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7 Abstract

8 Forest structure is an important driver of ecosystem dynamics, including the exchange of carbon, 

9 water and energy between canopies and the atmosphere. Structural descriptors are also used in 

10 numerous studies of ecological processes and ecosystem services. Over the last 20+ years, lidar 

11 technology has fundamentally changed the way we observe and describe forest structure, and it 

12 will continue to impact the ways in which we investigate and monitor the relations between forest 

13 structure and functions. Here we present the currently available lidar system types (ground, air, 

14 and space-based), we highlight opportunities and challenges associated with each system, as well 

15 as challenges associated with a wider use of lidar technology and wider availability of lidar 

16 derived products. We also suggest pathways for lidar to further contribute to addressing questions 

17 in forest ecosystem science and increase benefits to a wider community of researchers.
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22 1. Introduction/historical background
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23

24 The quantification of forest vegetation structure at various scales is critical for understanding and 

25 modelling ecosystem processes like photosynthesis, carbon allocation, water fluxes, energy 

26 balance, debris and decomposition, floral and faunal biodiversity, growth and mortality dynamics, 

27 and susceptibility to drought/fire/insects (Parker, 1995; Spies, 1998; Shugart, 2000; Shugart et al., 

28 2010). Forest structure can be defined in several ways, including the distribution of all plant parts 

29 in space, the vertical distribution of foliage or branching structures, the horizontal height 

30 distribution of trees or the distribution of species. Many structural variables are difficult and time 

31 consuming to measure in the field and especially in remote, tall, complex, spatially variable or 

32 highly sensitive ecosystems. Lidar has proven useful in deriving information about forest structure 

33 because of its speed, coverage and ability in describing 3D attributes compared to existing manual 

34 methods. The highly detailed 3D positional data provided by lidar systems has revolutionized -and 

35 can further expand- the way we consider canopy structure in forest ecosystem science. 

36

37 Lidar most commonly employs coherent, collimated laser light, with wavelengths used for ranging 

38 usually in the near-infrared or green (Wehr and Lohr, 1999). Soon after the invention of lasers in 

39 the early 1960s, lidar systems were used in atmospheric science (to retrieve, for example, cloud 

40 composition, aerosols, and wind speeds), and for bathymetric surveys from the late 1960s 

41 (Hickman and Hogg, 1969). During the following decade, lidar became a tool for terrestrial 

42 surveys, and trees in forests were then largely considered as noise in topographic mapping projects 

43 (Arp and Tranarg, 1982). But in the mid 1980s, studies began using ultraviolet laser profilers 
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44 (Nelson et al., 1984) and green lasers profilers used for bathymetry (Nelson et al., 1988) to retrieve 

45 tree heights in forest environments. In the early 1990s, laser profilers and small footprint laser 

46 scanners using near-infrared light were used specifically for retrieving the vertical distribution of 

47 material within a forest canopy in addition to tree heights (Harding et al., 1994). By the late 1990s, 

48 studies proliferated on the use of airborne lidar systems for estimating tree height, stand volume, 

49 basal area, tree biomass, and vertical profiles of leaf and wood distribution (Nilsson, 1996; 

50 Naesset, 1997; Lefsky et al., 1999). In the early 2000s, a seminal review paper was published by 

51 Lefsky et al. (2002). Since then, lidar technologies have evolved, and new ground and space based 

52 systems with wide-ranging capabilities have emerged. And, as predicted by Lefsky et al. (2002), 

53 applications have expanded into various fields and led to increased interdisciplinary research 

54 collaborations. 

55

56 Here we present the different types of systems currently available and briefly review research that 

57 uses these different lidar systems in forest ecosystem studies. We emphasize that different science 

58 questions require information at different spatial and measurement scales, and the choice of lidar 

59 system and acquisition protocols are important for deriving the right quality of information. We 

60 also identify the main limitations to the use of lidar data or products by non-experts, and propose 

61 pathways to address these and further enable benefits from the technology. The paper is mainly 

62 intended for non-experts who are looking to integrate products derived from lidar into their 

63 research. We focus on two areas of forest ecosystem science: forest ecology and forest 

64 productivity. The context in which lidar is used in forestry significantly differs from these two 



4

65 fields because lidar data has become part of most national inventory activities; lidar use in forestry 

66 is thus not discussed here (the reader is referred to White et al. (2016) for a review on this topic). 

67 The aim of the present paper is to summarize the capabilities of different lidar system types for 

68 deriving useful information about forest structure, to promote appropriate selection of lidar system 

69 for a given application, and to stimulate reflections on ways to increase the benefits of this 

70 technology for forest ecosystem research. 

71

72 2. Types of lidar systems

73 Most common ranging lidars measure the interval between a short-duration transmitted pulse (2-

74 10 nanoseconds) and detection of the reflected return signal (“time-of-flight”). Less common lidar 

75 systems use a phase shift approach on continuous wave laser emissions, or single photon counting. 

76 By combining a range measurement with a position-orientation system, the three-dimensional 

77 location of reflecting surfaces can be determined and registered to a geographic reference frame. 

78 Several detection methods are used to characterize the return signal in time-of-flight systems 

79 (Harding et al., 2011).  Full-waveform lidar digitize the entire time-varying amplitude of the return 

80 signal to measure the distribution of different reflecting surfaces illuminated by the laser footprint 

81 along its path. Discrete-return lidar identifies and retains a number of ranges for which the reflected 

82 laser energy signal exceeds a threshold. For example, current discrete return airborne systems 

83 typically record between 5 and 9 separate ranges per emitted laser pulse in forests. Discrete returns 

84 from many laser pulses produce a “point cloud” that depicts the spatial organization of reflecting 

85 surfaces. 
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86

87 In addition to the ranging method, lidar deployments may be classed based on the type of platform 

88 used.  Here we identify five primary platform deployment types: 1.) airborne laser scanning (ALS) 

89 from a manned aircraft, 2.) unmanned Aerial Vehicle (UAV) laser scanning (ULS), 3.) terrestrial 

90 laser scanning (TLS) from a static ground platform, 4.) mobile laser scanning (MLS) from a 

91 moving ground platform, and 5.) spaceflight lidar (SLS). 

92

93 ALS systems are deployed on fixed or rotary wing aircraft most commonly at altitudes of 500 m 

94 to 3,000 m using small laser pulse footprint systems.  Large footprint systems operate at higher 

95 altitudes up to 20,000 m.  Recently, the company Optech commercialized a multispectral ALS 

96 named the Titan sensor, using lasers in three wavelengths (one green and two infrared). ULS 

97 systems are similar to ALS in terms of components, but with miniaturized equipment installed 

98 onboard a UAV which typically flies at much lower altitudes (about 50 m to 300 m above ground).  

99 UAVs can also be flown using fixed-wing or multi-rotor designs, with rotor systems able to fly at 

100 lower speeds and provide higher point density. TLS systems are primarily used for detailed point 

101 cloud representations of near-field (< 100 m) targets in forests. The instrument is generally 

102 stationary and fixed on a survey tripod, and scans acquired from multiple locations can be 

103 combined to increase coverage and minimize occlusions. MLS includes two sub-classes of 

104 systems: a first system can be placed in a backpack or on a vehicle to acquire 3D data as the 

105 operator is walking through the forest or as the vehicle moves through the forest -these systems 

106 typically use a technique called Simultaneous Localization and Mapping (SLAM)-, and a second 
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107 system called the Portable Canopy Lidar (PCL), which emits lasers only in the upwards direction 

108 as the operator carries the lidar system while walking along a transect. SLS systems are deployed 

109 onboard satellites. The GLAS system on ICESat-1 was in operation until 2010 and had a 70 m 

110 footprint, and new smaller footprint systems from NASA in the 12-25 m range are operational: the 

111 Advanced Topographic Laser Altimeter System (ATLAS) on ICESat-2 was launched in 

112 September 2018, and the Global Ecosystem Dynamics Investigation (GEDI) installed on the 

113 International Space Station (ISS) was launched in December 2018. The Japanese agency JAXA is 

114 developing the Multi-footprint Observation Lidar and Imager (MOLI). Descriptions of lidar 

115 systems are given below and examples of data provided by the different lidar systems are provided 

116 in Figure 1.

117

118 Figure 1: Examples of data provided by the different lidar systems, identifying the capabilities 

119 and resolution of each instrument, and the pulse spacing of an upcoming satellite lidar mission. 
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120 Images credits: ALS: Biomet lab, UC Berkeley, SLS: GEDI team, University of Maryland, 

121 SLAM: Jean-Francois Tremblay, Laval University

122

123 These five lidar system types have three main contrasting characteristics which help understand 

124 the opportunities and limitations offered by each system and determine the optimal choice for a 

125 given research application: spatial resolution, occlusion and coverage (see table 1). Spatial 

126 resolution refers to the level of canopy structural detail which can be resolved from lidar 

127 measurements and directly depends on the size of the laser footprint and the spacing separating 

128 the footprints. Both the footprint size and the spacing between consecutive pulses increase with 

129 distance from the instrument. Occlusion refers to the blocking or shadowing of laser pulses, at 

130 least partially, by leaves and branches preventing interception of the pulses by material beyond 

131 (Harding et al., 2001), and results in little or no information retrieved from certain canopy areas. 

132 The amount of occlusion highly depends on the footprint size, the plant area density (foliage and 

133 woody material combined, and their size distribution) and scanning geometry. The location of 

134 occluded surface is strongly dependant on the orientation of the laser pulse (see Figure 2), and this 

135 can significantly impact applications aimed at reconstructing the canopy to detect gaps, for 

136 example, while occlusion may be accounted for or ignored when using statistics relating to points 

137 spatial distribution. The coverage refers to the area typically covered by a survey using reasonable 

138 financial resources; an analysis of the coverage-cost relationship for each system is presented in 

139 Figure 3. On the basis of these characteristics and other considerations, the advantages and 

140 disadvantages of the different lidar systems are presented in table 2.
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141

142 Table 1: Main characteristics of lidar systems considered 

Resolution Detection 

method

 

 

 

Footprint Spot spacing

Occlusion 

main location

Typical area 

coverage

 

ALS (small 

footprint)

0.1-3 m 0.2-2 m Lower 

canopy

10-1000 

km2

Discrete/ Full-

waveform

ALS (large 

footprint)

10-30 m 10-30 m Lower 

canopy

10-1000 

km2

Full-waveform

ULS 0.05-0.1 m 0.05-0.25 m Lower 

canopy

0.02-10 km2 Discrete/ Full-

waveform

TLS 0.01-0.05 m 0.005-0.05 m Upper canopy 0.01-1 ha Discrete/ Full-

waveform

PCL 0.05 m 0.01 m Upper 

canopy, 

0.02-10 km2 Discrete
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understory 

and ground

SLAM 0.01-0.05 m 0.005-0.05 m Upper canopy 0.25- 5 ha Discreate

SLS 12-25 m 60 m/500 m N/A Near global Full-waveform/ 

photon counting

143

144

145 Table 2: Main advantages and disadvantages of lidar systems for mapping forested 

146 environments

Advantages Disadvantages

ALS ● Covers relatively large areas in a 

spatially contiguous manner

● Provides direct estimates of canopy 

roughness, cover fraction, tree height 

terrain elevation, slope and aspect

● GIS-ready raster maps of vegetation 

height, crown extents, stem locations, 

LAI and biomass can be generated 

● Limited description of within-canopy 

structure

● Due to high cost to acquire instrument data 

collection is typically conducted by 

airborne lidar service providers 

● Requires the coordination of optimal 

weather conditions, airborne logistics and a 

ground support crew
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● Can be used to monitor disturbance 

using repeat measurements 

● Allows scaling from plot to satellite 

data 

ULS ● Matches most advantages of ALS 

systems except for reduced coverage

● Significant increase in detail level of 

within canopy structure compared 

with ALS

● Higher pulse density compared to 

ALS

● Potentially less expensive than ALS 

acquisitions (depending on area size)

● Can be acquired together with high 

resolution multispectral or 

hyperspectral data

● Coverage of surveys is significantly lower 

than for ALS

● Line of sight government regulation can 

limit the use of this system in some 

environments, especially in dense forests 

● Existing processing methods for ALS data 

may not all be directly transportable to 

ULS because of higher resolution and 

larger off-nadir angles; some methods 

development may be required

● Data collection needs to be contracted out 

and the currently limited number of service 

providers results in service not being 

available in all areas

TLS ● Tree to plot level coverage ● Limited spatial coverage, unless extensive 

field campaign efforts are deployed
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● Provides detailed information about 

within canopy structure (lower and 

middle parts of the canopy)

● Possible to separate wood from leaf 

material within data

● Can provide accurate LAI and full 3D 

foliage distribution within plots 

● Potential for estimating foliage 

clumping on the basis of light 

interception by wood and leaves

● Potential use in within-canopy light 

environment studies as well as studies 

linking structure with function

● Can be used to generate accurate 

above-ground biomass allometric 

equations

● Provides stem maps, DBH, taper and 

basal area

● Potential gaps in data, particularly higher 

up in the canopy and in areas of dense 

understory/canopy foliage

● Field methods are complex, particularly 

logistics and multiple scans alignment to a 

common positioning reference system

● 3D raw and derived data can be 

challenging to work with and are not 

always GIS compatible

PCL ● Can cover relatively large plot areas ● Limited spatial coverage

● Linear transects pattern results in 2D+ data
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● Inexpensive compared to other 

systems, highly portable

● Simple to use and process data 

● Provides vertical profiles of LAI and 

within canopy structure along 

transects

● Provides canopy roughness and cover 

fraction, tree height, stem density

● Potential gaps in data due to occlusion, 

particularly in dense canopies

SLAM ● Can cover relatively large plot areas

● Can provide full 3D description of the 

canopy, depending on the type of 

lidar sensor used

● Systems are relatively expensive and data 

processing can be complex

● When carried out from vehicle, obstacles 

on the forest floor can limit platform 

movement direction and speed

SLS ● Provides near global coverage

● Repeated measurements through time 

of approximately same locations

● Provides a description of canopy 

vertical structure 

● Large footprint

● Large spaces between consecutive laser 

footprints for some sensors

● Large footprint can generate edge effects

147

148
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149

150 Figure 2: Differences in top of canopy and within canopy level of detail provided by TLS (A) and 

151 ALS (B) lidar systems (from Hopkinson et al. (2013)). The top of the canopy is better described 

152 by the ALS system (but with lower point density), while the internal structure is better described 

153 by the TLS system. 

154
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155

156 Figure 3: Illustration of niches for the different lidar systems in terms of cost vs area coverage. 

157 Areas in grey are delimited by fixing an acquisition budget of 50,000 USD. The cost estimates 

158 assume that the survey is carried out using research staff for the PCL (since the system is simple 

159 to operate), and external service providers for TLS (UNAVCO) and airborne systems (private). 

160 We also assume that the surveyed area is within 100 km of the service provider location (no 
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161 transit costs are included). For TLS, the survey is carried out with the aim of a full tree 

162 reconstruction (i.e. minimizing occlusion effects). For ULS, it is assumed line of sight can be 

163 maintained to about 1 km away from the pilot’s position, either from the pilot or spotters on the 

164 ground. Average conditions of tree density, canopy closure and ground level obstacles are 

165 assumed. Note that for manned helicopter surveys, the cost rises faster than fixed wing as transit 

166 distances between the survey site and departure airport increases. SLAM is not shown on the 

167 graph as this system has high variability in costs, its niche is estimated to be similar to the PCL 

168 and ULS systems. The coverage niches for each system on this basis are thus approximately for 

169 TLS: 0-2 ha, PCL and ULS: 2ha – 10 km2, MHLS: 10 -200 km2, ALS: 200-1000 km2. 

170

171 3. Current usage of lidar systems in forest ecosystem science

172 Lidar offers two types of advantages in forest science applications: (1) it can provide valuable 

173 information not accessible using field methods or optical remote sensing observations, and (2) has 

174 benefits in terms of speed of data acquisition, data accuracy, costs and coverage compared with 

175 traditional methods of acquiring the same information in the field. Lidar can be used for specific 

176 research projects at individual sites, or as part of long-term monitoring activities, or for 

177 comparative studies across sites.  Several networks are using lidar to integrate observations across 

178 sites (e.g. Australia’s Terrestrial Ecosystem Research Network (TERN) and the US National 

179 Ecological Observatory Network (NEON). The following describes an overview of different 

180 applications, system use and data derivations. 

181
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182 Characteristics of lidar systems in terms of resolution, pointing, and pulse geometry, as well as 

183 current algorithmic capabilities lead to different levels of suitability towards deriving useful 

184 products. On the basis of these characteristics and processing capabilities, the suitability of the 

185 different lidar systems and their potential for providing useful products in the future (as processing 

186 capabilities improve) were subjectively evaluated. The results of this evaluation are presented in 

187 table 3, which provides an overview and is not meant to directly support the choice of a given 

188 system for deriving a given product, as there are several nuances related to scale and spatial 

189 variability which are not represented by the table. For instance, the estimation of above-ground 

190 biomass from TLS is generally done at the individual tree level and the accuracy is well 

191 characterized at that scale, while biomass from ALS is computed at the tile level (often 400 m2) 

192 and the accuracy is influenced by several variables and is not yet fully resolved. The representation 

193 of spatial variability can be determinant in the suitability of a product to usefully describe forest 

194 structure for a given research application, because by using average conditions without explicit 

195 consideration of variation large scale patterns are recognized while smaller scale patterns may be 

196 missed (Larson and Churchill, 2012).

197
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207 Forest ecology. Ecologists relate information about canopy structure to processes such as 

208 evolutionary explanations of plant traits, the interconnectivity of plant form and function, 

209 dynamics of trees within a forest and their response to disturbances, or dynamics between trees in 

210 a forest and non-woody plants and animals. In a general sense, studies of plant trait applications 

211 predominantly use information about surface spectral characteristics and are best served by either 

212 multispectral lidar or fusion with hyperspectral passive imagery. Co-located lidar studies can 

213 provide an important complement to reflectivity information, for example, TLS can be used to 

214 map photosynthetic capacity, water content and pigment concentration in 3D from the intensity of 

215 the returned laser light (Magney et al., 2014). However, the interactions of laser pulses with plant 

216 parts significantly complicate the interpretation of return signal intensity, and multiple wavelength 

217 scanners have potential for enabling this interpretation. Two non-commercial TLS multispectral 

218 systems (two wavelengths) have been developed to estimate vegetation biochemical properties: 

219 the SALCA (Danson et al., 2018) and the DWEL (Li et al., 2018). 

220

221 Multispectral ALS has been used to map tree species (Budei et al., 2018), ALS is also being used 

222 in fusion with hyperspectral data in a process called “laser-guided imaging spectroscopy” (Asner 

223 et al., 2017) to map functional diversity within forests by mapping a series of plant traits. ALS and 

224 TLS lidar have also been used to estimate fine scale structural parameters to estimate canopy 

225 rainfall interception, which can have a significant impact on the water budget (Roth et al., 2007; 

226 Van Stan et al., 2017). Woods et al. (2018) recently called for additional use of TLS to collect 

227 architectural plant traits over a broader range of species and biogeographical regions.
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228

229 The cost of lidar data acquisitions has made the availability of time series data over specific sites 

230 relatively rare. Systems with systematic repeat measurements, such as the SLS, will promote the 

231 use of lidar for investigating forest dynamics. Further, lower deployment costs of ULS should 

232 favor greater acquisition repeatability. An important consideration in studying ecosystem change 

233 from any remote sensing platform, requires that the magnitude of change is greater than the 

234 horizontal and vertical accuracy of laser pulse returns (Hopkinson et al., 2008). Another 

235 consideration is the time gap between the acquisition of ground validation data and the airborne 

236 data, as greater gaps in time between field validation data collection and a lidar survey can 

237 introduce significant biases in model development, particularly within dynamic forest 

238 environments. 

239

240 Significant efforts are being deployed to use lidar for estimating above-ground biomass at different 

241 scales using ground, airborne and spaceflight systems. Discrete lidar had been used to estimate 

242 biomass based on identifying individual tree features such as treetop height and positions, or by 

243 identifying mean height and canopy top metrics (Nelson et al., 1988; Popescu et al., 2003; Asner 

244 and Mascaro, 2014). Full waveform lidar from airborne and satellite platforms have estimated 

245 biomass using regression techniques based on height and return energy metrics (Drake et al., 2002; 

246 Lefsky et al., 2005; Saatchi et al., 2011; Baccini et al., 2012). Current approaches to biomass 

247 estimation exploit multiple lidar systems in a spatial scale hierarchy approach. TLS systems have 

248 proven efficient at providing accurate estimate of individual tree level wood volumes from a 
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249 method called Quantitative Structure Modeling (QSM) (Raumonen et al., 2013; Hackenberg et al., 

250 2015). This approach can augment the often costly allometric methods used, as comparisons with 

251 destructive field measurements revealed the QSM estimates to be very accurate (Calders et al., 

252 2015).

253

254 ALS data have been used for habitat mapping, as vegetation structure is a key determinant of 

255 habitat quality for many species (Vierling et al., 2008). It has also been used to assess aspects of 

256 biodiversity, as airborne lidar can readily provide estimates of variability in terms of tree heights 

257 and vertical layering, indicating diversity in tree species and potentially stand age. ALS has been 

258 used to study the movement dynamics in wildlife, which is shown to be highly related to structural 

259 complexity (Davies and Asner, 2014; Simonson et al., 2014). Studies on the behaviour of bats in 

260 forests have been done using ALS (Froidevaux et al., 2016) and TLS (Yang et al., 2013). Other 

261 birds habitat have been studied using the spaceflight GLAS instrument aboard ICESat (Goetz et 

262 al., 2014). 

263

264 Forest productivity. Spatial and temporal variability in forest productivity is increasingly 

265 observed using the eddy-covariance technique from widely distributed flux towers.  Most of the 

266 current research using canopy structure information at flux tower sites can be grouped into three 

267 components: (1) the interpretation and modeling of carbon, water and energy fluxes, (2) ecosystem 

268 dynamics –including disturbance effects, and (3) the process of up-scaling local flux observations 

269 to regional patterns.  Remote sensing can aid through characterization of forest structure, and can 
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270 provide spatial data beyond the flux-tower footprint, which helps to extrapolate field based 

271 measures to the surrounding land rather than just the tower footprint.

272

273 When characterising canopy structure at flux tower sites, the main scale of interest is often 

274 determined to encompass the tower footprint. However, some of the processes involved in canopy-

275 atmosphere exchanges may require resolution of structural patterns at fine scales to account for 

276 scale emergent properties within the flux tower footprint. For example, the radiative transfer of 

277 sunlight through canopies is an important driver of those leaf and canopy level processes. 

278 Kobayashi et al. (2012) used a map of individual tree position and crown dimensions obtained 

279 from discrete return ALS to demonstrate the impact of 3D effects in radiative transfer modeling 

280 on water and carbon flux modelling. Hardiman et al. (2011) linked primary productivity and 

281 canopy structure information derived from PCL data; they looked at total LAI and an index of 

282 complexity as factors. Stark et al. (2012) and Atkins et al. (2018) investigated links between 

283 structural attributes derived from ALS and TLS and forest productivity. Mitchell et al. (2012) used 

284 lidar to couple spatial changes in forest structure and variation in evapotranspiration. Morton et al. 

285 (2016) linked 3D structure and illumination geometry to forest productivity using airborne lidar. 

286

287 Ecosystem Models can incorporate information on the current ecosystem state, and with local 

288 climatic and edaphic information, can make predictions of carbon, water, and energy fluxes at a 

289 variety of scales. Individual based models like the Ecosystem Demography (Moorcroft et al., 2001; 

290 Medvigy et al., 2009) and MAESTRA (Medlyn, 2004) calculate growth and mortality dynamics 
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291 at the scale of individual trees, and can make simulations smaller than the footprint of a flux tower 

292 up to the regional and global scale. The Ecosystem Demography model (ED2) can simulate 

293 vegetation dynamics of individual trees of a particular size and plant functional type, incorporating 

294 the full spatially heterogeneous ecosystem state measured in forest inventories. In this context, 

295 lidar can be used to test, validate or constrain output from ecosystem models. This was shown in 

296 Antonarakis et al. (2011) at the La Selva tropical forest, constraining ED2 carbon dynamics 

297 through initializing with radar and lidar measurements of biomass and canopy height respectively. 

