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Abstract  

Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominant neurodegenerative disease 

involving the cerebellum and characterized by a typical motor syndrome. In addition, the 

presence of cognitive impairment is now widely acknowledged as a feature of SCA2.  Given 

the extensive connections between the cerebellum and associative cerebral areas, it is 

reasonable to hypothesize that cerebellar neurodegeneration associated with SCA2 may 

impact on the cerebellar modulation of the cerebral cortex, thus resulting in functional 

impairment.  

The aim of the present study was to investigate and quantitatively map the pattern of 

cerebellar gray matter (GM) atrophy due to   SCA2   neurodegeneration and to correlate that 

with patients’ cognitive performances.   

Cerebellar GM   maps   were  extracted and compared between SCA2 patients (n=9) and 

controls (n=33) by using voxel-based morphometry. Furthermore, the relationship between 

cerebellar GM atrophy and neuropsychological scores of the patients was assessed. Specific 

cerebellar GM regions were found to be affected in patients.  Additionally, GM loss in 

cognitive posterior lobules (VI, Crus I, Crus II, VIIB, IX) correlated with visuospatial, verbal 

memory and executive tasks, while additional correlations with motor anterior (V) and 

posterior (VIIIA, VIIIB) lobules were found for the tasks engaging motor and planning 

components.   

Our results provide evidence that the SCA2 neurodegenerative process affects the cerebellar 

cortex and that MRI indices of atrophy in different cerebellar subregions   may account for 

the specificity of cognitive symptomatology observed in patients, as result of a cerebello-

cerebral dysregulation.  
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Introduction  

The cerebellum is a critical node in the distributed neural circuits subserving not only motor 

but also autonomic, limbic and cognitive functions [1]. Over the years, increasing evidence of 

the cerebellar involvement in cognition has been reached leading to the description of a 

clinical condition, referred to as the "Schmahmann's syndrome" (SS) [2]. Such a condition 

occurs in the presence of lesions of the cognitive and limbic part of the cerebellum (i.e., 

posterior lobes; lobules VI, Crus I and II; lobule IX) and is characterized by a complex 

variety of cognitive deficits [3-4].  

Impaired cognitive performance, involving language, executive, visuospatial and sequencing 

functions has also been found in patients with cerebellar atrophy [4-5], a condition 

characterized by diffuse degeneration of the cerebellar cortex, which is regarded as the 

central computational integrator of the cerebellar system[6]. Throughout the cerebellar 

cortex, the information ultimately converges on Purkinje neurons and is then funneled out 

through the neurons of the deep cerebellar nuclei (DCN), the sole output of the cerebellar 

cortex. Through DCN, the cerebellum communicates with other parts of central nervous 

system by extensive excitatory connections. When Purkinje cells are under-functioning, 

target regions in the cerebral cortex are prevented from receiving an appropriate cerebellar 

modulation, which is necessary to accomplish functions successfully. 

Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominant  cerebellar neurodegenerative 

disease, characterized by a progressive cerebellar syndrome, typically affecting motor 
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functions [7] as well as cognitive performance [8-10]. From a neuropathological point of 

view, patients affected by SCA2 show a pattern of olivo-ponto-cerebellar atrophy (OPCA) 

combined with neuronal loss in several brainstem and cerebellar nuclei and  in the cerebellar 

cortex alongside a diffuse damage of the brainstem and cerebellar white matter (WM) [11-

16].  Additionally, cerebral cortical atrophy has been reported at most advanced disease 

stages [13]. Voxel based morphometry (VBM) studies have shown cerebellar degeneration to 

affect supratentorial regions connected with the cerebellum [17],  including  the right 

orbitofrontal and temporomesial cortex, and the primary sensorimotor cortex bilaterally [18].  

