File(s) not publicly available
Observation of Continuum radiations from the CLUSTER fleet: first results from direction finding
journal contribution
posted on 2023-06-07, 21:15 authored by P M E Decreau, C Ducoin, G Le Rouz, O Randriamboarison, J L Rauch, J G Trotignon, X Vallières, P Canu, F Darrouzet, M P Gough, A M Buckley, T D CarozziThe Cluster fleet offers the first possibility of comparing non-thermal terrestrial continuum radiation from similarly equipped nearby observation points. A very rich data set has already been acquired on the Cluster polar orbit, between 4 and 19 Earth radii geocentric distances, and preliminary analysis has been carried out on these emissions. We focus in this paper on direction finding performed from all four spacecraft as a means to locate the position of the sources of this continuum radiation. Directions are derived from spin modulation properties, under the usual analysis assumptions of the wave vector of the radiation lying in the plane containing the spin axis and the antenna position at electric field minimum. All the spin axes of the four Cluster spacecraft are aligned perpendicular to the ecliptic, thus the aligned spacecraft antenna spin planes provide redundant 2-D views of the propagation path of the radiation and source location. Convincing 2-D triangulation results have been obtained in the vicinity of the source region. In addition, the out of spin plane component of the wave vector reveals itself to a certain extent through directivity characteristics compared at different distances of the spin plane to the ecliptic. The four case events studied (two of them taken near apogee, the other two near perigee) have confirmed general properties derived from previous observations: trapping in the lower frequency range, radiation escaping into the magnetosheath region in the higher frequency range. All propagation directions are compatible with source positions in the plasmapause region, however, at a significant distance from the equator in one case. Our observations have also revealed new properties, like the importance of small-scale density irregularities in the local amplification of continuum radiation. We conclude that more detailed generation and propagation models are needed to fit the observations.
History
Publication status
- Published
Journal
Annales GeophysicaeISSN
0992-7689External DOI
Issue
7Volume
22Page range
2607-2624Pages
18.0Department affiliated with
- Engineering and Design Publications
Notes
This paper investigates the performance of radio wave remote sensing using antennae on spinning spacecraft. This is the first time this particular approach has been technically feasible due to using identically instrumented multiple spacecraft. It has applicability to remote sensing engineering using multiple spacecraft. Applications areas include forthcoming missions for the detection of extra-solar planets (e.g. ESA DARWIN mission, launch 2015 , NASA NAVIGATOR programme). The integration and testing of the ESA CLUSTER spacecraft wave instruments used in this research took place in the Engineering laboratories at the University. This work was supported by PPARC research grant PPA/G/S/1999/00466.Full text available
- No
Peer reviewed?
- Yes