298 A subsequent study by Antonarakis et al. (2014) revealed that a combination of ALS and 

299 hyperspectral measurements can be successfully used to derive fine-scale forest structure (i.e. 

300 individual tree size class distribution) and plant functional type composition to improve biosphere 

301 model carbon flux predictions. Fine-scale forest structure has also recently been derived from the 

302 GLAS satellite lidar (Antonarakis and Coutiño, 2017).

303

304 Lidar can be a useful tool to address the scale mismatch between a field data and satellite imagery 

305 pixel scale. The scale of interest for global scale oriented imagery is typically 0.25-1 km. ALS 

306 observations are best suited for this application, as well as for future satellite based missions like 

307 GEDI. Chasmer et al. (2011) used a number of metrics from discrete return ALS to investigate the 

308 role of structure heterogeneity within the flux tower footprint. Simard et al. (2011) have used tree 

309 height data from FLUXNET sites to validate their global tree height map from space-based lidar. 

310 Saatchi et al. (2011) and Baccini et al. (2012) have used ICESat to define above-ground biomass 

311 globally, spatially extrapolating lidar-derived biomass using MODIS and SRTM data layers. 
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312 Knyazikhin et al. (2013) stressed the need to consider the role of within pixel-level canopy 

313 structure in the retrieval of leaf nitrogen from passive optical remote sensing.

314

315 Further, a very significant type of activity concerns the combination of data from multiple sites to 

316 investigate the causes of intra and interannual variability. Existing databases typically include 

317 several structure characteristics relating to canopy structure, like LAI and tree density, along with 

318 an estimate of uncertainties in these quantities. These structural parameters are updated with a 

319 frequency dependent on the level of dynamism and disturbance at each site, and lidar can be useful 

320 in providing the parameters estimates. 

321

322

323 4. Adopting lidar technology: Consider the 4 P’s!

324

325 A set of decisions and considerations are needed to provide the right lidar-derived product to a 

326 given science question in a particular environment; we refer to those as the 4Ps: Platform, Provider, 

327 Protocols, and Processing. The 4Ps refer to a set of decisions driving the use of lidar to support 

328 research activities: (1) which lidar platform is most appropriate for deriving the needed 

329 information? (2) Which provider will carry out the survey? (3) which protocols will be used for 

330 the survey, and how will it be conducted? and (4) what tools and processing methods will be used 

331 to convert raw lidar data into useful information? 

332
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333 Platform. Identifying the appropriate lidar platform (i.e. ALS, ULS, TLS, SLAM, PCL, SLS) to 

334 derive the right product for a given application often requires exchanges between lidar and 

335 application experts. Such interdisciplinary collaboration is essential to maximizing the benefits of 

336 lidar technology and identifying new ways of applying lidar information in forest research. This 

337 will require optimal choice of platform considering the factors detailed in Tables 1 & 2. For a 

338 particular application, one should consider that the most commonly used lidar system may not be 

339 the most appropriate. 

340

341 Provider. Research groups interested in acquiring lidar data have several options: (1) develop the 

342 expertise internally, (2) establish a collaboration with lidar experts, (3) hire the services of an 

343 organisation dedicated to research, or (4) hire the services of a private firm. Public organisations 

344 capable of providing a lidar acquisition service are listed as supplementary information in 

345 Supplementary material -no provider is generally required for the PCL. One key advantage to 

346 using one of these organisations is the expertise they are able to develop internally over time in 

347 working with forest researchers, and in adding new data to an existing standardized repository, 

348 which does not routinely happen when data is acquired through private firms. 

349

350 Protocols. Acquisition protocols cover a multitude of activities that apply prior to, during, and 

351 after data collection. These protocols should be consistent in terms of item to cover, but the 

352 approaches and values used will vary depending on the platform used, type of provider, the 

353 environment being measured and the required purpose(s) of the data. At the most basic level these 
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354 protocols ensure the data collected can be registered accurately and precisely to a position in space 

355 and time, and can be integrated with other geospatial data sets. The protocols typically cover: 

356 specification of area and time sample, sampling locations, required sampling intensity, required 

357 ground control and other required ground measurements, instrument calibration checks, instrument 

358 settings, meta-data recording, post-processing procedures, data storage and publication. It may be 

359 inappropriate to suggest “one size fits all” recommendations for protocols, as these should be set 

360 according to site characteristics and study objectives. However, the development of protocol 

361 guidelines is needed. Protocols have been developed for standardised field surveys using TLS to 

362 match up with traditional forest structure monitoring metrics (Schaefer, 2015) and for the 

363 collection of airborne laser scanner data (Quadros and Keysers, 2015), including a standardised 

364 workflow (QA4Lidar).

