University of Sussex
Browse

File(s) not publicly available

Recombination-restarted replication makes inverted chromosome fusions at inverted repeats

journal contribution
posted on 2023-06-08, 13:32 authored by Ken'ichi Mizuno, Izumi Miyabe, Stephanie Schalbetter, Antony CarrAntony Carr, Jo Murray
Impediments to DNA replication are known to induce gross chromosomal rearrangements (GCR) and copy number variations (CNV). GCRs/CNVs underlie human genomic disorders1 and are a feature of cancer2. During cancer development environmental factors and oncogene-driven proliferation promote replication stress. Resulting GCRs/CNVs are proposed to contribute to cancer development and therapy resistance3. When stress arrests replication, the replisome remains associated with the fork DNA (stalled fork) and is protected by the inter-S phase checkpoint. Stalled forks efficiently resume when the stress is relieved. However, if the polymerases dissociate from the fork (fork collapse) or the fork structure breaks (broken fork), replication restart can proceed either by homologous recombination (HR) or microhomology-primed re-initiation (FoSTeS/MMBIR)4,5. Here we ascertain the consequences of replication with a fork restarted by HR. We identify a new mechanism of chromosomal rearrangement: recombination-restarted forks have an exceptionally high propensity to execute a U-turn at small inverted repeats (up to 1:40 replication events). We propose that the error-prone nature of restarted forks contributes to the generation of GCRs and gene amplification in cancer and to non-recurrent CNVs in genomic disorders

History

Publication status

  • Published

Journal

Nature

ISSN

0028-0836

Publisher

Nature Publishing Group

Volume

493

Page range

246-249

Department affiliated with

  • Sussex Centre for Genome Damage Stability Publications

Full text available

  • No

Peer reviewed?

  • Yes

Legacy Posted Date

2013-01-18

Usage metrics

    University of Sussex (Publications)

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC