posted on 2023-06-09, 16:28authored bySasa S?vikovic´, Alastair Crisp, Sue Mei Tan-Wong, Thomas A Guilliam, Aidan DohertyAidan Doherty, Nicholas Proudfoot, Guillaume Guilbaud, Julian Sale
During DNA replication conflicts with ongoing transcription are frequent and require careful management to avoid genetic instability. R-loops, three stranded nucleic acid structures comprising a DNA:RNA hybrid and displaced single stranded DNA, are important drivers of damage arising from such conflicts. How R-loops stall replication and the mechanisms that restrain their formation during S phase are incompletely understood. Here we show in vivo how R-loop formation drives a short purine-rich repeat, (GAA)10, to become a replication impediment that engages the repriming activity of the primase-polymerase PrimPol. Further, the absence of PrimPol leads to significantly increased R-loop formation around this repeat during S phase. We extend this observation by showing that PrimPol suppresses R-loop formation in genes harbouring secondary structure-forming sequences, exemplified by G quadruplex and H-DNA motifs, across the genome in both avian and human cells. Thus, R- loops promote the creation of replication blocks at susceptible structure-forming sequences, while PrimPol-dependent repriming limits the extent of unscheduled R-loop formation at these sequences, mitigating their impact on replication.
Funding
Understanding the role of PrimPol in damage tolerance during genome replication in eukaryotic cells; G1621; BBSRC-BIOTECHNOLOGY & BIOLOGICAL SCIENCES RESEARCH COUNCIL; BB/M008800/1
The role of a novel family of eukaryotic DNA polymerases in mitochondrial DNA replication; G0207; BBSRC-BIOTECHNOLOGY & BIOLOGICAL SCIENCES RESEARCH COUNCIL; BB/H019723/1