University of Sussex
Nokhodchi_et_al_2010.pdf (907.21 kB)

Physico-mechanical and dissolution behaviours of ibuprofen crystals crystallized in the presence of various additives

Download (907.21 kB)
journal contribution
posted on 2023-06-08, 19:21 authored by Ali Nokhodchi, O Amire, M Jelvehgari
Background and the purpose of the study: The success of any direct-tableting procedure is strongly affected by the quality of the crystals used in the process. Ibuprofen is a poorly compactible drug with a high tendency for capping. In order to use ibuprofen in direct compression formulations, physico-mechanical properties of ibuprofen should be improved considerably. The aim of the present investigation was to employ crystallization techniques in order to improve the physicomechanical properties of ibuprofen for direct compression. Methods: The experimental methods involved the preparation of ibuprofen crystals by solvent change technique. Ibuprofen was dissolved in ethanol and crystallized out with water in the absence or presence of various hydrophilic additives (PEG 6000, 8000, Brij 98P and polyvinyl alcohol 22000, PVA 22000) with different concentrations. The physico-mechanical properties of the ibuprofen crystals were studied in terms of flow, density, tensile strength and dissolution behaviour. Morphology of ibuprofen crystals was studied by scanning electron microscopic (SEM). Solid state of the recrystallized particles was also investigated using differential scanning calorimeter (DSC) and FT-IR. Results: Ibuprofen samples crystallized in the presence of PEG 6000 and 8000 and PVA showed remarkable increase in the tensile strengths of the directly compressed tablets, while some other additives, i.e. Brij 98P did not produce improved ibuprofen crystals. Ibuprofen powders made from particles obtained in the presence of PVA and Brij 98P showed similar dissolution profiles to the commercial ibuprofen particles. DSC and FT-IR results ruled out any significant interaction between ibuprofen and additives except for the samples crystallized in the presence of PEG 8000. Conclusion: The crystal habit of ibuprofen can be altered successfully by the crystallization technique which was developed in this study. The crystals developed in the presence of certain additives can be recommended for direct compression.


Publication status

  • Published

File Version

  • Published version


DARU Journal of Pharmaceutical Sciences




Tehran University of Medical Sciences





Page range


Department affiliated with

  • Chemistry Publications

Full text available

  • Yes

Peer reviewed?

  • Yes

Legacy Posted Date


First Open Access (FOA) Date


First Compliant Deposit (FCD) Date


Usage metrics

    University of Sussex (Publications)


    No categories selected