University of Sussex

File(s) not publicly available

Quantifying uncertainty in estimates of mineral dust flux: An intercomparison of model performance over the Bodélé Depression, northern Chad

journal contribution
posted on 2023-06-07, 16:58 authored by Martin ToddMartin Todd, D Bou Karam, C Cavazos, C Bouet, B Heinold, J M Baldasano, G Cautenet, I Koren, C Perez, F Solmon, I Tegen, P Tulet, R Washington, A Zakey
Mineral dust aerosols play an important role in the climate system. Coupled climate-aerosol models are an important tool with which to quantify dust fluxes and the associated climate impact. Over the last decade or more, numerous models have been developed, both global and regional, but to date, there have been few attempts to compare the performance of these models. In this paper a comparison of five regional atmospheric models with dust modules is made, in terms of their simulation of meteorology, dust emission and transport. The intercomparison focuses on a 3-day dust event over the Bodele depression in northern Chad, the world's single most important dust source. Simulations are compared to satellite data and in situ observations from the Bodélé Dust Experiment (BoDEx 2005). Overall, the models reproduce many of the key features of the meteorology and the large dust plumes that occur over the study domain. However, there is at least an order of magnitude range in model estimates of key quantities including dust concentration, dust burden, dust flux, and aerosol optical thickness. As such, there remains considerable uncertainty in model estimates of the dust cycle and its interaction with climate. This paper discusses the issues associated with partitioning various sources of model uncertainty.


Publication status

  • Published


Journal of Geophysical Research




American Geophysical Union





Page range




Department affiliated with

  • Geography Publications

Full text available

  • No

Peer reviewed?

  • Yes

Legacy Posted Date


Usage metrics

    University of Sussex (Publications)


    No categories selected