University of Sussex
Browse
- No file added yet -

The matter power spectrum in redshift space using effective field theory

Download (2.03 MB)
journal contribution
posted on 2023-06-09, 09:03 authored by Lucía Fonseca de la Bella, Donough Regan, David SeeryDavid Seery, Shaun Hotchkiss
The use of Eulerian 'standard perturbation theory' to describe mass assembly in the early universe has traditionally been limited to modes with k <= 0.1 h/Mpc at z=0. At larger k the SPT power spectrum deviates from measurements made using N-body simulations. Recently, there has been progress in extending the reach of perturbation theory to larger k using ideas borrowed from effective field theory. We revisit the computation of the redshift-space matter power spectrum within this framework, including for the first time for the full one-loop time dependence. We use a resummation scheme proposed by Vlah et al. to account for damping of the baryonic acoustic oscillations due to large-scale random motions and show that this has a significant effect on the multipole power spectra. We renormalize by comparison to a suite of custom N-body simulations matching the MultiDark MDR1 cosmology. At z=0 and for scales k <~ 0.4 h/Mpc we find that the EFT furnishes a description of the real-space power spectrum up to ~ 2%, for the ell=0 mode up to ~ 5% and for the ell = 2, 4 modes up to ~ 25%. We argue that, in the MDR1 cosmology, positivity of the ell = 0 mode gives a firm upper limit of k ~ 0.74 h/Mpc for the validity of the one-loop EFT prediction in redshift space using only the lowest-order counterterm. We show that replacing the one-loop growth factors by their Einstein-de Sitter counterparts is a good approximation for the ell = 0 mode, but can induce deviations as large as 2% for the ell = 2, 4 modes. An accompanying software bundle, distributed under open source licenses, includes Mathematica notebooks describing the calculation, together with parallel pipelines capable of computing both the necessary one-loop SPT integrals and the effective field theory counterterms.

Funding

Precisions tests of the inflationary scenario; G0918; EUROPEAN UNION; 308082

History

Publication status

  • Published

File Version

  • Accepted version

Journal

Journal of Cosmology and Astroparticle Physics

ISSN

1475-7516

Publisher

IOP Publishing

Issue

11

Volume

2017

Page range

039 1-71

Department affiliated with

  • Physics and Astronomy Publications

Research groups affiliated with

  • Astronomy Centre Publications

Full text available

  • Yes

Peer reviewed?

  • Yes

Legacy Posted Date

2017-11-27

First Open Access (FOA) Date

2018-11-23

First Compliant Deposit (FCD) Date

2017-11-27

Usage metrics

    University of Sussex (Publications)

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC