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Drug target development and analysis of genome stability in cancer 

cells lacking the BAF180 subunit of the PBAF remodelling complex 

SUMMARY 

In eukaryotes, DNA is packaged into a highly condensed structure, known as chromatin. 

Several complexes facilitate the remodelling of chromatin, for example, INO80, NURD 

and SWI/SNF, which attach to tightly bound chromatin, allowing its relaxation by 

nucleosome sliding, unwrapping, histone eviction and exchange of histone variants. The 

activities carried out by these chromatin remodelling complexes are thought to be 

integral in the prevention of cancer cell formation. Recently, whole exome sequencing 

has identified frequent mutations in subunits of the SWI/SNF chromatin remodelling 

complex, at a frequency that rivals p53. Strikingly, the BAF180 (PBRM1) subunit of the 

PBAF variant of SWI/SNF remodelers is mutated in over 40% of clear cell renal cell 

carcinoma (ccRCC), a cancer with typically poor prognosis and limited treatment options 

to date. 

This work embodies four main results chapters that aim to identify novel synthetic lethal 

gene candidates with BAF180, with a view to targeting these gene candidates with 

chemotherapeutic drugs. In the first chapter we work through a short list of hypothesis 

driven potential synthetic lethal candidates and identify the genes KAT2A, RNF4, EZH2 

and BAP1 as potential synthetic lethal partners for BAF180. Chapter two describes the 

development of both stable shRNA and CRISPR/Cas9-derived BAF180-deficient cell lines 

that were used both in this study as well as for other ongoing projects. The third chapter 

outlines the set-up of a high-throughput synthetic lethal siRNA (HTS) screen and 

determines potential synthetic lethal interactions identified here. The final chapter 

examines various PARP genes, identified as hits in HTS screening, to further explore the 

interaction between PARP and BAF180. We find that PARP1 and PARP3 are synthetic 

lethal with BAF180 and treatment with various siRNA’s and PARP inhibitors in BAF180 

deficient mammalian cells results in specific cell death. A phenotype that could be 

clinically exploited for treatment of ccRCC.  
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1 Introduction 

 

1.1. Genome Damage and Stability 

 

The maintenance of genome stability by the correct replication of DNA and repair 

of damage is vital for optimal fitness in all living organisms. Genomes hold all the 

biological information needed for life and are made of DNA (Deoxyribonucleic 

Acid). When unwanted alterations are made to the DNA sequence it is possible to 

develop cancer, broadly described as a group of diseases that are capable of 

abnormal cell growth. Hanahan and Weinberg described, in 2000 and again in 

2011, the hallmarks of cancer, encompassing the capabilities acquired by 

tumours for sustained growth (Hanahan and Weinberg 2000, Hanahan and 

Weinberg 2011). These included, but aren’t limited to evading growth 

suppressors, inducing angiogenesis, avoiding immune destruction and most 

importantly for the discussion in this thesis, genome instability and mutation 

(Hanahan and Weinberg 2011). Genome maintenance systems within cells have 

a vital role in resolving defects or damage acquired on DNA to ensure 

spontaneous rates of mutation are low during each cell generation (Hanahan and 

Weinberg 2011). This DNA-maintenance machinery is diverse and components 

of this machinery are often referred to as “caretakers” of the genome, which have 

tumour suppressing activity (Kinzler and Vogelstein 1997). The tumour 

suppressor TP53, has a key role in the surveillance of genetic integrity and is 

known as the “guardian of the genome” (Lane 1992). It is when genome 

maintenance by components of the machinery like this fail, for any number of 

reasons, that leads to the onset and progression of cancer. Currently the leading 

treatments for cancer include resection by surgery, which is an invasive process, 

as well as radiation and chemotherapy, which work by severely damaging DNA 

to trigger cancer cell death, none of which are entirely successful and can be 

damaging by themselves alone, thus leaving scope for development of new 

treatments. The research field of genome stability and DNA repair is important 

for the advancement of cancer treatment. Study in this field generates vital 

knowledge about the biology of cancer and how these diseases develop over time, 
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as well as studying how they respond to current treatments and ultimately aims 

to improve and identify new therapies for the treatment of cancer. This first 

section of this introduction chapter will aim to introduce DNA damage and the 

pathways that are involved in the repair of this damage.  

