University of Sussex
Browse
- No file added yet -

A role for introspection in AI research

Download (4.7 MB)
thesis
posted on 2023-06-09, 04:40 authored by Samuel Freed
The main thesis is that introspection is recommended for the development of anthropic AI. Human-like AI, distinct from rational AI, would suit robots for care for the elderly and for other tasks that require interaction with naïve humans. “Anthropic AI” is a sub-type of human-like AI, aiming for the pre-cultured, universal intelligence that is available to healthy humans regardless of time and civilisation. This is contrasted with western, modern, well-trained and adult intelligence that is often the focus of AI. Anthropic AI would pick up local cultures and habits, ignoring optimality. Introspection is recommended for the AI developer, as a source of ideas for designing an artificial mind, in the context of technology rather than science. Existing notions of introspection are analysed, and the aspiration for “clean” or “good” introspection is exposed as a mirage. Nonetheless, introspection is shown to be a legitimate source of ideas for AI using considerations of the contexts of discovery vs. justification. Moreover, introspection is shown to be a positively plausible basis for ideas for AI since if a teacher uses introspection to extract mental skills from themselves to transmit them to a student, an AI developer can also use introspection to uncover the human skills that they want to transfer to a computer. Methods and pitfalls of this approach are detailed, including the common error of polluting one's introspection with highly-educated notions such as mathematical methods. Examples are coded and run, showing promising learning behaviour. This is interpreted as a compromise between Classic AI and Dreyfus's tradition. So far AI practitioners have largely ignored the subjective, while the Phenomenologists have not written code – this thesis bridges that gap. One of the examples is shown to have Gadamerian characteristics, as recommended by (Winograd & Flores, 1986). This serves also as a response to Dreyfus's more recent publications critiquing AI (Dreyfus, 2007, 2012).

History

File Version

  • Published version

Pages

249.0

Department affiliated with

  • Informatics Theses

Qualification level

  • doctoral

Qualification name

  • phd

Language

  • eng

Institution

University of Sussex

Full text available

  • Yes

Legacy Posted Date

2017-01-12

Usage metrics

    University of Sussex (Theses)

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC