File(s) under permanent embargo
Spectral enclosure and superconvergence for eigenvalues in gaps
journal contribution
posted on 2023-06-08, 23:53 authored by James Hinchcliffe, Michael StraussWe consider the problem of how to compute eigenvalues of a self-adjoint operator when a direct application of the Galerkin (finite-section) method is unreliable. The last two decades have seen the development of the so-called quadratic methods for addressing this problem. Recently a new perturbation approach has emerged, the idea being to perturb eigenvalues off the real line and, consequently, away from regions where the Galerkin method fails. We propose a simplified perturbation method which requires no a priori information and for which we provide a rigorous convergence analysis. The latter shows that, in general, our approach will significantly outperform the quadratic methods. We also present a new spectral enclosure for operators of the form $A+iB$ where $A$ is self-adjoint, $B$ is self-adjoint and bounded. This enables us to control, very precisely, how eigenvalues are perturbed from the real line. The main results are demonstrated with examples including magnetohydrodynamics, Schr\"odinger and Dirac operators.
History
Publication status
- Published
Journal
Integral Equations and Operator TheoryISSN
0378-620XPublisher
Springer VerlagExternal DOI
Issue
1Volume
84Page range
1-32Department affiliated with
- Mathematics Publications
Full text available
- No
Peer reviewed?
- Yes