 

1.1.1. Deoxyribonucleic Acid 

 

DNA was first discovered in the late 1860’s by a Swiss biochemist, Johann 

Friedrich Miescher, defining what he found as being acidic, rich in phosphorous 

and having the potential to have large individual molecules. It wasn’t until much 

later, in 1953 when James Watson and Francis Crick as well as other research 

teams headed by Maurice Wilkins and Rosalind Franklin, made their seminal 

discovery about the structure of DNA (Franklin and Gosling 1953, Watson and 

Crick 1953, Wilkins, Stokes et al. 1953). Rosalind Franklin’s data, based on X-ray 

diffraction studies, supported the theory of a DNA double helix, but it was in fact 

Watson and Crick who first solved the double helix structure of DNA, a discovery 

which has come to be known as the single most important biological 

breakthrough of the twentieth century.  

The DNA double helix exists as two hydrogen-bonded DNA polymers that run 

alongside each other in opposite directions, therefore making anti-parallel 

strands (Watson and Crick 1953). A pentose sugar-phosphate backbone is the 

supporting scaffolding of these polymers, joining together four chemically 

distinct nitrogenous bases cytosine (2’-deoxycytidine 5’-triphosphate, dCTP), 

thymine (2’-deoxythymidine 5’-triphosphate, dTTP), which are single ring 

pyrimidines and adenine (2’-deoxyadenosine 5’-triphosphate, dATP) or guanine 

(2’-deoxyguanosine 5’-triphosphate, dGTP), which are double-ring purines 

(Figure 1.1a). 2’-Deoxyribose is a pentose sugar that consists of five carbons 

named 1’,2’ (one prime, two prime) etc. Phosphate groups are composed of one, 

two or three linked phosphate units, designated α, β and γ. Nucleotides, the single 

unit of the DNA polymer, are formed when a nitrogenous base is attached to the 

first carbon of the 2’-deoxyribose pentose sugar and when the α-phosphate unit 
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joins to the 5’-carbon of the sugar (Figure 1.1b). Polynucleotides are formed when 

individual nucleotides are joined by phosphodiester bonds (Figure 1.2) between 

their 5’ and 3’ carbons. This type of bonding gives the polymer a chemical 

direction, denoted as 5’→3’, in which all natural DNA polymerase enzymes follow 

during DNA replication. In eukaryotic cells, DNA is tightly packaged with proteins 

in a structure called chromatin, which will be fully introduced in section 1.2.  
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Figure 1.1. Nucleotide Structure (A) The four nitrogenous bases, the 
pyrimidines cytosine and thymine and the purines guanine and adenine. (B) 

Composition of a typical deoxyribonucleotide found in DNA. 

(A) 

(B) 
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1.1.2. DNA Damage and Repair Pathways 

 

Damaging agents that lead to the generation of cytotoxic or mutagenic DNA 

adducts via both endogenous and exogenous sources threaten the genomic 

integrity of all living organisms. If DNA is damaged in this way, it is imperative 

that it be effectively and swiftly repaired for proper DNA replication and proper 

chromosome segregation to preserve chromosomal integrity. Replication of 

damaged DNA can lead to mutations that could become tumorigenic or cause 

lesions that result in cellular senescence or cell death via the block of replication 

or transcription. Per cell cycle it has been estimated that a eukaryotic cell can 

come under assault from up to 10,000 single-stranded DNA lesions caused by 

endogenous sources of damage that they are forced to repair, a number that is 

increased by lesions caused by exposure to environmental toxins, ultraviolet (UV) 

damage and other radiations.  

To add to the complication of trying to overcome thousands of DNA lesions at any 

one time, these lesions occur within and must be detected and repaired in the 

context of chromatin, which is a dynamic and highly complex structure. To deal 

with the day to day onslaught of DNA lesions a complex DNA damage response 

has evolved within cells that encompasses several different DNA repair pathways, 

which include nucleotide excision repair (NER), base excision repair (BER), 

mismatch repair (MMR), non-homologous end-joining (NHEJ) and homologous 

recombination (HR), which will be further described in the text below. 

 

1.1.2.1. Reversal Repair 

 

In addition to the repair pathways named above, there are also mechanisms that 

have evolved to initiate repair by directly reversing the damage through direct 

removal, usually carried out by a single repair protein without needing to alter 

the physical structure of DNA. Only a small set of DNA lesions benefit from this 

direct DNA repair, including some UV induced damage and some forms of 

alkylated bases. The process is thought to be quite simple and essentially error-



7 
 

free and can be divided in to three major mechanisms. The first mechanism by 

which UV light-induced photolesions are reversed by photolyases, the second 

where O-alkylated DNA damage is reversed by O6-alkylguanine-DNA 

alkyltransferases (AGTs) and the third where the AlkB family dioxygenases 

reverse N-alkylated base adducts (Yi and He 2013). These mechanisms all work 

to catalyse the reversal of damage done to the DNA with a view to restoring the 

DNA to its original state.  

 

1.1.2.2. Nucleotide Excision Repair 

 

Bulky DNA lesions in mammalian cells, for example, those that are caused by UV 

induced cyclobutane pyrimidine dimers (CPDs) and 6-4 photoproducts, 

environmental mutagens and some cancer chemotherapeutic agents such as 

cisplatin, are mainly subjected to repair by the nucleotide excision repair (NER) 

pathway (Scharer 2013). NER can be divided in to two sub-pathways; global 

genome NER (GG-NER) or transcription-coupled NER (TC-NER) (Gillet and 

Scharer 2006, Hanawalt and Spivak 2008). GG-NER can occur at both 

transcriptionally active and inactive regions of DNA, opposed to TC-NER, which 

is responsible for repair at transcriptionally active regions of DNA only. The study 

of rare autosomal recessive disorders, such as Xeroderma pigmentosa (XP), 

which is associated with patients being extremely prone to developing skin-

cancer, and Cockayne syndrome (CS), which is associated with microcephaly, 

helped to identify and characterise the GG-NER and TC-NER pathways (Diderich, 

Alanazi et al. 2011). Both pathways require the core NER factors (Figure 1.3) for 

the process of excision and thus repair. Specifically, GG-NER is initiated by XPC-

RAD23B, whereas TC-NER is initiated by RNA polymerase stalled at a lesion, 

which uses the TC-NER specific factors CSA, CSB and XAB2 (Scharer 2013). A 

detailed overview of the model for the core NER reaction is described in Figure 

1.3.  
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Figure 1.3. Model for the core NER reaction, taken from (Scharer 2013). 
(A) Bulky DNA lesions are introduced into DNA by a damaging agent. (B) In 

GG-NER lesions are detected by XPC-RAD23B and binds the undamaged 
strand of DNA opposite the lesion. (C) TFIIH interacts with XPC-RAD23B. The 

XPB subunit of TFIIH opens DNA allowing XPD to move along DNA until it 
identifies/verifies the lesion. (D) XPA, RPA and XPG are recruited to the 
complex when XPD has stopped at the specific lesion. (E) ERCC1-XPF is 

recruited by XPA and initiates an incision 5’ to the lesion. (F) Pol δ, Pol κ, Pol ε 
and their associated factors initiate repair, subsequently allowing the 3’ 

incision by XPG. (G) DNAligaseIIIα/XRCC1 or DNA ligase I then complete the 
repair process and seals the nicked DNA. 
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As with all DNA repair mechanisms, NER is carried out in the context of chromatin, 

which requires the coordination between NER factors and chromatin modifying 

enzymes to allow the chromatin to be accessible for repair. Multiple chromatin 

remodelers have been implicated with NER, with varied roles and level of 

contribution. The complex UV-DDB, which is composed of a damage binding 

protein DDB2 and an adaptor protein DDB1, and also forms a ubiquitin ligase 

complex with CUL4A and ROC1 (Groisman, Polanowska et al. 2003), is thought to 

have an influential role in NER. At the sites of UV induced lesions, DDB2 targets 

the XPC-RAD23 complex to facilitate early NER steps (Wakasugi, Kawashima et 

al. 2002, Fitch, Nakajima et al. 2003). After UV damage the UV-DDB/CUL4A/ROC1 

complex localises at chromatin and destabilises the nucleosome structure 

through the ubiquitination of histones H2A, H3 and H4 (Bergink, Salomons et al. 

2006, Kapetanaki, Guerrero-Santoro et al. 2006). XPC and DDB2 are also 

ubiquitinated by this complex, resulting in the degradation of DDB2 and the 

stabilisation of XPC to DNA (Sugasawa, Okuda et al. 2005, Nishi, Alekseev et al. 

2009). The localisation of XPC to damaged sites in chromatin where NER takes 

place is thought to be facilitated by this ubiquitination (Fei, Kaczmarek et al. 

2011).  

DDB2 can also mediate chromatin modification by aiding PARP-mediated 

polyribosylation and recruitment of ALC1, an enzyme part of the SNF2/SWI2 

family of chromatin remodelers (Pines, Vrouwe et al. 2012). 

Poly(ADP)ribosylation (which will be introduced fully in section 1.7) of DDB2 

prevents it from exposure to ubiquitination and degradation and this is thought 

to provide enough time to aid chromatin decondensation (Pines, Vrouwe et al. 

2012). Post-translational modifications, such as this, stabilise DDB2 and 

therefore control its activity as well as the time spent on chromatin damaged by 

UV irradiation. 

Other chromatin remodelers have been implicated in NER, for example the 

SWI/SNF subunits BRG1 and SNF5 (which will be introduced in section 1.4), 

which are recruited to NER complexes in an XPC-dependent manner (Ray, Mir et 

al. 2009, Zhao, Wang et al. 2009). These subunits are presumed to work 

downstream of the initial recognition of DNA damage and are thought to 

complete the NER process by aiding the decompaction of chromatin (Scharer 
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2013). Following NER, the repaired DNA must be reassembled in to chromatin. 

The histone chaperone CAF-1 (chromatin assembly factor) allows this chromatin 

reassembly to occur (Scharer 2013).  
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1.1.2.3. Base Excision Repair 

 

The base excision repair (BER) pathway repairs spontaneous DNA damage 

caused by oxidation, deamination and alkylation that must be repaired, but is not 

significant enough to impede the helical structure of DNA (Krokan and Bjoras 

2013). A choice of several mammalian DNA glycosylases initiates BER, which then 

allows for the removal and replacement of a damaged base. Once removed an 

abasic site is processed by short-patch repair, which is the main type of BER, or 

by long-patch repair (Figure 1.4). Both of which use multiple different proteins 

to facilitate the resultant repair. The process of these types of repair and the 

choice between them have been extensively reviewed by Kim and Wilson, Krokan 

and Bjoras and others (Kim and Wilson 2012, Krokan and Bjoras 2013).  

An understanding of the involvement of chromatin remodelling complexes in 

different DNA repair pathways is emerging. It has been suggested that chromatin 

remodelling is important for several DNA repair mechanisms, including BER. The 

SWI/SNF remodelling complex was found to facilitate the processing of induced 

8-oxoG lesions by OGG1 and APE1 (Menoni, Gasparutto et al. 2007). 

BER can occur in the nuclei as well as the mitochondria of a cell and is known to 

protect against cancer, aging and neurodegeneration (Krokan and Bjoras 2013). 

BER has been linked to the cellular response to chemotherapeutic agents and 

radiotherapy and it is thought that activation of BER enzymes can lead to 

resistance to DNA-damaging agents (Kim and Wilson 2012). Introduction of BER 

inhibitors to the clinic could work to overcome resistance to chemotherapeutic 

drugs, by re-sensitising the cancer cells to the effects of these drugs (Kim and 

Wilson 2012). 
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Figure 1.4. The base excision repair pathway. BER can occur via Short-
Patch BER or Long-Patch BER. 
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1.1.2.4. Mismatch Repair 

 

During DNA replication, errors can occur that lead to incorrectly incorporated 

bases, strand misalignments and small loops of extrahelical nucleotides that form 

as a result of slippage. These errors are dealt with by the mismatch repair (MMR) 

system, which removes them by excising the piece of nascent DNA with the mis-

pair and facilitating its error-free re-synthesis (Jiricny 2013). Mismatches can 

only be recognised while two strands of DNA are annealed together, so repair 

must happen quickly. If two strands of DNA with a mismatch separate, the 

‘damaged’ DNA will no longer be recognisable by MMR and the strands will 

continue through to replication, resulting in 50% of the progeny DNA containing 

a mutation (Jiricny 2013). The MMR system is thought to be integral for genomic 

integrity, errors here can lead to genomic instability and the development of 

cancer. Cancers that arise because of a malfunction in MMR include hereditary 

nonpolyposis colon cancer (HNPCC), also known as Lynch syndrome (reviewed 

in (Lynch, Lynch et al. 2009)). The defect in MMR is characterised by 

microsatellite instability (MSI), brought about by unrepaired insertion/deletion 

loops (IDL’s) within repeated sequences of DNA (microsatellites) (Jiricny 2013). 

This phenotype of microsatellite instability has been useful as a diagnostic tool 

for characterising the status of MMR tumours (Hampel, Frankel et al. 2005).  

In mammals, MMR is regulated by the MutS heterodimers, MutSα and MutSβ, as 

well as the MutL heterodimers, MutLα, MutLβ and MutLγ. Distortions or 

mismatches that occur during replication are recognised and bound to by the 

MutS heterodimer, subsequently initiating the recruitment of MutL heterodimers 

to the site of the mismatch (Drotschmann, Yang et al. 2001). MutL has intrinsic 

endonuclease activity, which is activated when bound to replication factors such 

as proliferating cell nuclear antigen (PCNA) and replication factor C (RFC) 

(Kadyrov, Dzantiev et al. 2006). This activation facilitates MutL to generate a nick 

in the DNA backbone, which is used by the exonuclease Exo1 to remove the 

damaged base. Repair is completed by the replicative polymerase, DNA polδ and 

the ligase, DNA ligase I (Iyama and Wilson 2013). 
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1.1.3. Double Strand Break Repair  

 

DNA double-strand breaks (DSBs) can occur after exposure to multiple 

endogenous and exogenous agents. In eukaryotes the repair of these breaks is 

either undertaken by the homologous recombination (HR) or non-homologous 

end-joining (NHEJ) pathways (Liu and Huang 2016). It is important to repair 

DSBs as they are the most dangerous example of DNA damage. Cells that are 

unable to repair DNA DSBs can undergo apoptosis or fall in to senescence, 

alternatively, if a DSB is mis-repaired it can result in genomic instability, for 

example in the form of chromosome translocations and can ultimately lead to 

carcinogenesis (Davis and Chen 2013). Choosing between the HR and NHEJ 

pathways in response to DNA DSBs is well studied, but still not fully understood, 

here I will give a brief overview of these two complex and vital pathways. 

 

1.1.3.1. Non-Homologous End Joining 

 

Non-homologous end-joining (NHEJ) is a major DNA DSB repair pathway and is 

known to function in all cell cycle phases (Jeggo and Downs 2014). The term NHEJ 

can refer to canonical NHEJ (c-NHEJ), which is well studied and has clear roles in 

the response to DNA DSBs, or to alternative NHEJ (alt-NHEJ), which is thought to 

be a less efficient mechanism of repair. Regardless, both pathways work to re-join 

two DNA DSB ends without using extended homology as a guide, by detection, 

processing and ligation (Chiruvella, Liang et al. 2013). As well as repairing DNA 

DSBs, NHEJ is also essential for V(D)J (V (variable) D (diversity) J (joining)) 

recombination, a site specific recombination process that occurs during T- and B-

cell lymphocyte development (Malu, Malshetty et al. 2012, Davis and Chen 2013). 

