emulsions_ACSnano_formatting.pdf (1.04 MB)
Nanosheet-stabilized emulsions: near-minimum loading and surface energy design of conductive networks
journal contribution
posted on 2023-06-10, 02:31 authored by Sean OgilvieSean Ogilvie, Matthew LargeMatthew Large, Marcus O'Mara, Anne C Sehnal, Aline Amorim GrafAline Amorim Graf, Peter LynchPeter Lynch, Adam J Cass, Jonathan P Salvage, Marco Alfonso, Philippe Poulin, Alice KingAlice King, Alan DaltonAlan DaltonHere, we develop a framework for assembly, understanding, and application of functional emulsions stabilized by few-layer pristine two-dimensional (2D) nanosheets. Liquid-exfoliated graphene and MoS2 are demonstrated to stabilize emulsions at ultralow nanosheet volume fractions, approaching the minimum loading achievable with 2D materials. These nanosheet-stabilized emulsions allow controlled droplet deposition free from the coffee ring effect to facilitate single-droplet devices from minute quantities of material or assembly into large-area films with high network conductivity. To broaden the range of compositions and subsequent applications, an understanding of emulsion stability and orientation in terms of surface energy of the three phases is developed. Importantly, this model facilitates determination of the surface energies of the nanosheets themselves and identifies strategies based on surface tension and pH to allow design of emulsion structures. Finally, this approach is used to prepare conductive silicone emulsion composites with a record-low loading level and excellent electromechanical sensitivity. The versatility of these nanosheet-stabilized emulsions illustrates their potential for low-loading composites, thin-film formation and surface energy determination, and the design of functional structures for a range of segregated network applications.
History
Publication status
- Published
File Version
- Accepted version
Journal
ACS NanoISSN
1936-0851Publisher
American Chemical SocietyExternal DOI
Issue
2Volume
16Page range
1963-1973Department affiliated with
- Physics and Astronomy Publications
Full text available
- Yes
Peer reviewed?
- Yes