365

366 Processing. In terms of data processing capabilities, lidar differs significantly from passive 

367 satellite remote sensing with regards to oversight. Most satellite remote sensing instruments used 

368 in forest ecosystem science have been coordinated and overseen by government or supra-

369 government institutions, and substantial resources are invested in the development of processing 

370 algorithms and their documentation, as well as the publication of standard products. Lidar data has 

371 so far mainly been acquired through researchers contracting private or public organisations for 

372 data acquisition or purchasing a lidar instrument themselves (some even building their own), and 

373 there has been little coordination of algorithmic and software development for processing raw data. 

374 This results in a current oversight gap in the development of standard products from lidar.
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375

376 For processing ALS data, several researchers use the LAStools and FUSION software -which do 

377 have some functionalities specific for forest environments-, and the R language package LidR 

378 (Roussel et al., 2018) is increasingly popular. Within the TLS community, a Research 

379 Coordination Network (RCN) grant from the US National Science Foundation was obtained in 

380 2015 at Boston University to help coordinate measurement protocols and processing algorithm 

381 development. A French community has also been organising around a software tool called 

382 Computree, which includes one of the two existing Quantitative Structure Modeling (QSM) 

383 softwares for estimating individual tree volume (Simpletree); the other being developed by 

384 Raumonen et al. (2013). Other useful TLS software packages include 3D forest (Trochta et al., 

385 2017), FORESTR (Atkins et al., 2018), and Pylidar (www.pylidar.org). The ULS being a very 

386 recent system, there are currently no specific processing tools for processing ULS data in forests 

387 that we are currently aware of. The PCL data is somewhat straightforward to process, and 

388 processing tools are freely available. The use of simultaneous Localization and Mapping (SLAM) 

389 systems in forests is also relatively recent. These complex systems usually combine Inertial 

390 Monitoring Units (IMU) and advanced algorithms to account for the platform movement during 

391 the lidar acquisition without good GPS signal under the tree canopy. Their use in forests is likely 

392 to significantly increase as the technology evolves, equipment costs decrease, and data processing 

393 tools availability increases. For many of the products derived from lidar presented here, access is 

394 still somewhat limited to groups having remote sensing as their main field of expertise, they are 
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395 not yet widely available to non-expert groups and not yet routinely used across sites in 

396 observational networks. 

397

398 We suggest that two main factors related to the 4 Ps currently hamper the adoption of the 

399 technology and integration within research methods. First, most lidar surveys are relatively 

400 expensive, and the resources invested often result in limited sharing of raw lidar data and derived 

401 products (when surveys are performed by a private firm there may also be a legal limitation on 

402 data sharing). Second, software processing tools are relatively slow to become widely available. 

403 Although software is now available for deriving simpler products like canopy height and stem 

404 maps, the more complex algorithms used to derive products like crown dimensions, LAI and 

405 biomass are not routinely available. We suggest that this results from limited coordination in the 

406 development of algorithmic tools and acquisition protocols. Also, efforts from remote sensing 

407 research groups are currently aimed towards publishing new applications and novel ideas –where 

408 the greater value is currently placed-, and there is little in terms of incentives to develop 

409 standardized acquisition protocols and processing tools for the wider community to use. 

410

411 5. A path forward for promoting lidar usage: beyond pretty pictures

412

413 Key Spatially Explicit Products.  Observations from lidar provide a unique capacity to inform 

414 new understanding, mechanistic-based modeling and management of forests. However, the 

415 measures currently used are mostly single-valued, summarizing the spatial variation of actual 
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416 canopy structure into one number. Often, a single value of LAI, canopy height or gap fraction is 

417 taken to characterize the whole. Yet vegetation structure is enormously variable at various scales 

418 - those variations are fundamental components of structure. One of the ground-breaking capacities 

419 of lidar is the ability to characterize this variation of object locations in 3 dimensions. While 

420 ignoring this variation was once necessary and understandable, it is no longer a restriction. Paying 

421 more explicit attention to variation is important for several reasons. For example, many processes 

422 of interest operate over ranges smaller than the whole-canopy scale.  Also, many important 

423 vegetation processes are fundamentally non-linear: canopy light declines exponentially with 

424 increasing leaf area and photosynthesis has a curvilinear relation with radiation.  Some of the key 

425 spatially explicit products which could be the focus of standardisation and sharing from table 3 are 

426 canopy heights models, gap distribution and connectivity, leaf area vertical distribution and 

427 horizontal heterogeneity, and above-ground biomass. Other products listed in table 3 are at a 

428 relatively early development/research stage and processing methods are not yet mature. 