On recognition of a DNA DSB, the abundant Ku heterodimer initiates NHEJ by 

binding at the break site (Cary, Peterson et al. 1997, Walker, Corpina et al. 2001). 

DNA-PKcs, the catalytic subunit of the DNA-dependent protein kinase complex, is 

recruited to the break by Ku and facilitates end-processing steps as well as 

allowing for a complex cellular response, for example cell cycle checkpoint 
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activation that helps to prevent replication errors (Gottlieb and Jackson 1993, 

Yaneva, Kowalewski et al. 1997). The Mre11-Rad50-Nbs1 (MRN) complex, which 

is known for its role in HR-mediated DSB repair and damage signalling (Tauchi, 

Kobayashi et al. 2002) is additionally recruited to work with Ku and DNA-PKcs to 

stimulate end resection and enhances DNA-PKcs autophosphorylation (Zhou and 

Paull 2013). When ends require processing (~10-15% of DSBs in G2), the end 

processing factor Artemis is bound to DNA-PKcs and generates reconcilable DNA 

ends, via its exonuclease and endonuclease activity, that can be ligated by the 

XRCC4-DNALigaseIV-XLF ligation complex (Figure 1.5) (Grawunder, Wilm et al. 

1997, Ma, Pannicke et al. 2002, Goodarzi, Yu et al. 2006). Although there are three 

components to the ligation complex, only XRCC4 directly interacts with DNA 

ligase IV (Critchlow, Bowater et al. 1997). DNA ligase IV is the enzyme required 

for ligation of the repaired ends and its activity is dependent on XRCC4 for 

stabilisation (Jeggo and Downs 2014). XRCC4 interacts with XLF for the 

alignment of DNA ends (Ahnesorg, Smith et al. 2006, Tsai, Kim et al. 2007, Andres, 

Vergnes et al. 2012) and more recently it has been suggested that the two could 

form heterofilament bundles that surround DNA in a sheath (Ropars, Drevet et al. 

2011, Wu, Ochi et al. 2011, Andres, Vergnes et al. 2012, Mahaney, Hammel et al. 

2013, Brouwer, Sitters et al. 2016). It has been postulated that the potential 

flexibility of these XRCC4/XLF heterofilaments could either wrap around 

chromatin-bound DNA or that it provides stabilisation to the DNA strands after 

nucleosome disassembly (Jeggo and Downs 2014). Cells deficient in NHEJ 

proteins, such as those described above, are found to present with various 

phenotypes, including radio-sensitivity (Goodarzi and Jeggo 2013). 

If a DNA DSB is not repaired by NHEJ in G2, then DNA resection promotes repair 

by homologous recombination (HR) (Goodarzi and Jeggo 2013).  
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Figure 1.5. The non-homologous end-joining pathway. The Ku70/Ku80 
heterodimer binds DNA double strand breaks. DNA-PKcs initiate the 

recruitment of end processing factors, such as Artemis that allow the XRCC4-
LigaseIV-XLF ligation complex to complete the DNA repair Adapted from 

(Davis and Chen 2013). 
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1.1.3.2. Homologous Recombination 

 

The repair of DNA double strand breaks can also be carried out by homologous 

recombination (HR). This process uses the intact sister chromatid as a template 

for repair and is thought to be relatively error-free because it is able to use this 

DNA as a template. HR takes place during the S and G2 stages of the cell cycle, this 

is due to the requirement of the sister chromatid. HR is initiated by the resection 

of DNA, which is followed by invasion of the homologous sequence and 

subsequent resolution of these intermediate structures. Crossover between the 

homologous DNA sequences is determined by how these intermediate structures 

are resolved, resulting in crossover or non-crossover products (Figure 1.6).  

