University of Sussex
Browse
- No file added yet -

Requirement for DNA Ligase IV during Embryonic Neuronal Development

Download (3.97 MB)
journal contribution
posted on 2023-06-08, 00:00 authored by Susanne A Gatz, Limei Ju, Ralph Gruber, Eva Hoffmann, Antony CarrAntony Carr, Zhao-Qi Wang, Cong Liu, Penny Jeggo
The embryonic ventricular and subventricular zones (VZ/SVZ) contain the neuronal stem and progenitor cells and undergo rapid proliferation. The intermediate zone (IZ) contains nonreplicating, differentiated cells. The VZ/SVZ is hypersensitive to radiation-induced apoptosis. Ablation of DNA non-homologous end-joining (NHEJ) proteins, XRCC4 or DNA ligase IV (LigIV), confers ataxia telangiectasia mutated (ATM)-dependent apoptosis predominantly in the IZ. We examine the mechanistic basis underlying these distinct sensitivities using a viable LigIV (Lig4(Y288C)) mouse, which permits an examination of the DNA damage responses in the embryonic and adult brain. Via combined analysis of DNA breakage, apoptosis, and cell-cycle checkpoint control in tissues, we show that apoptosis in the VZ/SVZ and IZ is activated by low numbers of DNA double-strand breaks (DSBs). Unexpectedly, high sensitivity in the VZ/SVZ arises from sensitive activation of ATM-dependent apoptosis plus an ATM-independent process. In contrast, the IZ appears to be hypersensitive to persistent DSBs. NHEJ functions efficiently in both compartments. The VZ/SVZ and IZ regions incur high endogenous DNA breakage, which correlates with VZ proliferation. We demonstrate a functional G(2)/M checkpoint in VZ/SVZ cells and show that it is not activated by low numbers of DSBs, allowing damaged VZ/SVZ cells to transit into the IZ. We propose a novel model in which microcephaly in LIG4 syndrome arises from sensitive apoptotic induction from persisting DSBs in the IZ, which arise from high endogenous breakage in the VZ/SVZ and transit of damaged cells to the IZ. The VZ/SVZ, in contrast, is highly sensitive to acute radiation-induced DSB formation.

History

Publication status

  • Published

File Version

  • Published version

Journal

Journal of Neuroscience

Volume

31

Page range

10088-100100

Department affiliated with

  • Sussex Centre for Genome Damage Stability Publications

Full text available

  • Yes

Peer reviewed?

  • Yes

Legacy Posted Date

2012-02-06

First Open Access (FOA) Date

2016-03-22

First Compliant Deposit (FCD) Date

2016-11-10

Usage metrics

    University of Sussex (Publications)

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC