Rationale Insular cortex supports the representation of motivational feelings through the integration of interoceptive information concerning bodily physiology. Compromised insular integrity is implicated in alcohol and drug use disorders. Alcohol-associated insular dysfunction may arise through aberrant glutamatergic neurotransmission associated with selective neuronal death and atrophy. Objective In a sample of alcohol users, we combined magnetic resonance spectroscopy (MRS) with voxel and surface-based morphometry (VBM, SBM) to test the hypothesis that the neurochemical and structural properties of the insula relate to alcohol use. Methods Twenty-three healthy individuals were characterized by measures of alcohol use and subjective craving. Right mid-insula glutamate/glutamine (Glx) and total N-acetylaspartate/N-acetyl-aspartylglutamate (TNAA) concentrations were measured using MRS. Right insular structure was quantified using VBM and SBM parameters. We tested for predictive associations between these neuroimaging and behavioral/psychometric measures using Bayesian statistics. Results Reduced insular Glx concentration was associated with increased alcohol compulsions and, to a lesser extent, with greater alcohol use severity. Anecdotal evidence for a negative relationship between alcohol use severity and levels of insular gyrification was also observed. Conclusions This study is, to date, the first characterization of the neurochemical and morphological integrity of insular cortex in alcohol users. Our data seem to reveal a negative relationship between alcohol use and the neurochemical and structural integrity of the insula, a critical substrate for motivational behavior. These neurobiological characteristics might contribute to loss of control toward compulsive drinking with prolonged and excessive alcohol use.