University of Sussex
Genome Res.-2016-Krell-331-41.pdf (1.4 MB)

TP53 regulates miRNA association with AGO2 to remodel the miRNA-mRNA interaction network

Download (1.4 MB)
journal contribution
posted on 2023-06-09, 13:46 authored by Jonathan Krell, Justin Stebbing, Claudia Carissimi, Aleksandra F Dabrowska, Alexander de Giorgio, Adam E Frampton, Victoria Harding, Valerio Fulci, Giuseppe Macino, Teresa Colombo, Leandro CastellanoLeandro Castellano
DNA damage activates TP53-regulated surveillance mechanisms that are crucial in suppressing tumorigenesis. TP53 orchestrates these responses directly by transcriptionally modulating genes, including microRNAs (miRNAs), and by regulating miRNA biogenesis through interacting with the DROSHA complex. However, whether the association between miRNAs and AGO2 is regulated following DNA damage is not yet known. Here, we show that, following DNA damage, TP53 interacts with AGO2 to induce or reduce AGO2's association of a subset of miRNAs, including multiple let-7 family members. Furthermore, we show that specific mutations in TP53 decrease rather than increase the association of let-7 family miRNAs, reducing their activity without preventing TP53 from interacting with AGO2. This is consistent with the oncogenic properties of these mutants. Using AGO2 RIP-seq and PAR-CLIP-seq, we show that the DNA damage–induced increase in binding of let-7 family members to the RISC complex is functional. We unambiguously determine the global miRNA–mRNA interaction networks involved in the DNA damage response, validating them through the identification of miRNA-target chimeras formed by endogenous ligation reactions. We find that the target complementary region of the let-7 seed tends to have highly fixed positions and more variable ones. Additionally, we observe that miRNAs, whose cellular abundance or differential association with AGO2 is regulated by TP53, are involved in an intricate network of regulatory feedback and feedforward circuits. TP53-mediated regulation of AGO2–miRNA interaction represents a new mechanism of miRNA regulation in carcinogenesis.


Publication status

  • Published

File Version

  • Published version


Genome Research




Cold Spring Harbor Laboratory Press





Page range


Department affiliated with

  • Biochemistry Publications

Full text available

  • Yes

Peer reviewed?

  • Yes

Legacy Posted Date


First Open Access (FOA) Date


First Compliant Deposit (FCD) Date


Usage metrics

    University of Sussex (Publications)


    No categories selected