University of Sussex
Browse

Monitoring the Sea Surface Microlayer (SML) on Sentinel images

Download (5.97 MB)
journal contribution
posted on 2024-05-24, 10:39 authored by Janet E Nichol, Alexander AntonarakisAlexander Antonarakis, Majid Nazeer
Slicks on the sea surface are usually related to oil spills, algal blooms or organic runoff around coastlines. An extensive network of slicks extending across the English Channel is seen on Sentinel 1 and Sentinel 2 images and are identified as comprising a film of natural surfactant material within the sea surface microlayer (SML). As the SML represents the interface between ocean and atmosphere, controlling the vital exchange of gases and aerosols, identification of the slicks on images can add a new dimension to climate modelling. Current models use primary productivity often combined with wind speed, but quantifying the global extent of surface films spatially and temporally is difficult due to their patchy nature. The slicks are shown to be visible on Sentinel 2 optical images affected by sun glint, due to the wave dampening effect of the surfactants. On a Sentinel 1 SAR image of the same day, they can be identified using the VV polarised band. The paper investigates the nature and spectral properties of the slicks in relation to sun glint, and evaluates the performance of chlorophyll-a, floating algae and floating debris indices on the slick-affected areas. No index was able to distinguish slicks from non-slick areas as successfully as the original sun glint image. This image was used to devise a tentative Surfactant Index (SI) which indicates over 40 % of the study area covered by slicks. As ocean sensors have lower spatial resolution and are generally designed to avoid sun glint, Sentinel 1 SAR may offer a useful alternative for monitoring the global spatial extent of surface films, until dedicated sensors and algorithms can be developed.

History

Publication status

  • Published

File Version

  • Published version

Journal

Science of the Total Environment

ISSN

0048-9697

Publisher

Elsevier BV

Volume

872

Article number

162218

Department affiliated with

  • Geography Publications

Institution

University of Sussex

Full text available

  • Yes

Peer reviewed?

  • Yes

Usage metrics

    University of Sussex (Publications)

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC