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Cyclical choice is persistently observed in 
experimental evidence. It typically occurs 
in simple decision problems (involving only 
binary comparisons and few alternatives) and 
in significant proportions, sometimes nearing 
or even exceeding 50 percent.� This is obviously 
incompatible with the classical model of ratio­
nal choice, in which choice is constructed as the 
maximizer of a single preference relation (which 
we call a rationale), or of a utility function. If 
a decision maker exhibits cycles of choice over 
some set of alternatives, for any candidate 
“best” alternative there is always another one in 
the set that is judged better still: it is not possible 
to express a decision maker’s preferences by a 
utility function, since it is not possible to find 

� See, e.g., Amos Tversky (1969), Graham Loomes, 
Chris Starmer, and Robert Sugden (1991), and Peter H. M. 
P. Roelofsma and Daniel Read (2000). Roelofsma and Read
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A sequentially rationalizable choice function is a choice function that can be 
retrieved by applying sequentially to each choice problem the same fixed set of 
asymmetric binary relations (rationales) to remove inferior alternatives. These con-
cepts translate into economic language some human choice heuristics studied in 
psychology and explain cyclical patterns of choice observed in experiments. We 
study some properties of sequential rationalizability and provide a full character-
ization of choice functions rationalizable by two and three rationales. (JEL D01).

a maximizer for it. In this paper, we propose 
and study a family of boundedly rational choice 
procedures that can account for these observed 
anomalies.

In line with some prominent psychology and 
marketing studies (see below), in our model we 
assume that the decision maker uses sequen­
tially two rationales to discriminate among 
the available alternatives. These rationales are 
applied in a fixed order, independently of the 
choice set, to remove inferior alternatives. This 
procedure “sequentially rationalizes” a choice 
function if, for any feasible set, the process 
identifies the unique alternative specified by 
the choice function. In this case, we say that a 
choice function is a Rational Shortlist Method 
(RSM). Intuitively, the first rationale identifies 
a shortlist of candidate alternatives from which 
the second rationale selects. The special case in 

(2000) find that the majority (52 percent) of choices exhib­
ited binary cycles in a universal choice set of four alterna­
tives. In the experiment carried out in Loomes, Starmer, 
and Sugden (1991), between 14 percent and 29 percent of 
choices made by all subjects were cyclical, and a staggering 
64 percent of subjects exhibited at least one binary cycle in 
a universal choice set of just three alternatives. More recent 
results in this same line are in Pavlo Blavatskyy (2003), 
who finds that 55 percent of his experimental subjects 
violate transitivity of choice. Humans seem to fare better 
than nonhuman animals: for instance, in an experiment of 
choice behavior of gray jays, Thomas A. Waite (2001) finds 
that all the birds preferred choices a to b and b to c, but none 
preferred a over c, where all alternatives 1n, l 2 consisted in 
going and getting n raisins at the end of a lcm long tube, 
with a 5 11 raisin, 28 cm 2 , b 5 12 raisins, 42 cm 2 , and  
c 5 13 raisins, 56 cm 2 . Thus, none of the birds exhibited 
transitive choice; moreover, 25 percent of them exhibited  
consistently intransitive choice.
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which the first rationale always yields a unique 
maximal element corresponds to the standard 
model of rationality.

A notable aspect of these procedures is that 
they are testable based on a “revealed prefer­
ence” type of analysis that, despite the highly 
nonstandard choices to be explained, is not more 
demanding than the standard one.� In other 
words, we ask the following question: when are 
observed choices compatible with the use of 
our boundedly rational choice procedure? The 
answer is: if and only if the choice data satisfy 
two testable conditions. Of these conditions, one 
is a standard Expansion axiom, and the other is 
a modification of Samuelson’s Weak Axiom of 
Revealed Preference (WARP).� The simplicity 
of our tests stands in contrast to the indirect esti­
mation algorithms normally used (notably in the 
marketing literature) to infer boundedly rational 
procedures.�

Typically, RSMs will lack standard menu-inde­
pendence properties, so that it may be possible 
for an alternative to be revealed as preferable to 
another alternative in some choice set, but for that 
preference to be reversed in a different choice set 
(thus violating WARP). Because of this feature, 
RSMs can exhibit cyclical patterns of choice; 
however, they still rule out other types of irratio­
nal choice. In this sense, an RSM is a nonvacuous 
notion and this gives it empirical content: it can 
be tested by observable choice data.

For a simple example of how an RSM works, 
suppose that an arbitrator has to pick one from 
the available allocations a, b, or c. Suppose that 
c Pareto dominates a, while no other Pareto 
comparisons are possible. Assume further that 
the arbitrator deems a fairer than b and b fairer 
than c. The arbitrator decides first on the basis 
of the Pareto criterion, invoking the fairness cri­
terion only when Pareto is not decisive. Then, 
the arbitrator’s choice function g would be such 
that g 15a, b, c 62 5 b, since, first, a is eliminated 

� See Hal R. Varian (2005) for a recent survey on stan­
dard revealed preference theory.

� Recall that WARP, in its general form, states that if 
an alternative a is chosen from some menu of alternatives 
where some other alternative b is present (i.e., a is directly 
revealed preferred to b), then it can never be the case that 
alternative b is selected from any other menu including 
both a and b.

� For recent examples, see, e.g., Michael Yee et al. (forth­
coming) and Rajeev Kohli (forthcoming).

by c using the Pareto criterion, and, second, c 
is eliminated by b using the fairness criterion. 
On the other hand, g 15a, b 62 5 a, given that the 
Pareto criterion has no bite, and the arbitrator 
would select on the basis of fairness. Similarly, 
g 15b, c 62 5 b, whereas g 15a, c 62 5 c by Pareto. 
This seems an entirely reasonable way for the 
arbitrator to come to a decision. In fact, this pro­
cedure has been proposed in a social choice set­
ting by Koichi Tadenuma (2002). Yet it produces 
a violation of WARP and pairwise cyclical pat­
tern of choice.

One can think of a wide array of other practi­
cal situations where RSMs may apply. A cau­
tious investor comparing alternative portfolios 
first eliminates those that are too risky relative 
to others available, and then ranks the surviving 
ones on the basis of expected returns. A recruit­
ing selector first excludes candidates with lower 
levels of some desired skills than other appli­
cants he is considering, and then selects based 
on merit from the remaining ones. The notion of 
RSM is relevant also in other fields in the social 
sciences. For instance, psychologists have often 
insisted on sequential “noncompensatory”� heu­
ristics, as opposed to one single rationale, to 
explain choices (though axiomatic character­
izations of such boundedly rational procedures 
are lacking). Notable in this respect are the 
“Elimination by Aspects” procedure of Tversky 
(1972) and the idea of “fast and frugal heuris­
tics” of Gerd Gigerenzer, Peter M. Todd, and 
the ABC Research Group (1999). Similarly, this 
type of model is widely used and documented 
in the management/marketing literature. Yee et 
al. (forthcoming) provide recent and compelling 
evidence of the use by consumers of “two-stage 
consideration and choice” decision-making pro­
cedures, and also refer to firms taking account 
of this fact in product development.

In summary, RSMs are simple boundedly 
rational procedures that are introspectively 
plausible and can explain empirically rel­
evant “anomalies” of choice patterns. Above 
all, whether the choice pattern of a decision 
maker can be explained by an RSM is a testable 
hypothesis. Last but not least, RSMs provide 
rigorous formal underpinnings to the heuristics 

� That is, in which the several “criteria” used for choice 
cannot be traded off against each other.
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approach central to much psychology and mar­
keting literature.

In addition to providing a characterization of 
RSMs, we consider a natural extension whereby 
the decision maker applies sequentially more 
than two rationales, much in the same way as 
they are used in the elimination procedure 
described before for RSMs. We call choice 
functions recoverable in this way sequentially 
rationalizable. Although a full characterization 
of sequentially rationalizable choice functions 
remains a nontrivial open problem, we are able 
to present some partial results, notably includ­
ing a full characterization of rationalizability 
by three rationales. Interestingly, even when the 
number of rationales allowed is unboundedly 
large, not all choice functions are sequentially 
rationalizable.

The rest of the paper is organized as follows. 
In the next section we define and characterize 
RSMs. In Section II we extend RSMs to sequen­
tial rationalizability. Section III presents an 
application to choice over time. We conclude in 
Section IV. Some technical examples are in the 
Appendices.

I.  Rational Shortlist Methods

A. Basic Definitions

Let X be a set of alternatives, with 0X 0  . 2. 
Given S # X and an asymmetric binary relation 
P # X 3 X, denote the set of P-maximal ele­
ments of S by

max 1S; P2 5 5x [ S ZEy y [ S for which 1y, x 2 [ P6.
Let P 1X2 denote the set of all nonempty sub­

sets of X. A choice function on X selects one 
alternative from each possible element of P 1X2 , 
so it is a function g : P 1X2 S X with g 1S 2 [ 
S for all S [ P 1X2 . We abuse notation by often 
suppressing set delimiters, e.g., writing g 1xy 2 in 
place of g 15x, y 62 .

The main result in this section (Theorem 1) 
goes through (as can be easily checked by an 
inspection of the proof) whether the choice sets 
S are finite or not. For simplicity of notation, 
however, we confine ourselves to the case where 
X is finite.

Since Paul A. Samuelson’s (1938) paper, 
economists have sought to express choice as the 

outcome of maximizing behavior. Formally, a 
choice function g is rationalizable if there exists 
an acyclic binary relation P, such that

	 5g 1S 2 6 5 max 1S; P2 for all S [ P 1X2 .
The main new concept we introduce is the 
following.

Definition 1: A choice function g is an RSM 
whenever there exists an ordered pair 1P1, P22 of 
asymmetric relations, with Pi # X 3 X for i 5 
1, 2, such that:

5g 1S 2 6 5 max 1max 1S; P1 2 ; P22 for all S [ P 1X2 .
In that case we say that 1P1, P22 sequentially 
rationalize g. We call each Pi a rationale.

So the choice from each S can be represented 
as if the decision maker went through two 
sequential rounds of elimination of alternatives. 
In the first round, he retains only the elements 
that are maximal according to rationale P1. In 
the second round, he retains only the element 
that is maximal according to rationale P2: that 
is his choice. Note that, crucially, the rationales 
and the sequence in which they are applied are 
invariant with respect to the choice set.

This choice procedure departs from (stan­
dard) rational choice only when the relation P1 
is incomplete. The relation P2 may or may not be 
complete, though it needs to be decisive on the 
shortlist created after the first round of elimina­
tion, i.e., select from it a single element.

B. An Example

To glean some intuition on what RSMs can 
and cannot do, let us consider an example where 
two types of “pathologies of choice” are dis­
played. We show in the next section that the 
decomposition of pathologies illustrated in the 
example is very general; of these, only one can 
be accommodated by an RSM.

Suppose that the decision maker can conceiv­
ably choose among three alternative routes to 
go to work, A, B, and C. Because of periodic 
road closures, we can observe his choices also 
between subsets of the grand set 5A, B, C6. Up to 
a relabelling of the alternatives, it is not difficult 



VOL. 97 NO. 5 1827Manzini and Mariotti: Sequentially Rationalizable Choice 

to check that there are only three possible con­
figurations of choice behavior. Fix the route 
that is taken when all are available, say route A. 
Then, consider the situation when, at any one 
time, only two routes are available. Those that 
follow exhaust all possible choices:�

Case 1 (Dominance of the best route).— 
Route A (the choice from the grand set) is also 
taken whenever only one other route is avail­
able, regardless of the choice when A is not 
available.

Case 2 (Pairwise cycle of choice).—Route A 
is taken when B is the only other available route; 
route B is taken when C is the only other avail­
able route; route C is taken when A is the only 
other available route.

Case 3 (Default route).—Some route differ­
ent from A is always taken when only one other 
route is available, regardless of the choice when 
A is available.

These cases are depicted in Figure 1, where 
arrows point away from the selected route to the 
rejected one in pairwise choice.

Case 1 can be rationalized in the standard 
way, with only one transitive preference relation 
such that A is preferred to both B and C.

Case 2 is pathological from the point of view 
of standard economic rationality. Nonetheless, 
it can be sequentially rationalized by two ratio­
nales—let us call them “traffic” and “length”—
as follows. The decision maker prefers less 
traffic to more, and prefers shorter routes. 
Route C is shorter than Route A, and Route A 
is shorter than route B. Route B has less traffic 

� Let XtY denote “route X is taken when route Y is also 
available.” Then, it is easy to see that, once we fix the route 
selected when all are available, there are eight possible 
combinations of routes chosen in each of the three possible 
pairwise comparisons between A and B, A and C, and B and 
C, namely: (1) AtB, AtC, and BtC; (2) AtB, AtC, and CtB; (3) 
AtB, BtC, and CtA; (4) BtA, AtC, and CtB; (5) BtA, BtC, and 
AtC; (6) BtA, BtC, and CtA; (7) CtA, CtB, and AtB; and (8) 
CtA, CtB,  and BtA. Of these possibilities, (1) and (2) corre­
spond to Case 1 in the text; (3) and (4) are the same, subject 
to relabelling by switching B and C, and correspond to Case 
2 in the text; and, finally, both (5) and (7), and (6) and (8) 
are the same subject to swapping B for C, and correspond 
to Case 3 in the text.

than route C, but traffic comparisons are hard to 
make between other routes. The decision maker 
looks first at traffic to eliminate routes, and then 
at length. It is immediate to see that the crite­
ria applied in the given sequence generate the 
choice behavior of Case 2.

In Case 3, a different pathology of choice is 
observed. There is one route, say B to fix ideas, 
that is revealed preferred in pairwise choices 
to all other routes, yet it is not chosen when all 
routes are available (as in Figure 1, Case 3a). 
This pattern of choice is not an RSM. To see 
this, suppose to the contrary that this were 
an RSM, again with rationales “traffic” and 
“length” applied in that order. If so, the fact 
that B is chosen in pairwise comparison over A 
means that if B and A are comparable by traffic, 
then B has less traffic than A. Otherwise, B must 
be shorter than A. Similarly, since B is chosen 
in pairwise comparison over C, either B has less 
traffic than C, or is shorter (or both). But then, 
when all three routes are available, B can never 
be eliminated by either the traffic or the length 
criterion. This contradicts the initial hypothesis 
that the choice was an RSM. We shall see later 
that this reasoning can be generalized to more 
complex cases, and in fact it would stand even if 
the number of possible criteria were not limited 

Figure 1
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to two. It is this type of pathological behavior 
that gives our theory empirical content.

C. Characterization of Rational 
Shortlist Methods

In general, suppose that we observed the 
choices of a decision maker. How could we 
test whether his behavior is consistent with the 
sequential maximization of two rationales? 
Surprisingly, it turns out that RSMs can be sim­
ply characterized through two familiar observ­
able properties of choice.

Recall, first, the standard WARP pioneered 
by Samuelson (1938) for consumer theory.

WARP: If an alternative x is chosen when y is 
available, then y is not chosen when x is avail-
able. Formally, for all S, T [ P 1X2: 3x 5 g 1S 2 , 
y [ S, x [ T 4 1 3y Z g 1T2 4 .

It is well known that (in the present setting) 
WARP is a necessary and sufficient condition 
for choice to be rationalized by an ordering (i.e., 
a complete transitive binary relation).� WARP 
essentially asserts the absence of a certain type 
of “menu effects” in choice: if an alternative 
is revealed preferred to another within a cer­
tain “menu” of alternatives, changing the menu 
cannot reverse this judgement. The property 
we introduce allows menu effects, but requires 
some consistency in the way they operate. It is 
in the following spirit: if you are observed to 
choose steak over fish when they are the only 
items on the menu, and also when a large selec­
tion of pizzas is on the menu, then you do not 
choose fish over steak when a small selection 
of pizzas is on the menu. A pairwise prefer­
ence for x over y does not exclude in principle 
that in larger menus some reason can be found 
to reject x and choose y instead. However, if a 
large menu does not contain any such reason, 
no smaller menu contains such a reason either. 
Although this property may look introspectively 
plausible, here we are not interested in issues of 
plausibility: we simply propose this property as 
an observable test for the RSM model.

� See, e.g., Hervé Moulin (1985) and Kotaro Suzumura 
(1983).

Weak WARP: If an alternative x is chosen 
both when only y is also available and when y 
and other alternatives 5z1, … , zK6 are available, 
then y is not chosen when x and a subset of 
5z1 … , zK6 are available. Formally, for all S, T 
[ P 1X2: 35x, y 6 , S , T, x 5 g 1xy 2 5 g 1T  2 4 
1 3y Z g 1S 2 4 .

The second property we use in our character­
ization is called Expansion, and it directly rules 
out pathologies of the type considered in Case 3 
of the route example above.

Expansion: An alternative chosen from each 
of two sets is also chosen from their union. 
Formally, for all S, T [ P 1X2: 3x 5 g 1S2 5 g 1T  2 4 
1 3x 5 g 1S < T2 4 .

Our main result can now be stated as 
follows.

Theorem 1: Let X be any (not necessarily 
finite) set. A choice function g on X is an RSM, 
if and only if it satisfies Expansion and Weak 
WARP.

Proof:
Necessity: Let g be an RSM on X and let P1 

and P2 be the rationales.
(a) Expansion. Let x 5 g 1S 2 5 g 1T2 for S, 

T [ P 1X2 . We show that for any y [ S < T, it 
cannot be 1y, x 2 [ P1 , and for any y [ max 1S 
< T ; P12 , it cannot be 1y, x 2 [ P2. If 1y, x 2 [ P1, 
this would immediately contradict x 5 g 1S 2 or x 
5 g 1T 2 and g being rationalized. Suppose, now, 
that for some y [ max 1S < T ; P12 we had 1y, x 2 
[ P2. Since max 1S < T ; P12 # max 1S; P12 < 
max 1T ; P12 , we have y [ max 1S; P12 or y [ max 
1T ; P12 , contradicting x [ max 1max 1S; P12 ; P2 2 
or x [ max 1max 1T; P12 ; P2 2 .

Therefore, x survives both rounds of elimina­
tion and we can conclude that x 5 g 1S < T 2 .�

� Note that this argument cannot be iterated further in 
the case of more than two rationales. For any set S [ P 1X2 , 
let M1 1S 2 5 max 1S; P12 and M2 1S 2 5 max 1max 1S; P12 ; 
P22 . Then, observe that it is not necessarily true that M2 1S 
< T2 # M2 1S 2 < M2 1T 2 . There could, in fact, be y [ 1M1 1S 2 
< M1 1T 2 2 \ M1 1S < T 2 such that 1y, z 2 [ P2 for some z [ 
M1 1S 2 < M1 1T 2 , while for all y9 [ M1 1S < T 2 it is the case 
that 1y9, z 2 o P2. So, if it were 1z, x 2 [ P3, x could not be 
chosen from S < T.
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(b) Weak WARP. Let x 5 g 1xy 2 5 g 1S 2 , 
y [ S. Then x 5 g 1xy 2 implies that 1x, y 2 [ 
P1 < P2. If 1x, y 2 [ P1, then the desired con­
clusion follows immediately. Suppose, then, that 
1x, y 2 [ P2. The fact that x 5 g 1S 2 implies that for 
all z [ S it is the case that 1z, x 2 o P1. Therefore, 
x [ max 1R; P12 for all R ( S for which x [ R . 
Since 1x, y 2 [ P2, then y o max 1max 1R; P12 ; 
P22 for all such R, and thus y Z g 1R2 .

Sufficiency: Suppose that g satisfies the axi­
oms. We construct the rationales explicitly. 
Define

P1 5 5 1x, y 2 [ X 3 X Z there exists no S [ P 1X2 
	 such that y 5 g 1S 2 
	 and x [ S6.
Define 1x, y 2 [ P2 if and only if x 5 g 1xy 2 .

Observe that P1 and P2 are asymmetric: if 1x, 
y 2 [ P1 and 1y, x 2 [ P1 then, in particular, g 
1xy 2 Z x, y, which is not possible; and P2 is con­
sistent with the binary choices.

To check that P1 and P2 rationalize g, take any 
S [ P 1X2 and let x 5 g 1S 2 . First, we show that 
all alternatives that are chosen over x in binary 
choice are eliminated in the first round. Second, 
we show that x survives both rounds, and that it 
eliminates all remaining alternatives in the sec­
ond round.

Let z [ S be such that z 5 g 1xz 2 . Suppose by 
contradiction that for all y [ S \ z there exists Tyz 
] y, z such that z 5 g 1Tyz2 . Then by Expansion 
z 5 g 1<y[S\z Tyz2 . If S 5 <y[S\z Tyz we have an 
immediate contradiction. If S , <y[S\z Tyz, by 
Weak WARP x Z g 1S 2 , a contradiction. Thus 
for all such z there exists yz [ S such that 
1yz , z 2 [ P1.

Clearly x is not eliminated by either P1 or P2: 
for y [ S, if 1y, x 2 [ P1, then, it could not be 
x 5 g 1S 2 , whereas if 1y, x 2 [ P2 by the argu­
ment in the previous paragraph, y would have 
been eliminated by the application of P1 before 
P2 can be applied.

Finally for all z [ max 1S, P12 , with z Z x, 
such that x 5 g 1xz 2 , we have 1x, z 2 [ P2.

As discussed above, the strength of this 
characterization lies in the fact that it con­
nects what would be traditionally considered 
highly “irrational” choice patterns to easy-to-
check rationality properties. The only relax­
ation from standard tests is to allow a limited 

form of menu-dependence in the Weak WARP 
axiom.

In Appendix A, we establish by means of 
examples that the set of axioms in Theorem 1 
is tight.

Remark 1: There isn’t a unique way to 
construct the rationales. One algorithm that 
performs the task is the following: (i) if an 
alternative x is never chosen when y is present, 
then assign 1y, x 2 to the first rationale P1; (ii) if x 
“beats” y in pairwise comparison, then assign 
1y, x 2 to the second rationale P2.�

Theorem 1 can be extended to choice func­
tions on any subdomain S , P 1X2 . The follow­
ing property, which we use to this effect below, 
combines in a single property Weak WARP and 
Expansion.

WWE: If x 5 g 1Si 2 in a class and x 5 g 1xy 2 , 
then y Z g 1R2 for all R [ P 1X2 with 5x, y 6 , 
R # <i Si .

WWE says that if you choose pizza over steak 
when only pizza and steak are available, then 
you don’t choose steak from a menu contain­
ing pizza and some other items, all taken from 
menus from which pizza is chosen. The previous 
RSM characterization in terms of Expansion 
and Weak WARP may not work on restricted 
domains due to the possible lack of closure 
under set union of these domains.10 However, 
WWE solves this difficulty. For any subdomain 
S , P 1X2 , we refer to a function g  :  S S X as 
a choice function on S. By following essentially 
the same argument of the proof of the main the­
orem, it is easy to show the following.

� Note that in this construction there is a one-to-one 
relationship between violations of WARP and differences 
between the two rationales. In fact, if 1x, y 2 [ P1, then 
clearly, by definition, 1x, y 2 o P2. Therefore, the only pos­
sible difference between the two rationales is when there 
are two alternatives x and y such that 1x, y 2 , 1y, x 2 o P1 and 
1x, y 2 o P2. This is a violation of WARP. We are grateful to 
a referee for pointing this out to us.

10 To be more precise, we may not be able to carry out 
the step in which we assert that since y 5 g 1Tz2 for a class 
of sets 5Tz6, then y 5 g 1<z Tz2 , since <z Tz may not be in 
the domain.
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Corollary 1: A choice function g on S 
, P 1X2 is an RSM if and only if it satisfies 
WWE.

To conclude this section, we note that, were 
one to allow a decision maker to apply two ratio­
nales in a variable order, depending on the prob­
lem, then many more choice functions could be 
rationalized. In other words, it would be inter­
esting to consider the following definition.

Say that a choice function g is a menu depen-
dent RSM if there exists a pair of rationales P1, 
P2 such that

	 5g 1S 2 6 [ 5max 1max 1S; P12 ; P22 ,

	 max 1max 1S; P22 ; P12 6 

	 for all S [ S.

We do not know at present which choice func­
tions can be rationalized in this way.

We recall the result by Gil Kalai, Ariel 
Rubinstein, and Rani Spiegler (2002), in whose 
model one single rationalizing relation is used 
on each choice set, but the relation may vary 
from one choice set to another. Each relation is 
assumed to be an order (so it is complete and 
transitive), and several relations are in general 
needed to rationalize a choice function.

II.  Beyond Two Rationales

A. Sequential Rationalizability

The concept of an RSM suggests an imme­
diate generalization. Instead of using only two 
rationales, the decision maker might use a larger 
number of them. For example, in the routes sce­
nario of the previous section, one can conceive 
that the decision maker uses not only traffic and 
length, but also scenery, as criteria for choice. 
This leads us to the following definition.

Definition 2: A choice function g is sequen-
tially rationalizable whenever there exists an 
ordered list P1, … , PK of asymmetric relations, 
with Pi # X 3 X  for i 5 1 … K, such that, defin-
ing recursively,

	 M0 1S 2 5 S,

	 Mi 1S 2 5 max 1Mi21 1S; Pi2 2 , i 5 1, … , K,

we have

	 5g 1S 2 6 5 MK 1S 2 for all S [ P 1X2 .
In that case, we say that 1P1, … , PK2 sequentially 
rationalize g. We call each Pi a rationale. If we 
want to emphasize the fact that no more than K 
rationales are needed, we call the choice func-
tion K-sequentially rationalizable.

So the choice from each S can be constructed 
through sequential rounds of elimination 
of alternatives. At each round, only the ele­
ments that are maximal according to a round- 
specific rationale survive. Like for RSMs (which 
can now be viewed as special sequentially ratio­
nalizable choice functions where only two ratio­
nales are used), the rationales and the sequence 
are invariant with respect to the choice set.

Are there choices that are not sequentially 
rationalizable? At first sight, it may seem that if 
we are free to use as many rationales as we like, 
any choice can be rationalized by a sufficiently 
large number of rationales. On the contrary, the 
answer may be negative even for very simple 
choice functions (on a domain X with as few as 
three alternatives). Examples are provided in 
Appendix A.

B. Violations of Economic Rationality Are of 
Only Two Types

To delve deeper into the notion of sequen­
tial rationalizability, let us recall another well-
known property of choice.

Independence of Irrelevant Alternatives.—11 
If an alternative is chosen from a set, it remains 
chosen when some rejected alternatives are dis­
carded from the set. Formally, for all S, T [ 
P 1X2 : 3g 1T 2 [ S, S , T 4 1 3g 1S 2 5 g 1T 2 4 .

Recall that, at least for the finite case, Indepen­
dence of Irrelevant Alternatives is equivalent to 

11 For single-valued choice functions, this conflates 
several properties of correspondences such as Chernoff’s
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WARP and therefore is a necessary and suffi­
cient condition for rationalizability with a single 
ordering.12

What types of boundedly rational behav­
ior does sequential rationalizability allow? To 
answer this question consider the following two 
very basic rationality requirements. The first one 
requires that if an alternative “beats” all others 
in a set in binary choices, then this same alterna­
tive is chosen from the set—this is obviously a 
weakening of Expansion. The second property 
requires that there are no pairwise cycles of 
choice—this is a weakening of Independence of 
Irrelevant Alternatives and WARP:

Always Chosen.—If an alternative is chosen 
in pairwise choices over all other alternatives in 
a set, then it is chosen from the set. Formally, for 
all S [ P 1X2 : 3x 5 g 1xy 2 for all y [ S\ x 4 1 

3x 5 g 1S 2 4 .
No Binary Cycles.—There are no pairwise 

cycles of choice. Formally, for all x1, … , xn11 

[ X: 3g 1xi xi112 5 xi, i 5 1, … , n 4 1 3x1 5 
g 1x1xn112 4 .

The reason for highlighting these two proper­
ties is that the class of choice functions that do 
not satisfy WARP (i.e., that are not rationaliz­
able by a single standard economic preference 
relation) can be classified very simply. They are 
partitioned into just three subclasses: the choice 
functions that violate exactly one of No Binary 
Cycles or Always Chosen, and those that violate 
both. This is established in the Proposition 1, 
which is of independent interest.

Proposition 1: A choice function that vio-
lates WARP also violates Always Chosen or No 
Binary Cycles.

Proof:
It is easier to conduct the proof in terms of 

Independence of Irrelevant Alternatives rather 
than the equivalent property WARP. Let g be 
a choice function on X. We argue by induc­
tion on the cardinality of X. Let X 5 5x, y, z6. 

property (S , T 1 g 1T 2 > S # g 1S 2 2 and Arrow’s condi­
tion (S , T, g 1T2 > S Z ~ 1 g 1S 2 5 g 1T 2 > S 2 .

12 See, e.g., Moulin (1985) and Suzumura (1983).

Suppose that x 5 g 1X2 and y 5 g 1xy 2 , so that 
Independence of Irrelevant Alternatives is vio­
lated. There are two possibilities: if y 5 g 1yz 2 , 
then Always Chosen is violated; if, instead, z 5 
g 1yz 2 , then either Always Chosen is violated (if 
z 5 g 1xz 2 2 , or No Binary Cycles is violated (if 
x 5 g 1xz 2 , so that x 5 g 1xz 2 , z 5 g 1yz 2 , y 5 
g 1yx 2 2 .

Assume now that the statement holds for all 
sets X with Z X Z # n. Take X r such that Z X9 Z 5 
n 1 1. Suppose that x 5 g 1X92 but there exists 
5x, y 6 # S , X9 such that y 5 g 1S 2 . If the 
restriction of g to S violates Independence of 
Irrelevant Alternatives, then the result follows 
by the inductive hypothesis. Suppose, then, that 
the restriction of g to S satisfies Independence 
of Irrelevant Alternatives. Consider the set V 5 
X r\S. Obviously, V Z [, and let z 5 g 1V2 .

If the restriction of g to V violates Indepen­
dence of Irrelevant Alternatives, then the result 
follows by the inductive hypothesis. Suppose 
it satisfies Independence of Irrelevant Alterna­
tives. Then, z 5 g 1vz 2 for all v [ V \ z.

Suppose that z 5 g 1yz 2 . If z 5 g 1sz 2 for all 
s [ S, then Always Chosen is violated. If there 
exists some t [ S such that t 5 g 1tz 2 , then 
this generates the cycle t 5 g 1tz 2 , z 5 g 1yz 2 , 
y 5 g 1ty 2 , where the last relation follows from 
Independence of Irrelevant Alternatives on S.

Suppose, alternatively, that y 5 g 1yz 2 . If  
y 5 g 1sy 2 for all s [ V, then Always Chosen 
is violated. If there exists some t [ V such that  
t 5 g 1ty 2 , then this generates the cycle t 5 g 1ty 2 ,  
y 5 g 1yz 2 , z 5 g 1tz 2 , where the last relation fol­
lows from Independence of Irrelevant Alterna­
tives on V.

C. Sequential Rationalizability Excludes One 
Type of Irrational Behavior

Next, we show that sequential rationalizabil­
ity restricts violations of the two basic rational­
ity properties introduced in this section.

Lemma 1: If a choice function is sequentially 
rationalizable, it satisfies Always Chosen.

PROOF:
Let g on X be sequentially rationalizable by the 

rationales P1, P2 … PK. For any two alternatives 
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a, b [ X, let i 1a, b 2  be the smallest i such that Pi 
relates a and b, that is

	 i 1a, b 2 5 min 5i [ 51, … , K6 Z 1a, b 2
	 [ Pi or 1b, a 2 [ Pi6.
Given S # X and x [ S, let x 5 g 1xy 2 for all 
y [ S \ x. For each y [ S \ x, we must have 1x, y 2 
[ Pi (x, y) , so that the successive application of the 
rationales eliminates all y [ S \ x, and no ratio­
nale can eliminate x. Therefore, x 5 g 1S 2 , as 
desired.

Our partial characterization result shows the 
equivalence of WARP and No Binary Cycles on 
the domain of sequentially rationalizable choice 
functions; it follows from Proposition 1 and 
Lemma 1 by observing that WARP is violated 
if there is a binary cycle.

Theorem 2: A sequentially rationalizable 
choice function violates WARP, if and only if it 
exhibits binary cycles.

Thus, the results in this section generalize the 
message of the basic “routes” example of the 
previous section. We have established that, in 
general, and not only in that example, all viola­
tions of “rationality” can be traced back to two 
elementary pathologies of choice, corresponding 
to Case 2 and Case 3 of the routes example: vio­
lations of Always Chosen and No Binary Cycles. 
Like RSMs, even the more general notion of 
sequential rationalizability is intimately con­
nected with pairwise cycles of choice, and can­
not possibly explain the other pathology.

D. A Recursion Lemma

In this section and the next, we provide con­
ditions on observable choices that fully charac­
terize 3-rationalizable choice functions. In the 
course of doing this, we also provide a recur­
sive result that permits one to move from any 
given characterization of 1K 2 22–rationalizable 
choices to K–rationalizable choices, thus pro­
viding a basis for a general characterization of 
sequential rationalizability.

To this aim, we need to extend some of the 
previous definitions to choice correspondences. 

A choice correspondence on X selects a set 
of alternatives from each possible element of 
P 1X2 : so it is a set-valued map g : P 1X2 S X 
with g 1S 2 # S for all S [ P 1X2 . The definitions 
of sequential rationalizability and RSM extend 
in the obvious way.

Any choice correspondence g on X defines 
naturally a subdomain S 1g 2 , defined as follows:

	S 1g2 5 5S [ P  1X2: S 5 g 1T 2 for some T [ P 1X26.
In words, S 1g 2 contains all the sets in the 

full domain P 1X2 that coincide with the choice 
that g produces from some element of the full 
domain.

Now we are ready to state our key result.

Recursion Lemma: A choice function g 
is K–sequentially rationalizable, if and only if 
there exists a 1K 2 22 –sequentially rationaliz-
able choice correspondence g* on X such that:

	(i)	 g 1g* 1S 2 2 5 g 1S 2 for all S [ P 1X2 ;
	(ii)	 the restriction of g to S 1g*2 satisfies 

WWE.

This result shows that the process of selection 
for a sequentially rationalizable choice function 
g can be recursively broken down into two steps. 
First, a sequentially rationalizable “preselection” 
is made, described as a choice correspondence 
g* which contains the chosen alternative for each 
set. This choice correspondence is sequentially 
rationalizable with two fewer rationales than 
the given choice function. In the second step, 
a choice function is applied to the preselected 
sets. This choice function satisfies WWE on that 
domain and is just the restriction of the given 
choice function g to the preselected sets.

Proof of the Recursion Lemma: 
Let g be K–sequentially rationalizable 

by P1  … , PK. The sequential application of 
P1, … , PK 2 2 defines a 1K 2 22–sequentially 
rationalizable choice correspondence on X, 
say g*. It must be g 1g* 1S 2 2 5 g 1S 2 for all S [ 
P 1X2 , since both the left-hand side and the right-
hand side are obtained by applying exactly the 
same rationales, exactly in the same sequence. 
The restriction of g to S 1g*2 is an RSM with 
rationales PK21 and PK, since by definition of S 
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1g*2 the first K 2 2 rationales produce no effect 
when applied to any element of S 1g*2 (as they 
have already been used), and only the rationales 
PK21 and PK will be effective. Then the state­
ment follows by Corollary 1.

That g is sequentially rationalizable (say by 
P1, … , PK) if the conditions of the statement hold 
is obvious: the first K 2 2 rationales are those 
that rationalize g*, while PK21 and Pk are the 
rationales that rationalize the restriction of g to 
S 1g*2 .

The Recursion Lemma is useful as an observ­
able test for sequential rationalizability, pro-
vided one also has observable conditions that 
characterize sequential rationalizability of a 
lower order for choice correspondences. In gen­
eral, we still lack such conditions for general 
correspondences, except for the case where g* is 
rationalizable by just one rationale, as shown in 
the next section.

E. A Characterization of 3-Rationalizability

A classical result of choice theory uses the 
following condition on choice correspondences 
(e.g., Moulin 1985; Suzumura 1983).

Binariness.—For all S [ P 1X2 : x [ g 1S 2 , if 
and only if x [ g 1xy 2 for all y [ S.

Binariness says that an alternative is chosen 
from a set, if and only if it is chosen in binary 
contests with any other alternative in the set. 
This means that the choice function is deter­
mined entirely by its behavior on binary sets. 
Amartya Sen (1970) proved that a choice corre­
spondence g on P 1X2 is rationalized by a binary 
relation P, if and only if g satisfies binariness.13 
Thanks to this fact, we can “solve” the case of 
3-rationalizability.

Theorem 3: A choice function g is 3-sequen-
tially rationalizable if and only if there exists a 
choice correspondence g* on X such that:

	 (i)	 g 1g* 1S 2 2 5 g 1S 2 for all S [ P 1X2 ;

13 That is, for all S [ P 1X2 , g 1S 2 5 5x [ S : 1x, y 2 [ 
P for all y [ S6.

	(ii)	 the restriction of g to S 1g*2 satisfies 
WWE;

	(iii)	 g* satisfies binariness.

PROOF:
The result follows directly from Corollary 1 

and Sen’s theorem, with one observation. If there 
is a P as in Sen’s theorem (necessarily complete 
since g 1xy 2 is well defined for all x, y [ X), 
then there is an asymmetric relation P r  such 
that 1y, g 1S 2 2 [ P9 for no S [ P 1X2 and y [ S 
(i.e., g maximizes P r ). The relation P r  is just 
the asymmetric part of P.

This result provides a characterization of 3-
rationalizability exclusively in terms of condi­
tions on observed choice. It involves checking 
an axiom of the standard expansion-contraction 
type for a set of choice functions rather than 
just for the original one. In practice, the result 
defines an algorithm that uses the choice data 
provided by g, as follows:

Step 1: Consider all the possible choice corre­
spondences g* defined only on binary sets, and 
such that g 1xy 2 [ g* 1xy 2 for all x, y [ X.

Step 2: Fix a g* from step 1, extend it to P 1X2 
(if possible), with the following formula: x [ 
g* 1S 2 , if and only if x [ g* 1xy 2 for all y [ S \ x , 
and g 1S 2 [ g* 1S 2 . If the extension is not pos­
sible (i.e., it yields an empty set), pick a different 
g* from step 1, and repeat.

Step 3: Check if g on S 1g*2 satisfies WWE. If 
it does, move to step 4. If not, repeat step 2 with 
a different g*.

Step 4: Check if g 1g* 1S 2 2 5 g 1S 2 for all  
S [ P 1X2 . If it does, the original choice func­
tion is 3-rationalizable. If not, repeat step 2 with 
a different g*. If the answer is negative for all 
choice correspondences, then the original choice 
function is not 3-rationalizable.

An example of an application of this algo­
rithm, also illustrating some practical shortcuts, 
is given in Appendix B.

III.  Rational Shortlist Methods and  
Choice over Time

Throughout the paper, we have focused on gen­
eral violations of rationality. However, we believe 
that RSMs can prove very useful to explain other 
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consider a complete binary preference relation 
B over a set of date-outcome pairs. They axi­
omatize the following representation class: 1x, t 2 
B 1y, s 2 , if and only if U 1x 2 $ U 1y 2 1 w 1s,   m           t 2 , 
where U is interpreted as an instantaneous util­
ity function, while w captures the effect of time 
delay. Unlike our setup, this representation is 
not an interval order, and the “contributions” of 
outcome and time to the agent’s utility are sepa­
rated. In Ok and Masatlioglu’s approach, cycles 
can be accounted for without resorting to a sec­
ond partial order. Our view is different: the first 
partial order represents the “rational” though 
incomplete component of decision making; 
hence we assume it transitive. In our approach, 
intransitivities arise as the by-product of resort­
ing to the “tie-breaking” second rationale.

IV.  Concluding Remarks

We have proposed an economic, “revealed 
preference” approach to the type of decision-
making procedures often promoted by psy­
chologists. For example Gigerenzer and Todd 
(1999) in their work on “fast and frugal” heu­
ristics observe, “One way to select a single 
option from multiple alternatives is to follow 
the simple principle of elimination: successive 
cues are used to eliminate more and more alter­
natives and thereby reduce the set of remaining 
options, until a single option can be decided 
upon.” Such heuristics focus mostly on the sim­
plicity of cues used to narrow down possible 
candidates for choice. Simplicity is an essen­
tial virtue in a world in which time is limited. 
An overarching preference relation—let alone 
a utility function—is not a cognitively simple 
object, and as a consequence these authors 
stress the difference from heuristics-based rea­
soning and the “unlimited demonic or super­
natural reasoning” relied upon in economics.14 
Yet, in this paper we have shown that the stan­
dard tools, concepts, and properties of revealed 
preference theory can be used to formalize and 
infer the use of such heuristics. A seemingly 
limited form of menu-dependence (encapsu­
lated in our Weak WARP and Expansion prop­
erties) is equivalent to the use of a two-stage 

14 See Gigerenzer and Todd (1999).

choice anomalies in specific contexts, in which 
certain rationales can suggest themselves. Here, 
we consider an application to choice over time.

The standard model of choice over time is 
the exponential discounting model. It has been 
observed that actual choices in experimen­
tal settings consistently violate its predictions. 
The most notable violation is possibly prefer­
ence reversal. Let Pg refer to observed pairwise 
choices over date-outcome pairs 1x, t 2 [ X 3 T, 
where X is a set of monetary outcomes and T is 
a set of dates. In this context, preference rever­
sal is the shorthand for the following situation: 
1x, tx 2 Pg 1y, ty 2 and 1y, ty 1 t 2 Pg 1x, tx 1 t 2 . This 
violates stationarity of time preferences, a prem­
ise on which the exponential discounting model 
is constructed.

This choice pattern can be easily accounted 
for by interpreting g as an RSM with rationales 
P1 and P2 defined as follows. For some function 
u : X 3 T S R and number s . 0, 1x, tx 2P11y, ty 2 , 
if and only if u 1x, tx 2 . u 1y, ty 2 1 s, and 
1x, tx 2P2 1y, ty 2 , if and only if u 1y, ty 2 # u 1x, tx 2 # 
u 1y, ty 2 1 s, and either x . y, or x 5 y and tx , 
ty. That is, the decision maker looks first at dis­
counted value, and chooses one alternative over 
the other if it exceeds the discounted value of 
the latter by an amount of at least s. Otherwise 
he looks first at the outcome dimension and, if 
this is not decisive, at the time dimension.

This is compatible with preference reversal, 
even with an exponential discounting type of u 
function. Let x , y, tx , ty and u 1x, tx 2 5 xdtx for 
d [ 10, 12 . Suppose that xdtx . ydty 1 s so that 
1x, tx 2 is chosen over 1y, ty 2 by application of P1. 
Given s, if t is sufficiently large it will be xdtx1 t 
, ydty1 t 1 s, so that the two date-outcome 
pairs 1x, tx 1 t 2 and 1y, ty 1 t 2 are not comparable 
via P1. However, the application of P2 yields the 
choice of 1y, ty 1 t 2 over 1x, tx 1 t 2 , thus “revers­
ing the (revealed) preference.”

Obviously, Pg could also be sequentially 
rationalized by using three rationales, where the 
outcome and time dimension comparisons are 
used in two separate Pi.

The same model can explain cyclical intertem­
poral choices and other “anomalies” (see Manzini 
and Mariotti 2006a, and bibliography therein, 
notably Rubinstein 2003, who proposes a multi­
stage procedure based on similarity relations).

Our model differs from that in Efe A. Ok 
and Yusufcan Masatlioglu (forthcoming), who 
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procedure that may generate economically 
“irrational” choice behavior.

Our way of incorporating bounded rationality 
is to translate the psychological notion of “cues” 
into a set of not necessarily complete binary rela­
tions. Rationality for us is the consistent appli­
cation of a sequence of rationales. The order in 
which they are applied may be hardwired and 
may depend on the specific context and on the 
type of decision maker,15 but it should be the 
same in a relevant class of decision problems. 
Each single rationale in itself need not exhibit 
any other strong property, such as completeness 
or transitivity.

The usefulness of elimination heuristics in 
practical decision making is self-evident16 and 
widely spread in disparate fields, from clinical 
medicine17 to marketing and management. In this 
perspective, the sequentiality in the application 
of rationales, which lies at the core of our analy­
sis, is an appealing feature of our rationalization 
results. Our approach may be contrasted with 
the recent contribution by Kalai, Rubinstein, and 
Spiegler (2002) and José Apesteguia and Miguel 
A. Ballester (2005). They use multiple rationales 
to explain choices, but each rationale is applied 
to a subset of the domain of choice. This results 
in all choice functions being rationalizable, and 
the focus becomes that of “counting” the mini­
mum number of rationales necessary to explain 
choices. One could imagine adapting a similar 
approach in our framework, by making the order 
of application of the rationales dependent on 
the set to which they are applied. Whether this 
would reduce the number of rationales needed to 
explain choices is still an open problem.

15 For example, in order to “choose” whether to stay or 
flee in the presence of a bird, a rabbit may use as its first 
rationale the fact that the bird is gliding, which would iden­
tify a predator. Conversely, a human decision maker may 
well look first at size or shape in order to recognize the bird.

16 As put very effectively by Gigerenzer and Todd (1999), 
“If we can decide quickly and with few cues whether an 
approaching person or bear is interested in fighting, play­
ing, or courting, we will have more time to prepare and act 
accordingly (though in the case of the bear all three inten­
tions may be equally unappealing).”

17 As an example, the online self-help guide of the UK 
National Health Service (http://www.nhsdirect.nhs.uk/
SelfHelp/symptoms/) helps users recognize an ailment 
by giving yes/no answers along a sequence of symptoms. 
This presumably formalizes the mental process of a trained 
doctor.

A different and intriguing approach to the 
theme of “simplifying” choice problems is pur­
sued by Yuval Salant (2003), who shows how a 
rational choice function can be viewed as being 
minimally complicated from a computational-
theoretic point of view.

Recently, Rubinstein and Salant (2006) have 
also discussed the use of the revealed preference 
approach to explain “behavioral” phenomena, 
and they provide an alternative characterization 
of RSMs in a different framework. In this same 
spirit, Masatlioglu and Ok (2003) character­
ize the phenomenon of status quo dependence 
in terms of axioms on observable choice data. 
And Kfir Eliaz and Ok (2006) weaken WARP 
for choice correspondences to characterize the 
rationalization by a not necessarily complete 
preference relation.18

In Manzini and Mariotti (2006b), we consider 
a two-stage elimination procedure in which, in 
the first stage, the relation is applied to sets of 
alternatives instead of to the alternatives them­
selves. The interpretation is that, in the first stage, 
alternatives are grouped by “similarity” and 
the elimination is between “similarity groups.” 
Interestingly, that procedure is characterized by 
Weak WARP alone, and therefore it can explain 
even those choices that violate Always Chosen, 
besides exhibiting pairwise cycles.19

We should also mention the work by Ok 
(2004), which characterizes the choice corre­
spondences satisfying Independence of Irrelevant 
Alternatives by means of a two-stage procedure. 
Unlike this paper, in the second stage of Ok’s 
procedure, elimination of alternatives does not 
occur on the basis of a relation, but rather on the 
information contained in the entire feasible set.

To conclude, we observe that recently Lars 
Ehlers and Yves Sprumont (2006) and Michele 

18 They propose the following Weak Axiom of Revealed 
Non-Inferiority (WARNI): for any y [ S, if for every x [ 
g 1S 2 there exists a choice set T such that y [ g 1T 2 and x [ 
T, then y [ g 1S 2 . They prove that WARNI is equivalent 
to rationalization by a single but possibly incomplete pref­
erence relation. Our WEE seems reminiscent of WARNI. 
As Case 2 of the route example shows, however, there are 
(single-valued) choice correspondences that satisfy WWE 
but violate WARNI: so, not all RSMs can be rationalized by 
a single and possibly incomplete preference relation.

19 We also present experimental evidence to show 
that this type of choices is empirically relevant in certain 
contexts.
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Example 2. Weak WARP but not Expansion:

	 X 5 5x, y, z6
	 Cg 1x 2 5 5xy, xz6

Cg 1y 2 5 5yz, xyz6
	 Cg 1z 2 5 5[6
Binary choices are visualized in Figure 3. 

While this choice function satisfies Weak WARP 
(trivially, as the premise of Weak WARP does 
not apply), it fails Expansion. This choice func­
tion is not an RSM. Indeed, it is not sequentially 
rationalizable. As before, for any two alterna­
tives a, b [ X, let i 1a, b 2  be the smallest i such 
that Pi relates a and b. Suppose by contradic­
tion that g were sequentially rationalizable by 
P1, … , PK. Since x 5 g 1xy 2 , it must be 1x, y 2 [ 
Pi 1x, y 2 . Given this, y 5 g 1xyz 2 can hold only if 
1z, x 2 [ Pi 1x, z 2 , which contradicts x 5 g 1xz 2 .

The examples above can be used to make 
two additional points. First, there are choice 
functions that are not RSMs but are sequen­
tially rationalizable. Namely, g in Example 1 
is 3-rationalizable, as shown in Appendix B. 
Second, the notion of sequential rationalizabil­
ity is not vacuous, in the sense that there exist 
choice functions thar are not sequentially ratio­
nalizable (Example 2).21

21 The violations of Always Chosen shown in this exam­
ple appear in other notable examples of plausible choice pro­
cedures introduced in the literature, which are therefore not 
sequentially rationalizable. Let X 5 5x, y, z6, and consider 
the following refinement of the choose the median proce­
dure: There is a “fundamental” order B on X (e.g., given 
by ideology from left to right) such that 1z, y 2 , 1y, x 2 [ B. 

Lombardi (forthcoming) have studied rational­
ization of choice functions by a tournament. The 
first two authors use expansion-contraction axi­
oms to characterize (necessarily multivalued) 
choice functions, which are the top cycle of the 
tournament, where the tournament coincides 
with the base relation. Lombardi (2006) char­
acterizes choice functions which are the uncov­
ered set of the tournament. One can show that 
sequentially rationalizable choice functions 
refine the top cycle (of the base relation) in each 
choice set. In other words, a sequentially ratio­
nalizable choice function picks an element of the 
top cycle, so that the choice beats in an arbitrary 
number of steps any other feasible alternative.

Appendix A

We establish by means of examples that the 
set of axioms in Theorem 1 is tight. In order to 
describe choice functions compactly in exam­
ples, we use the following notation: given x [ X, 
let Cg 1x 2 5 5S [ P 1X2 Z x 5 g 1S 2 6.20

Example 1. Expansion but not Weak WARP:

	 X 5 5x, y, w, z6
	 Cg 1w 2 5 5wx6

Cg 1x 2 5 5xy, xz, xyz, wxy, wxyz6
	 Cg 1y 2 5 5wy, yz, wyz6
	 Cg 1z 2 5 5wz, wxz6 
Binary choices are visualized in Figure 2, 

where a S b stands for a 5 g 1ab 2 . It is straight­
forward to verify that this choice function sat­
isfies Expansion, but not Weak WARP (e.g., x 
5 g 1X2 and x 5 g 1xz 2 but z 5 g 1wxz 2 2 . This 
choice function is not an RSM. To see this, sup­
pose 1w, x 2 [ P1. Then x 5 g 1X2 cannot be ratio­
nalized. Suppose, then, that 1w, x 2 [ P2. Then 
z 5 g 1wxz 2 cannot be rationalized, for x will 
eliminate z regardless of whether 1x, z 2 [ P2 or 
1x, z 2 [ P1.

20 In this notation, the Expansion axiom says that, for all 
x [ X, Cg 1x 2 is closed under set union.

Figure 2
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Appendix B

The task of verifying the 3-rationalizability 
of a given choice function is much more man­
ageable, even “by hand,” that one could fear. We 
illustrate this with an example. Take the choice 
function of Example 1 from Appendix A.

Step 1: To construct the family of choice cor­
respondences on binary sets such that g 1ab 2 [ 
g* 1ab 2 for all a, b [ X, observe that this require­
ment restricts g* as follows: for any 5a, b 6, either 
g* 1ab 2 5 5g 1ab 2 6, or g* 1ab 2 5 5a, b 6. Thus, 
admissible choice correspondences are given by 
the resulting combinations. In our example, this 
would generate 26 5 64 choice correspondences 
on the binary sets to start with.

Step 2: The number of choice correspon­
dences allowed in Step 1 can be greatly reduced 
by observing that if a [ g 1S 2 for some S which 
includes a pair 5a, b 6, it must be that a [ g* 1a, b 2 , 
for otherwise if a is excluded from g*, the latter 
could never be extended as required in this step. 
In our example, then, this requires x [ g* 1wx 2 
(otherwise x 5 g 1X2 o g* 1X2 2 , and z [ g* 1xz 2 
(otherwise z 5 g 1wxz 2 o g* 1wxz 2 2 , so that it 
must be g* 1wx 2 5 5w, x6 and g* 1xz 2 5 5x, z6, 
reducing the number of eligible starting choice 

The decision maker chooses the median according to B, 
breaking ties by picking the highest element in the set of 
median elements. We have z 5 g 1xz 2 5 g 1yz 2 and yet y 5 
g 1xyz 2 , violating Always Chosen. The same choice pattern 
is consistent with the never choose the uniquely largest pro­
cedure (e.g., a hungry polite guest refrains from picking the 
largest piece of cake from the tray). Formally, there is again 
a fundamental order B on alternatives (e.g., size) and the 
chosen alternative must not be the unique maximizer of B. 
However, to interpret the choice pattern z 5 g 1xz 2 5 g 1yz 2 
and y 5 g 1xyz 2 in this way, the fundamental ordering must 
be exactly the reverse of the one used for the “choose the 
median” procedure, namely, 1x, y 2 , 1y, z 2 [ B. Nick Baigent 
and Wulf Gaertner (1996)  and Gaertner and Yongsheng Xu 
(1999a, b) have axiomatized this type of procedure.

correspondences to 24 5 16, depending on the 
behavior of g* in the remaining binary sets.22

As for the extension to nonbinary sets, recall 
that, according to our algorithm, the extension 
satisfies a [ g* 1S 2 , if and only if a [ g* 1ab 2 
for all a [ S, and g 1S 2 [ g* 1S 2 . Consequently, 
it is very easy to extend the domain to nonbinary 
sets: simply drop from each of these larger sets S 
any alternative that is rejected by g* in a binary 
set whose other alternative is in S. It obviously 
makes sense to start checking whether WWE 
is satisfied on the choice correspondence that 
generates the least number of additional sets. 
We start from the most “parsimonius” g*. Then, 
take g* 1ab 2 5 5g 1ab 2 6 for all remaining binary 
sets, i.e., g* 1wy 2 5 5y 6, g* 1wz 2 5 5z6, g* 1xy 2 5 
5x6 and g* 1yz 2 5 5y 6, so that the most alterna­
tives are dropped in the extension. For this g*, 
we derive the following extension:

g* 1wxy 2 5 5x6, g* 1wxz 2 5 5x, z6,
	 g* 1wyz 2 5 5y 6, g* 1xyz 2 5 5x6,
and	 g* 1X2 5 5x6.

Step 3: WWE holds trivially. We can move 
to Step 4.

Step 4: With the current choice correspon­
dence, the algorithm sends us back to Step 2, 
as g 1g* 1wxz 2 2 5 x Z z 5 g 1wxz 2 . This fail­
ure, however, alerts us to the fact that we cannot 
leave z “alone” with x, suggesting that it might 
make sense to have g* 1wz 2 5 5w, z6. With this 
single modification to our correspondence in 
Step 2, the extension changes to

g* 1wxy 2 5 5x6, g* 1wxz 2 5 5w, x, z6,
	 g* 1wyz 2 5 5y 6, g* 1xyz 2 5 5x6,
and	 g* 1X2 5 5x6.

22 Indeed, this is generally true for all choice functions 
that are sequentially rationalizable. Since any such function 
satisfies Always Chosen, then: either no choice from a non-
binary set is “beaten” pairwise by some other alternative 
in that set, in which case the choice function is rationaliz­
able in the standard way; or the converse is true, in which 
case the number of choice correspondences on binary sets 
is reduced by a factor of at least two, and possibly more.

Figure 3
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In Step 3, again WWE holds trivially. This 
time, though, in Step 4 it is easy to check that 
g 1g* 1S 2 2 5 g 1S 2 for all S [ P 1X2 . We conclude 
that the choice function is 3-rationalizable.

Note that the algorithm also provides an indica­
tion of how the rationales can be constructed: the 
single valuedness of the choice correspondence 
on the three binary sets 5w, y6, 5x, y6, and 5y, z6 
suggests that 1y, w 2 , 1x, y 2 , 1y, z 2 [ P1. Using the 
construction from the proof of Theorem 1 on the 
subdomain S 1g*2 5 5wx, wz, xz, wxz6, we have, 
1w, x 2 , 1z, w 2 [ P2 while 1w, x 2 , 1z, w 2 , 1x, z 2 [ P3.
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