University of Sussex

File(s) not publicly available

The role of angular momentum in collision-induced vibration-rotation relaxation in polyatomics

journal contribution
posted on 2023-06-07, 22:48 authored by Anthony J McCaffery, Mark Osborne, Richard J Marsh, Warren D Lawrance, Eric R Waclawik
Vibrational relaxation of the 6(1) level of S-1(B-1(2u)) benzene is analyzed using the angular momentum model of inelastic processes. Momentum-(rotational) angular momentum diagrams illustrate energetic and angular momentum constraints on the disposal of released energy and the effect of collision partner on resultant benzene rotational excitation. A kinematic "equivalent rotor" model is introduced that allows quantitative prediction of rotational distributions from inelastic collisions in polyatomic molecules. The method was tested by predicting K-state distributions in glyoxal-Ne as well as J-state distributions in rotationally inelastic acetylene-He collisions before being used to predict J and K distributions from vibrational relaxation of 6(1) benzene by H-2, D-2, and CH4. Diagrammatic methods and calculations illustrate changes resulting from simultaneous collision partner excitation, a particularly effective mechanism in p-H-2 where some 70% of the available 6(1)-->0(0) energy may be disposed into 0-->2 rotation. These results support the explanation for branching ratios in 6(1)-->0(0) relaxation given by Waclawik and Lawrance and the absence of this pathway for monatomic partners. Collision-induced vibrational relaxation in molecules represents competition between the magnitude of the energy gap of a potential transition and the ability of the colliding species to generate the angular momentum (rotational and orbital) needed for the transition to proceed. Transition probability falls rapidly as DeltaJ increases and for a given molecule-collision partner pair will provide a limit to the gap that may be bridged. Energy constraints increase as collision partner mass increases, an effect that is amplified when J(i)>0. Large energy gaps are most effectively bridged using light collision partners. For efficient vibrational relaxation in polyatomics an additional requirement is that the molecular motion of the mode must be capable of generating molecular rotation on contact with the collision partner in order to meet the angular momentum requirements. We postulate that this may account for some of the striking propensities that characterize polyatomic energy transfer. (C) 2004 American Institute of Physics.


Publication status

  • Published


Journal of Chemical Physics







Page range




Department affiliated with

  • Chemistry Publications


First description of collision-induced vibration-rotation relaxation in polyatomic molecules using the kinematics of a single equivalent rotor arm for each axis. Theory of equivalent rotors was developed by MAO from work on diatomic collisions.

Full text available

  • No

Peer reviewed?

  • Yes

Legacy Posted Date


Usage metrics

    University of Sussex (Publications)


    No categories selected