It has been suggested that the cognitive deficits observed in SCA2 patients might result from 

the disruption of a cerebro-cerebellar circuitry, presumably at the pontine level [19], and also 

from degeneration of specific cerebellar sites [20]. Consistently, altered inter-nodal 

connectivity has been recently reported in SCA2 patients between more posterior regions of  

the cerebellum and regions in the cerebral cortex that are related to cognition and emotion 

processing [21]. This reduced connectivity suggests that cerebellar dysfunction may affect 

long-distance cerebral regions, and some clinical symptoms of SCA2 may be due to abnormal 

connectivity between non-motor cerebello-cortical nodes. Deficits in attention, executive 

functions, visuo-constructive skills, visual and verbal memory and processing speed have all 

been reported in SCA2 patients [10].  However, a prevalent involvement of executive and 

visuospatial skills has been indicated [19, 22-23] suggesting a fronto-parietal dysfunction, 

that could be attributed to a disconnection syndrome in the fronto-ponto-cerebello-thalamo-

cortical circuits [8].  In line with these observations, the functional topography of the 
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cerebellum posits that distinct regions of the cerebellum contribute to specific functional 

modules by means of segregated connections with distinct functional zones in the cerebral 

cortex [24].  

Although the cognitive profile of SCA2 has been characterized across several studies [8-10], 

MRI indices of atrophy have never been used to account for the cognitive impairment 

observed in SCA2 patients.  

Aim of the present study was therefore to examine and quantitatively map the pattern of 

cerebellar atrophy in patients with SCA2, in order to clarify the patho-anatomical basis of 

their neuropsychological impairment. 

 

 

 

 

2. Materials and Methods 

2.1Participants  

Nine genetically confirmed patients with SCA2 (mean age /SD: 47,5/10,2; F/M:6/3), 

recruited from the Ataxia Lab of Santa Lucia Foundation (Rome, Italy), were enrolled in the 

present study. At the time of enrollment, all patients had a disease duration longer than 6 

months since their genetic confirmation of diagnosis. As part of the inclusion criteria, patients 

had to present with a selective atrophy of the cerebellum in the absence of any cortical lesion 

on conventional MRI scans.  
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Clinical and neurophysiological evaluation revealed that all patients had a pure cerebellar 

motor syndrome, except for CA-3 who was bilaterally positive for the Babinski sign. A 

quantification of cerebellar motor deficits was performed using the International Cooperative 

Ataxia Rating Scale [25],  whose  global score ranges from 0 (absence of any motor deficit) 

to 100 (presence of motor deficits at the highest degree).  

Additionally, 33 healthy subjects (HS) (mean age /SD: 50,55/6,6; F/M:21/12) with no history 

of neurological or psychiatric illness were recruited as control group. A T-test comparison 

ensured that there was no significant difference in the mean age between the two groups (T=-

0.86, p=0.39).  

This research study was approved by the Ethics Committee of Santa Lucia Foundation 

according to the principles expressed in the Declaration of Helsinki. Written informed 

consent was obtained from each subject. 

Main demographic and clinical characteristics of recruited patients are summarized in Table 

1. 

 

2.2 Neuropsychological assessment  

SCA2 patients first underwent the Wechsler Adult Intelligent Scale–revised (WAIS-R) 

Intelligent Quotient (IQ) [26-28] and the Raven’47 progressive matrices (PM) test [29] to 

assess their intellectual level. Then they underwent a neuropsychological assessment 

exploring the domains of visuospatial abilities, verbal memory and executive functions. For 

each domain, details of single tests and references are summarized here: 



7 
 

- visuospatial abilities: Rey-Osterrieth Complex Figure Test (recall and copy) [30], forward 

and backword Corsi [31], and Wechsler Adult Intelligent Scale -revised block design subtest 

[26-28];  

- verbal memory: forward and backword digit span [32], Short story test (immediate recall) 

[33] and Rey’s 15 mots short term (immediate recall) [34] for short term verbal memory; 

Rey’s 15 mots for the long term verbal memory  (delayed recall) [34];   

- executive functions: Stroop Test (“time effect” and “error effect”) [30],  phonological, 

semantic and verbal fluency [35], Wisconsinn Card Sorting Test (WCST) [36],  and Tower of 

London procedure (TOL) [37], Trail Making Test B-A [38].  

 

 

 

2.3 MRI acquisition protocol  

All subjects underwent an MRI examination at 3T (Magnetom Allegra, Siemens, Erlangen, 

Germany) that included the following acquisitions: 1) dual-echo turbo spin echo [TSE] (TR = 

6190 ms, TE = 12/109 ms); 2) fast-FLAIR (TR = 8170 ms, 204TE = 96 ms, TI = 2100 ms); 

3) 3D Modified Driven  Equilibrium Fourier Transform (MDEFT) scan (TR = 1338 ms, TE = 

2.4 ms, Matrix = 256 × 224 × 176, in-plane FOV = 250 × 250 mm2, slice thickness = 1 mm). 

The TSE scans of patients, acquired as part of this research study, were reviewed by an expert 

neuroradiologist in order to characterize the brain anatomy and determine the presence of 
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macroscopic structural abnormalities. For the HS, conventional MRI scans were inspected to 

exclude the presence of any macroscopic brain abnormality. 

 

2.4 Image processing  

The cerebellum was pre-processed individually using the Spatially Unbiased Infratentorial 

Template (SUIT) toolbox [39] implemented in Statistical Parametric Mapping version 8 

[Wellcome Department of Imaging Neuroscience; SPM-8 

(http://www.fil.ion.ucl.ac.uk/spm/)]. The procedure involved: cropping and isolating the 

cerebellum from the T1 anatomical images; normalizing each cropped image into SUIT 

space; reslicing the probabilistic cerebellar atlas into individual subjects’ space using the 

deformation parameters obtained by normalization. Finally, the images were smoothed using 

a 8-mm FWHM Gaussian kernel. 

 

3. Statistical Analysis 

3.1 Neuropsychological assessment 

In order to evaluate the behavioral performance, raw scores were computed (Table 2) and 

converted to Z-scores, according to the following formula: (subject raw score – population 

mean score)/population standard deviation [SD]). 
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Published normative data were used for the following tests: Rey-Osterrieth Complex Figure 

Test, (recall and copy versions), 15 Rey’s mots short and long term, Short Story Test 

(immediate recall), Block Design Test and Trail Making Test. For the remaining tests, raw 

scores were obtained from specific control groups for each test. Subjects of each group had 

no history of neurological or psychiatric illness, and were well matched with regard to age 

and education (independent-sample t-test: p= n.s.). See Table 3 for a detailed report of 

demographic and cognitive data.  

For each cognitive function, a single Z-score was obtained by calculating the mean Z-scores 

of the tests, grouped according to the relative functional domain. Overall, the performance in 

the three functional domains listed in section 2.2 were analyzed (see Table 2).  

 

3.2 Voxel-based morphometry  

Voxel based morphometry (VBM) was used to identify differences in regional cerebellar 

volume between SCA2 patients and HS. This was achieved by performing a voxel-wise two-

sample T-test in SPM-8 and comparing the grey matter (GM) maps between patients and 

controls. Age and sex were set as variables of no interest. Results were considered significant 

at p values <0.05 after family-wise error (FWE) cluster-level correction (clusters formed with 

p< 0.005 at uncorrected level). In order to control for the effect of accompanying cortical 

atrophy in SCA2 patients, a whole brain VBM was also performed. The cerebellum was set 

as explicit exclusion mask. Sex, age and intracranial volumes were entered as covariates of 
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no interest.  Results were considered significant at p values <0.05 after FWE cluster-level 

correction (clusters formed with p< 0.001 at uncorrected level). 

 

3.3. Behavioral and motor correlation with Regional GM  

Based on VBM results, the lobular volumes of significantly reduced GM areas in patients 

were extracted using FSL command line from the FMRIB software library (FSL, 

www.fmrib.ox.ac.uk/fsl/) and Spearman’s correlations were computed for the relationship 

between such volumes, expressed in mm
3
, and neuropsychological performances of patients. 

For the purpose of these correlations, individual neuropsychological raw scores as reported in 

Table 2 were used. Additionally, the relation between GM atrophy and ICARS total motor 

scores of patients was also tested. Correlations significant at p < 0.05 were reported. 

 

 

4. Results 

4.1 Neuropsychological assessment  

Total IQ (Mean/DS= 84.5/7.7) and Raven’s PM scores (Mean/DS= 31.5/2.4) showed that 

SCA2 patients had a preserved intellectual level.  

The evaluation of cognitive profiles revealed that SCA2 patients had negative Z-scores for all 

functional domains explored. A graphical representation of patients’ performances in verbal 

memory (-0.17), visuospatial (-0.62) and executive abilities (-0.13) is reported in Figure1 

expressed in Z-scores. 

http://www.fmrib.ox.ac.uk/fsl/
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4.2 Voxel-Based Morphometry  

The between-group voxel-wise comparison of the GM maps revealed a statistically 

significant GM loss in the cerebellar cortex of SCA2 patients compared to controls. More 

specifically, a large cluster of decreased GM volume (cluster size: 68396; FWE p=0.05) 

included bilateral regions in the anterior cerebellar hemisphere (I-V) as well as in the 

posterior lobe (VI-IX) and posterior vermis (VI-IX).   

As detected by whole brain VBM analysis, only one cluster of reduced GM volume was 

found in SCA2 patients compared to controls, centered at  -15 -100 22 (left occipital pole). 

No other pattern of GM loss was detected throughout the cerebral cortex of SCA2 patients.  

Results of cerebellar VBM  are shown in Figure 2. 

 

 

 

4.3 Behavioral and motor correlation with Regional GM  

In line with VBM results, the correlations between cerebellar regions of reduced GM 

volumes and neuropsychological raw scores of patients were analyzed. Correlations between 

GM volumes and cognitive scores were performed separately for left and right lobules, thus 

accounting for cerebellar functional lateralization. As shown by the Spearman’s correlation 



12 
 

coefficients, significant correlations were found between GM volumes in different cerebellar 

regions and specific cognitive subtests within the distinct functional domains without a clear 

lateralization. Within the visuospatial domains, significant GM loss in posterior lobules VIIB, 

VIIIA, Crus I and Crus II, as well as anterior lobules V and vermis, was found to correlate 

with performances at visuospatial tasks (Rey-Osterrieth Complex Figure, memory and copy, 

Block Design).  

Similarly, within the verbal memory domain, significant GM loss in posterior lobules VI, IX, 

and Crus I was found to correlate with performances at short and long term verbal memory 

tasks (immediate and delayed recall of Rey’s 15 mots, Digit Span Forward and Backward), 

with an additional correlation between Digit Span Backward and significant GM loss in 

anterior lobules V.  Finally, within the executive domains, significant GM loss in lobules VI, 

Crus I, Crus II, and IX was found to correlate with performances at executive tasks 

(Wisconsin Card Sorting Test, Tower of London, Stroop task, Phonological Fluency) with an 

additional correlation between Tower of London scores and anterior lobule V.  A 

comprehensive report of results and statistics is summarized in Table 4.  

With regards to cerebellar motor impairment, a significant negative correlation was found 

between the ICARS total score and GM volumes in the left hemispheric lobules I-IV(R: -

0.83; p:0.00)  and V( R=:0.75; p:0.01).  
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Discussion 

In the present study, we quantitatively mapped the pattern of cerebellar atrophy in SCA2 

patients and assessed its relationship with cognitive profiles. Consistent with the existing 

literature, SCA2 patients reported negative Z-scores in executive, visuospatial and memory 

domains [10, 20, 22].  

As shown by VBM analysis, a specific pattern of GM reduction was found in the cerebellar 

cortex of SCA2 patients, specifically involving the anterior and posterior hemispheric 

lobules, and the posterior regions of the vermis.  

In line with the well-known cerebellar functional topography [40], significant associations 

were found between atrophy in the posterior lobules of the cerebellar hemisphere and vermis, 

and patients’ performances on cognitive tasks with no significant motor component. 

Interestingly, in our group of patients, a negative correlation emerged also between the 

severity of cerebellar motor symptoms (as measured by ICARS total score) and GM volumes 

in the anterior cerebellar lobules.  

The functional topography of the cerebellum has been well established by both functional and 

structural studies in healthy and clinical populations [21, 24, 40-45]. A detailed mapping of 

motor and cognitive dysfunctions linking to specific cerebellar lobules has been proposed in a 

large cohort of patients with mixed subtypes of cerebellar neurodegenerative disease [45] 

using the automated cerebellar lobular segmentation proposed by Yang and colleagues (2016) 

[46].  
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Overall, the findings reported by Kansal and colleagues (2017) [45] are consistent with our 

current results indicating positive associations between anterior lobe and motor and mixed 

tasks, and posterior lobe with cognitive tasks involving working memory, phonological 

fluency and immediate and delayed recall. However, due to the heterogeneity of the sample, 

the study by Kansal and colleagues (2017) [45] did not allow to characterize the specific 

features of a particular cerebellar disease [45] and did not account for the functional 

lateralization [47], since that left and right-sided values were combined.   

The present study represents a further step forward in the effort to overcome these limitations 

and going beyond the well-established anterior-posterior distinction of cerebellar functions, 

characterizing the structural correlates of impaired cognitive performances associated to a 

particular cerebellar disease, such as SCA2. 

Cognitive deficits have been reported in SCA2 patients [9-10,22] as a result of the disruption 

of a cerebro-cerebellar circuitry [18] and as influenced by the specific site of cerebellar 

degeneration [20]. To our knowledge this is the first study that attempts to investigate the 

relationship between SCA2 cerebellar degeneration (measured by regional atrophy) and 

functional outcomes of the patients.  

In our cohort of SCA2 patients, performances at executive tasks variably correlated with GM 

loss in posterior cerebellar lobules as well as anterior cerebellar lobules in the case of tasks 

that engaged planning and motor components (i.e ToL, see Table 4 for details). In line with 

the proposed link between structural and functional connectivity [48], a functional 

disconnection has been previously reported in SCA2 patients between posterior cerebellar 
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lobules and cortical prefrontal regions which have been implicated in a wide range of 

executive tasks with both verbal and visuospatial stimuli [21].  

It is worth noting that phonological fluency scores correlated with reduced cerebellar GM 

volume while no correlation was found with semantic fluency. This fits with the frequent 

observation of cerebellar patients being selectively impaired in phonological fluency, a 

function that requires an unusual word searching strategy (compared to semantic strategy) 

thus reflecting the role of the cerebellum in strategy formation [49].  

Within the verbal and visuospatial domains, working memory measures were variably 

correlated with hemispheric and vermal regions in the posterior cerebellum, either including 

cerebellar Crus I and more sensorimotor lobules such as lobule VIII [50]. Overall, the lobular 

pattern of correlations largely overlaps with the initial description of SS, suggesting that in 

cerebellar patients cognitive impairment is associated with posterior damage of the 

cerebellum, specifically Crus I and Crus II [2], and is consistent with neuroimaging 

functional studies [51], showing that sensorimotor lobule VIII is also engaged during 

working memory tasks.  

Although the majority of cerebello-cerebral connections are contralateral [52-54], 

correlations between cerebellar volumes and visuospatial and verbal scores did not show 

specific pattern of lateralization.  

In line with the functional lateralization of the cerebellum [40, 55] this could be somewhat 

unexpected. However, it has to be considered that anatomical and functional studies have 

shown connections between cerebellum and cerebral cortex to be also ipsilateral [56-57], 
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passing through the Superior Cerebellar Peduncle and reaching the ipsilateral thalamus [58]. 

Consistenly, evidence that   patients with left or right cerebellar damage presented with a 

similar cognitive profile has been previously reported [4].  

Another issue that deserves to be discussed is the negative correlation emerging between 

spatial span scores and right cerebellar lobule VIIIB, suggesting that lower GM volumes are 

associated with better spatial span scores. Although these findings seem to be counter-

intuitive, in line with Stoodley and colleagues (2016) [44] they further emphasize the idea 

that, in the case of the cerebellum, the specific lesion location rather than size may be an 

important factor for the clinical outcome [44]. Although the cerebellar focal lesion may 

represent a more interesting model to map the lobular functional organization of the 

cerebellum for motor versus cognitive functions, here we provided evidence of a lobular 

functional subdivision in a diffuse neurodegenerative disorder of the cerebellum by showing 

that a specific pattern of cerebellar atrophy is associated to SCA2 with a clear anterior-

posterior distinction.  As showed by the whole brain VBM, SCA2 patients did not present 

with a significant pattern of cortical atrophy. Indeed, no significant GM reductions were 

detected throughout the cerebral cortex of SCA2 patients, except for only one cluster centered 

in the left occipital pole. Thus, it could be reasonable to think that this finding is not specific 

to SCA2 and may be also  due to the close anatomical proximity between the cerebellum and 

the occipital pole. In line with the evidence that SCA2 patients in the present study did not 

have significant cortical GM changes, we assume that the cerebellar atrophy  may have 

altered functional connectivity patterns within relevant cerebello-cerebral networks and 
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reduced  the cerebellar modulation of cerebral cortex regions thus resulting in functional 

depression of such regions and accounting for the various clinical dysfunctions typically 

observed [5,21].  Specifically, in line with Fancellu and colleagues (2013) [9], a functional 

disconnection of the fronto-ponto-cerebello-thalamo-cortical pathway may result in a fronto-

parietal dysfunction and be responsible for the pattern of executive, visuospatial and verbal 

impairment observed in SCA2 patients.  

The main limitation of the study is the small sample size. However, it has to be considered 

that the strict inclusion criteria (see section 2.1 Participants) clearly affects the inclusion rate. 

In spite of this, the statistically high significance of our data and the consistence with the 

existent literature strongly reinforce the relevance of the results. 

Overall, our data suggest that MRI indices of atrophy, in relation to cognitive performances 

in patients with cerebellar degeneration, might differentiate between different SCA or 

cerebellar atrophy subtypes. In light of the important clinical implication for patients, this 

issue merits to be deeply investigated in the future by comparing larger populations affected 

by cerebellar pathology of different etiology.  
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Figure Captions 

Figure 1. Neuropsychological assessment. Mean and Standard Error of the cognitive 

functions in the SCA 2 group expressed in Z-scores. The neuropsychological functions are 

grouped according to the cognitive domains assessed. 

 

 

 

 

Figure 2. Between groups voxel-based  comparison  of cerebellar GM density.  

Cerebellar regions showing patterns of significantly reduced GM in SCA2 compared to TDA 

are reported and superimposed on the Spatially Unbiased Infratentorial Template (SUIT) 

(Diedrichsen et al., 2009).  Statistical significance was found at cluster level (FWE= 0,05; 

cluster size: 68396) with peak voxel centered in the right lobules V-VI (x=24  y=-47  z=25), 

left I-IV (x=-9  y=-35  z=-19),  and Left Crus II (x=-14  y=-89  z=-29). Regions of reduced 

GM volumes involved both anterior (red) and posterior (blue) lobules of the cerebellar 

hemispheres (A) as well as posterior regions of the vermis (green) (B).  
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