University of Sussex
Browse
- No file added yet -

Neural complexity: a graph theoretic interpretation

Download (250.2 kB)
journal contribution
posted on 2023-07-24, 09:45 authored by Lionel BarnettLionel Barnett, Christopher BuckleyChristopher Buckley, S Bullock
One of the central challenges facing modern neuroscience is to explain the ability of the nervous system to coherently integrate information across distinct functional modules in the absence of a central executive. To this end, Tononi [Proc. Natl. Acad. Sci. USA.PNASA60027-842410.1073/pnas.91.11.5033 91, 5033 (1994)] proposed a measure of neural complexity that purports to capture this property based on mutual information between complementary subsets of a system. Neural complexity, so defined, is one of a family of information theoretic metrics developed to measure the balance between the segregation and integration of a system's dynamics. One key question arising for such measures involves understanding how they are influenced by network topology. Sporns [Cereb. Cortex53OPAV1047-321110.1093/cercor/10.2.127 10, 127 (2000)] employed numerical models in order to determine the dependence of neural complexity on the topological features of a network. However, a complete picture has yet to be established. While De Lucia [Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.71. 016114 71, 016114 (2005)] made the first attempts at an analytical account of this relationship, their work utilized a formulation of neural complexity that, we argue, did not reflect the intuitions of the original work. In this paper we start by describing weighted connection matrices formed by applying a random continuous weight distribution to binary adjacency matrices. This allows us to derive an approximation for neural complexity in terms of the moments of the weight distribution and elementary graph motifs. In particular, we explicitly establish a dependency of neural complexity on cyclic graph motifs. © 2011 American Physical Society.

History

Publication status

  • Published

File Version

  • Accepted version

Journal

Physical Review E - Statistical, Nonlinear, and Soft Matter Physics

ISSN

1539-3755

Publisher

American Physical Society (APS)

Issue

4

Volume

83

Article number

041906

Department affiliated with

  • Informatics Publications

Peer reviewed?

  • Yes