429

430 Using the appropriate methodology. A match between the lidar system used and the science or 

431 management question asked is critical. As detailed in section 4, for any given new application, a 

432 clear identification of the motivating purpose will inform the choice of lidar platform, appropriate 

433 provider, acquisition protocol and data processing. For example, airborne- and space-borne laser 

434 scanning (ALS, SLS) are unparalleled for large scale sampling of outer canopy features and for 

435 the up-scaling of correlated structures and functions. Gap distribution and connectivity can be 

436 derived from ALS, improved interpretation of full-waveform data is particularly promising to this 
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437 end (Hancock et al., 2017). Terrestrial Laser Scanning (TLS) provides enormous detail about 

438 interior canopy features, and is a natural choice for studies of stem allometry and biomass, 

439 simulation of light environments, testing of photosynthesis and production models.  The potential 

440 of TLS to distinguish leaves from wood in mapping of leaf area should be further exploited (Béland 

441 et al., 2014a; Vicari et al., 2019). As described, between these extremes are other systems 

442 appropriate for other scales of study or repeatability frequency. We emphasize that different lidar 

443 systems can be combined to exploit the advantages provided by each, for example TLS 

444 measurements can enable the calibration/validation of products derived from airborne or satellite 

445 systems. 

446

447 Tools and Technology Transfer. Processing tools are fundamental for reaping the benefits of 

448 lidar for forest science. The immense raw data sets are not useful in themselves – they require a 

449 great deal of manipulation to yield useful information. Tools for effecting such processing are 

450 often time-consuming to develop – they represent an important resource for the lidar community.  

451 Several research groups have produced open-source code to analyze lidar data of various sorts 

452 (Béland et al., 2014b; Hackenberg et al., 2015; Trochta et al., 2017; Atkins et al., 2018). We 

453 encourage the development, ready distribution and testing of cost-free, operational and well-

454 documented approaches for processing lidar data.  It is important that these community efforts be 

455 professionally recognized and acknowledged. 

456
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457 Once limited in coverage and availability, lidar data of many sorts are now publicly accessible on 

458 data sharing platforms – providing such data is mandatory for some funding programs (e.g., NASA 

459 Carbon Monitoring System). Some notable data repository currently hosting ground and airborne 

460 lidar data include the Oak Ridge National Laboratory Distributed Active Archive Center 

461 (daac.ornl.gov), the OpenTopography initiative (opentopo.sdsc.edu/lidar) and the Australian 

462 TERN AusCover (www.auscover.org.au). Further systematic sharing of lidar data used in forest 

463 ecosystem research should be encouraged.  For example, intercomparison across sites and data 

464 types holds great potential to reveal patterns at macrosystem scales.  As progress is made on the 

465 challenges identified here, the forest ecosystem research community and ecological monitoring 

466 networks (e.g., LTER, ICOS, Ameriflux, NEON and TERN) will have greater access to standard 

467 and useful products derived from lidar.

468

469 Cooperation and coordination. Collaborative and cooperative efforts have a particularly great 

470 potential for leveraging research in the lidar community. Interdisciplinary connections are favored 

471 by activities such as workshops or meetings linking the lidar and forest ecology communities. 

472 Recent examples are the "Terrestrial Laser Scanning for Ecology" workshop held during the 

473 Australian Society for Ecology (ESA) annual conference in December 2016, and “The terrestrial 

474 laser scanning revolution in forest ecology” meeting hosted by the Royal Society held in the UK 

475 in February 2017. 

476
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477 Research coordination networks are also valuable for furthering integrated efforts, and we 

478 recommend networks be created to cover all lidar platforms. Such a network should aim to promote 

479 (1) linkage between lidar experts working in forest ecosystems, (2) coordination of algorithmic 

480 efforts for producing a set of standard products in forests from lidar, and (3) the development of 

481 best practices in acquisition protocols for the different systems in different forest types. Initiatives 

482 to enable the sharing of lidar data are also needed, including establishing exclusive use periods for 

483 some data sources on which the community agrees. Cooperative networks could also further 

484 progress on ways to integrate different sorts of lidar.  For example, a focused study on a well-

485 studied site (with a history of research on habitat, animals, biomass, carbon exchange and so forth) 

486 would provide a test case to study interaction of various sorts of measurement systems.  

487

488 New Thinking about Structure. Many recent uses of lidar involve applications of novel data but 

489 using standard methodologies. Clearly, more detail on structure will help fine-tune many 

490 descriptive characterizations of forests. But there are few models that require spatial detail and 

491 information about variation. Progress is needed in thinking of new ways to make use of small-

492 scale spatially explicit products in predicting ensemble behaviors. We need new hypothesis 

493 connecting the 3D structural features revealed by lidar to processes of interest, as well as a new 

494 class of models designed to explicitly incorporate lidar information and deal with the implied 

495 complexities. We suggest that funding agencies include in their calls for proposals the need for 

496 new hypothesis linking spatially varying structural information with forest ecosystem processes. 

497 As progress is made on this and other challenges presented here, we believe the forest ecosystem 
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498 research community and ecological monitoring networks, like LTER, ICOS, Ameriflux, NEON 

499 and TERN, will have greater access to -the right- lidar-derived products. 

500
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