several doses are in broad agreement with those observed experimentally at the same 

doses. This result validates the suggestion that the multinormal distribution and the numerical 

values of its two parameters (means and variance-covariance matrix as given in Table 1) 

reflect in a compact form the main features of the ORN population studied.  

The main properties of the population of pheromone-responsive ORNs are summarized in 

Figs. 8 and 9. A first significant feature is that the mean firing rate of the ORN population is a 

Hill function of the dose like in the individual ORNs (Figs. 8c and 9a). This is also the case 

for the extreme responses (Fig. 9a). This result is not trivial because it is not true in general 

for the summation of any set of Hill functions. Therefore, it arises from the specific 

probability distributions in the population of the parameters describing individual ORNs and 

from the assumption that the neurons do not interact (see however Vermeulen and Rospars, 

2004). The mere conservation of the single cell laws at the neural population level is a 

noteworthy simplifying property of this system. However, the situation is not as clear for 

latencies below the lowest tested dose (-1 log ng; Fig. 9b). Further experimental work is 

needed to decide whether the exponential function (eq. 2) provides a fully correct description 

of individual dose-latency curves at very low doses.  

Another interesting feature concerns the distributions of firing frequencies at various doses 

as described by their mean, standard deviation and amplitude (Fig. 8, left column). These 

three functions of C are very similar to those found previously by Sandström et al. (2009; see 

their Figs. 4 and 5). This other model was also about an ORN population in which all neurons 

express the same olfactory receptor but it was built differently and its numerical values come 

from another system. Each ORN was described by a biophysical model taking into account its 

biochemical, electrical and geometrical characteristics (Rospars et al., 1996, 2003, 2008). The 

series of conversions taking place during transduction (activated receptors, ionic 

conductances, receptor potential and firing frequency) were summarized as four main 

equations with 13 parameters. The values of these parameters and their variability (normal or 

lognormal) were determined from experimental measurements of frog ORNs (Rospars et al., 

2003). A population of ORNs was simulated with 9 of these parameters varying according to 

the normal (or lognormal) distributions found. This model predicts that at each dose the 

distribution of response frequencies across ORNs in the population is normal with mean µF, 

standard deviation σF and amplitude AF. Moreover, it shows that µF(C) and σF(C) both follow 

the same sigmoid function (that is not a Hill function, see eq. 8 in Sandström et al., 2009), and 

that the amplitude AF is a quickly increasing then decreasing function of C (see their eq. 9).  

The present work on moth ORNs confirms most of these predictions, with a few 

differences: in the moth ORN population µF(C) can be described by Hill functions and the 

amplitude AF does not present the short initial rise to maximum, so that only the decreasing 

part is found. These differences likely result from the different effects of very low odorant 

doses in the frog and moth models due to the choice of different firing thresholds. Neglecting 

these second-order differences, the convergence of results from these independent models, 

built on widely different assumptions and whose parameters come from experiments on 

different types of ORNs (frog generalist and moth specialist ORNs) suggests that the basic 

qualitative and quantitative properties of the ORN populations remain the same whatever the 

ORN types and species considered. However, these common properties are likely not 

expressed on the same range of concentrations, the moth pheromone-sensitive ORNs having a 

lower threshold and a wider dynamic range than the frog generalist ORNs.   
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4.2. Perspectives 

 

A better understanding of the peripheral olfactory code along the lines followed here 

should benefit from an extension of the experimental recordings and of their quantitative 

description, and from improvements of the model itself. Let‟s briefly discuss these three 

aspects.  

Precise experiments on ORNs present difficulties at both ends of the dose axis. High doses 

(>4 log ng depending on ORNs) must be avoided because they exhaust the neuron which may 

need several minutes to return to its resting state (several physiological processes can be 

saturated, like pheromone degradation, exchanger pumps for intracellular calcium etc.). At the 

low dose end, the model predicts the existence of ORN rare responses coming from neurons 

with very low thresholds and/or with very short latencies in the left tails of the corresponding 

distributions. Their small number explains that they are rarely found in the recorded samples 

(the ratio of sample size to number of pheromone-sensitive ORNs is only about 1‰). 

However, they are essential to explain the responses of the projection neurons (PNs) to which 

the ORNs are connected in the MGC because the average PN has much lower threshold and 

shorter latency than the average ORN (Jarriault et al., 2009). These properties of PNs can be 

explained only if they selectively react to the ORNs with the lowest thresholds and shortest 

latencies (Grémiaux et al, in preparation). New experimental recordings closer to threshold 

and supplemented with adequate modelling will be indispensable to understand the properties 

of the system near its response threshold.  

The description of the response in terms of firing rate and latency is sufficient for a first 

approach because these two variables reflect the most important properties of the spike trains. 

However, a complete description will require consideration of the evolution in time of the 

instantaneous firing rate in the course of the response. The response kinetics presents an initial 

peak (measured by F as defined in this work) followed by a fast adaptation and decrease to a 

lower rate. In vertebrates, the kinetics of the response is different with a silent period 

following the peak. This silence endows the population response with concentration-invariant 

properties (Rospars et al., in preparation) that are apparently not found in pheromone-

sensitive ORNs.  

The model does not rely on any assumption on the mechanisms behind the observed spike 

trains and involves only generalizations of the original data. It provides in a concise and easy-

to-use form the essence of the extensive experimental observations made with the main 

component of the sex pheromone blend. It requires little computational resources and is 

therefore well suited to simulate the input of the ORN population to the MGC in the AL, 

which may be very useful for models of the MGC and AL, such as (Buckley and Nowotny, 

this issue). However, this phenomenological approach presents two limitations. First, because 

of the uncertainties discussed above, it is not known whether the Hill and exponential 

functions are exact descriptions of frequencies and latencies at both ends of the dose axis. 

This uncertainty is more acute for latencies below dose -2 log ng where the exponential 

function predicts latencies too long to yield detectable responses (Fig. 9b). A function better 

suited to describe latency in this concentration range will have to be found. Second, the 

phenomenological nature of the model does not explain the variations observed across ORNs 

in the population. As noted above, several factors can explain this variability (Rospars et al., 

2003; Sandström, 2009) including molecular (receptors, enzymes, ionic channels, pumps), 

geometrical (areas of various membrane parts) and electrical (membrane resistance etc.) 

factors that depend on one another (Gu and Rospars, 2011). The overall properties of the 

ORN population predicted by the present phenomenological model and the analytical model 

developed in Sandström et al. (2009) are consistent. This consistency indicates that the 

available biophysical models are detailed enough to relate the low-level neuron (and 
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sensillum) characteristics to their high-level (spike train) properties. This opens the way to an 

interpretation of the observed response variability of ORNs expressing the same olfactory 

receptor (Grosmaître et al., 2006; Jarriault et al., 2010) or different olfactory receptors 

(Rospars et al., 2003; 2008) that is essential for a proper understanding of cerebral olfactory 

processes.  
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Table 1. Parameters of the multinormal distribution 

 
------------------------------------------------------------------ 

         Parameters    FM      C1/2    ln n    ln La   ln λ   ln Lm 

------------------------------------------------------------------ 

Mean       M µ  219     0.87   -0.98    5.70   -0.04    3.72 

------------------------------------------------------------------ 

 FM 1958     9.37  -11.98  -24.18  -11.44  -13.64 

 C1/2    9.37  0.64   -0.11   -0.36    0.20    0.06 

   ln n  -11.98 -0.11    0.19    0.24    0.08    0.002 

Covariance Σa ln La  -24.18  0.36    0.24    1.88    0.56    0.07 

   ln λ  -11.44  0.20    0.08    0.56    0.45    0.26 

   ln Lm  -13.64  0.06    0.002   0.07    0.26    0.69 

------------------------------------------------------------------ 

 FM 1958     0     -11.98    0       0       0 

 C1/2    0     0.64    0       0       0       0 

   ln n  -11.98  0       0.19    0       0       0 

Covariance Σ’b ln La    0     0       0       1.88    0.56    0  

   ln λ    0     0       0       0.56    0.45    0.26 

   ln Lm    0     0       0       0       0.26    0.69 

------------------------------------------------------------------ 
a
 Original matrix Σ calculated with eq. (3); units as in Fig. 4 

b
 Simplified matrix Σ‟ with non-significant correlations (p > 0.05) put to zero 
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FIGURE LEGENDS 

 

Figure 1. Example of responses of a moth pheromone-sensitive ORN. The major 

pheromone component (Z7-12:OAc) arrived at the antenna at time zero (vertical dashed line) 

and was applied for 200 ms (bar on the bottom line) with loads of 0.1, 1, 10, 100, 1000 and 

10
4
 ng on filter paper (corresponding to doses C = −1, 0, 1, 2, 3 and 4 log ng, respectively). 

Spontaneous spikes are visible in the absence of pheromone before the stimulation.  

 

Figure 2. Dose-frequency F(C) and dose-latency L(C) functions. (a) Hill function F(C) 

given by eq. (1) showing maximum asymptotic response FM, dose at half-maximum 

frequency C1/2. (b) Decreasing exponential function L(C) given by eq. (2) showing parameter 

La at dose Ca (−1 log ng for all latency curves) and minimum asymptotic latency Lm. 

Parameter λ is related to the „slope‟ of the curve. The parameter values of the curves shown 

are the means M given in Table 1.  

 

Figure 3. Examples of cumulative histograms of the parameters of dose-frequency and 

dose-latency curves. (a) Distribution of maximum firing frequency FM. Observed values (32, 

stairstep graph) with fitted cumulative normal distributions (dotted) and corresponding 

probability density functions (dashed) providing  mean and variance for F as given in Table 1. 

(b) Distribution of minimum latency Lm (18 values). Same representation as in (a).  

 

Figure 4. Multinormal distributions of parameters defining dose-frequency and dose-

latency functions. (a) Example of the binormal probability distribution function (pdf) of (FM, 

C1/2). (b) Trinormal pdf of the parameters (FM, C1/2, ln n) of F(C) in eq. (1) with projections of 

binormals on the three planes; as n follows a lognormal distribution, the logarithmic transform 

ln n was used. Based on N = 20 000 drawings. (c) Trinormal pdf of the parameters (ln LM, 

ln λ, ln Lm) of L(C) in eq. (2). Mean µ and standard deviation σ of normal distributions of 

parameters, without transformation (FM, C1/2,) or after logarithmic transformation (all other 

parameters), are given in Table 1. The ellipsoids shown contain 95% of points. The darker the 

dots, the lower the probability to find the corresponding triplet. The F and L distributions are 

shown separately for illustration purposes only. In all other figures the six-dimensional 

multinormal distribution of parameters M and Σ given in Table 1 was used.  

 

Figure 5. Examples of simulated (a) dose-frequency F(C) and (b) dose-latency L(C) 

curves. Ten vectors of six response parameters were drawn from the multinormal distribution 

defined in Table 1. The vertical dashed line at C = 1 log ng shows some of the frequencies in 

(a) and latencies in (b) used to determine the statistical distributions shown in Figs. 6c and 7c. 

The latency and the corresponding frequency (same neuron, same dose) are represented with 

the same symbol and line style. Dose-response curves are truncated for latency > 5 s and/or 

frequency < 1.2 F0 AP/s with spontaneous firing rate F0 drawn from a lognormal distribution 

of parameters µ = 0.91 and σ = 0.91. 

  

Figure 6. Cumulated distributions of modelled firing frequencies at six doses (-1, 0, 1, 2, 

3 and 4 log ng) and comparison with experimental data. The non-responding neurons 

(F = 0) were taken into account in the statistics. Distributions of experimental frequencies 

(N = 32) shown as stairstep graphs (solid line) with 95% confidence intervals (dashed lines) 

calculated using Greenwood‟s formula (Cox and Oakes, 1984). Distributions of modelled 

frequencies shown as smooth curves based on N = 20 000 drawings from the complete 

variance-covariance matrix Σ (solid line) or simplified matrix Σ‟ (dotted line) shown in Table 

1. Simulations at C ± 0.5 log ng (see text) based on matrix Σ shown as dashed lines. All 
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modelled distributions are not significantly different from experimental distributions except 

for the upper limit of the confidence interval at dose C = -1.5 log ng in (a) (Kolmogorov-

Smirnov tests at level 1%).  

 

Figure 7. Cumulated distributions of modelled response latencies at six doses and 

comparison with experimental data. Same representation as in Fig. 6 with ln L (N = 18). 

Modelled distributions are not significantly different from experimental distributions 

(Kolmogorov-Smirnov tests at level 1%).  

 

Figure 8. Distributions of firing frequencies (left column) and latencies (right column) in 

the whole ORN population predicted by the model. (a) Distributions of modelled F at 

C = −1, 1 and 3 log ng can be approximated with normal or truncated normal distributions. 

The inset shows the three characteristics (µ, σ, A) used in (c-h). (b) Distributions of modelled 

ln L at the same doses as in (a) can be also approximated with normal or truncated normal 

distributions. (c, d) Mean µ, (e, f) standard deviation σ, and (g, h) amplitude A of the normal 

or truncated normal distributions fitted to the distributions shown in (a) and (b) as functions of 

C; A gives the percentage of ORNs in the population with frequencies or latencies in the 

interval µF(C) − 20 to µF(C) + 20 AP/s and µL(C) − 25 to µL(C) + 25 ln ms. All plots are 

based on N = 20 000 drawings from the multinormal distribution (M, Σ) given in Table 1. Plus 

symbols indicate the characteristics (µ, σ, A) of the normal or truncated normal distributions 

fitted to the experimental distributions.   

 

Figure 9. Reconstructed summated response of the whole ORN population. (a) Mean 

frequency (solid) and its fitted Hill function (dot). Mean of the 5% highest and lowest rates 

(solid) and their fitted Hill functions (dot). (b) Same representation for latency. Mean latency 

fitted to the exponential (2) (dot). (c) Plot of pairs of firing rates and latencies at doses −1, 0, 

1, 2, 3 and 4 log ng with 20 000 pairs per dose. The dashed curve shows how the mean firing 

rate (solid curve in panel a) depends on the mean latency (solid curve in panel b) at the same 

dose. (d) Plot of the 5% extreme firing rates and latencies at C = 0 (1000 pairs) showing the 

rarity of responses both strong and rapid. (e) Plot of the 1000 highest frequencies found at 

C = 0 log ng and the latencies of the same responses; they are uncorrelated (r = 0.032, 

p = 0.31). (f) The 1000 shortest latencies at C = 0 log ng and the frequencies of the same 

responses are also uncorrelated (r = 0.028, p = 0.38). 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6
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Fig. 7 
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Fig. 8 
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Fig. 9 
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