Accounts of predictive processing propose that conscious experience is influenced not only by passive predictions about the world, but also by predictions encompassing how the world changes in relation to our actions—that is, on predictions about sensorimotor contingencies. We tested whether valid sensorimotor predictions, in particular learned associations between stimuli and actions, shape reports about conscious visual experience. Two experiments used instrumental conditioning to build sensorimotor predictions linking different stimuli with distinct actions. Conditioning was followed by a breaking continuous flash suppression task, measuring the speed of reported breakthrough for different pairings between the stimuli and prepared actions, comparing those congruent and incongruent with the trained sensorimotor predictions. In Experiment 1, counterbalancing of the response actions within the breaking continuous flash suppression task was achieved by repeating the same action within each block but having them differ across the two blocks. Experiment 2 sought to increase the predictive salience of the actions by avoiding the repetition within blocks. In Experiment 1, breakthrough times were numerically shorter for congruent than incongruent pairings, but Bayesian analysis supported the null hypothesis of no influence from the sensorimotor predictions. In Experiment 2, reported conscious perception was significantly faster for congruent than for incongruent pairings. A meta-analytic Bayes factor combining the two experiments confirmed this effect. Altogether, we provide evidence for a key implication of the action-oriented predictive processing approach to conscious perception, namely that sensorimotor predictions shape our conscious experience of the world.