The MRN complex plays a key role in the early response to DSBs by recognising 

the break and recruiting ataxia telangiectasia mutated (ATM), a protein kinase, to 

the site of damage and activating its catalytic activity via its direct interaction 

with ATM and Nbs1 (Lee and Paull 2004, Lee and Paull 2005, Hartlerode and 

Scully 2009). In the DNA damage response there are many substrates that are 

phosphorylated by ATM, for example the H2A histone variant, H2AX. Therefore, 

phosphorylation of H2AX is frequently used as an early indication of DSB 

formation on chromatin (Matsuoka, Ballif et al. 2007, Hartlerode and Scully 2009, 

Savic, Yin et al. 2009). CtIP, BRCA1 and BARD1 work together with the MRN 

complex to facilitate resection and subsequent processing of the 5’-ends of the 

DSB, thus leaving a 3’-overhang for invasion of the sister chromatid template 

(Sartori, Lukas et al. 2007, Yun and Hiom 2009). The exposed overhang of ssDNA 

is bound by the large subunit of RPA and is subsequently displaced by Rad51, 

which is recruited by factors including BRCA2. The formation and stabilisation of 

Rad51 filaments stimulates the invasion and displacement of the homologous 

strand. This displacement results in Rad54 promoting D-loop formation, which 

can be extended by DNA pol δ or ε via the 3’ strand (Holmes and Haber 1999, 

Krejci, Altmannova et al. 2012).  

Double Holliday junction formation occurs when the 3’-overhang is ‘captured’ on 

the other side of the break, these junctions must be resolved by endonucleases. It 
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is the resolution of these Holliday junctions that results in either crossover or 

non-crossover products. 
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Figure 1.6. The homologous recombination pathway. DNA double strand 
breaks are repaired by HR proteins and result in either Non-crossover or 

Crossover products. 
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1.2. Chromatin Structure and Remodelling 

 

In eukaryotes, genomic DNA is tightly packed together in a protein-DNA complex 

structure known as chromatin. The nucleosome is the basic unit of chromatin, 

where 147bp of DNA is tightly wrapped in left-handed ~1.7 superhelical turns 

around an octomer of histone proteins, comprised of a heterodimer (two copies) 

of histone proteins H2A and H2B, and a tetramer of histones H3 and H4 (Luger, 

Mader et al. 1997, Richmond and Davey 2003). One molecule of the linker histone 

H1 associates with the external interface of the nucleosome, sealing the ~1.7 

turns of DNA, where the DNA enters and exits the nucleosome (Kamakaka and 

Biggins 2005).  

The condensation and organisation of the genome is regulated by the packaging 

of DNA by nucleosomes. Chromatin actively participates in numerous DNA 

transactions including transcription, chromosome segregation, replication, 

recombination, DNA repair and the maintenance of genome integrity. This 

section will introduce chromatin structure, histone variants and the post-

translational modification of histones as well as chromatin remodelling families 

and how mutations found in these families is strikingly linked to cancer formation. 

 

1.2.1. Chromatin Structure 
 

As mentioned, the nucleosome is formed from the four core histones H2A, H2B, 

H3 and H4, created in a ‘hand-shake motif’ due to the interaction of electrostatic, 

hydrophobic and hydrogen bonds between the histone pairs (Kamakaka and 

Biggins 2005). The core histones share a conserved C-terminal histone fold 

domain and N-terminal tails that are directly involved in the interaction with 

other proteins and nucleosomes (Kamakaka and Biggins 2005). 

The extremely recognisable ‘beads on a string’ structure represents chromatin in 

its most basic form, a linear arrangement of nucleosomes that can be bound to a 

number of structural and/or functional proteins, for example, linker histones, 

transcription factors etc. (Figure 1.7) (Woodcock and Dimitrov 2001).  
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Figure 1.7. The packaging of DNA in to chromatin. Image taken from 
(Weier 2001). DNA molecules are tightly wound around histone proteins that 

compact themselves in to 30 nm chromatin fibres. Additional packaging 
forms chromosomes that have a diameter of 300 nm and a thickness of 700 

nm. 
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The folding of nucleosomes into its secondary three-dimensional structure, 

known as a 30 nm fibre, is driven by interactions between nucleosomes. The 30 

nm fibre associates with linker histones, for example H1 or H5 to stabilise this 

secondary structure. Self-association of these 30 nm fibers into 100 to 400 nm 

filaments forms the tertiary structure organisation (Belmont and Bruce 1994, 

Gordon, Luger et al. 2005). Additional levels of packaging allow for the eventual 

formation of chromatids by chromosomes.   

A three-helix bundle of histones is denoted a histone fold motif (or domain) and 

it is these that mediate a histone’s interaction with other histones (histone-

histone interaction) as well as with DNA (histone-DNA interaction) (Peterson and 

Almouzni 2013). The modulation of chromatin for the facilitation of multiple 

cellular processes is carried out in various ways. For example, histones are 

subject to various post-translational modifications, for example phosphorylation, 

methylation, acetylation and ubiquitylation, modifications which can alter 

histone properties (Iizuka and Smith 2003, Kamakaka and Biggins 2005). The use 

of chromatin remodelling complexes and their catalytic ATP core subunit, which 

will be further introduced in section 1.2.4, also facilitates the movement of 

chromatin by nucleosome sliding, ejection and the repositioning of histones etc. 

The incorporation of histone variants is also important in the modulation of 

chromatin. 

 

1.2.2. Histone Variants 

 

Canonical replicative histones H2A, H2B, H3 and H4 are mostly restricted to being 

produced during S phase of the cell cycle (Peterson and Almouzni 2013). These 

canonical histones make up the dominant proportion of cellular histones, 

however nonallelic variants of these core histones also exist, exhibiting very 

different biophysical characteristics (Kamakaka and Biggins 2005). These non-

canonical histone variants are not restricted to expression during S phase, and 

are therefore expressed throughout the cell cycle (Peterson and Almouzni 2013). 

Histone variants are thought to have specialised functions in the regulation of 
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chromatin dynamics, this could be due to a multitude of factors, for example, in 

contrast to canonical histones, variants contain introns and are often 

polyadenylated, suggesting an importance for the post-translational regulation of 

these proteins (Old and Woodland 1984, Kamakaka and Biggins 2005). The 

exchange of histones for histone variants, which then become preferentially 

expressed, also suggests a specialised function with regards to the dynamics of 

chromatin (Wunsch, Reinhardt et al. 1991). Below I will briefly introduce a subset 

of the different histone variants.  

 

1.2.2.1. Histone H1 
 

Eleven sequence variants such as H10, H5 and the spermand testis-specific 

variant all belong to the histone H1 variants, with the N and C-terminal tail 

domains being the sites of sequence variation from canonical H1 (Kamakaka and 

Biggins 2005, Millan-Arino, Islam et al. 2014). The histone H1 family is the most 

diverse in comparison to the core histones H2A, H2B, H3 and H4, having the most 

variants or subtypes (Happel and Doenecke 2009, Millan-Arino, Islam et al. 2014).  

 

1.2.2.2. The histone variants of H2A and H2B 

 

Of the core histones H2A, H2B, H3 and H4, it is known that H2A has the most 

diverse range of histone variants, including the very important H2A.Z and H2A.X 

(Redon, Pilch et al. 2002). The H2A variants are distinguishable from canonical 

H2A by their C-terminal tails that vary in length and sequence and have a 

divergent genome distribution. Broadly, H2A.Z has been linked to both 

transcriptional repression and activation and is ~60% identical to canonical H2A 

(Jackson and Gorovsky 2000). H2AX has important roles in DNA double strand 

break induction. At DNA DSBs H2AX becomes rapidly phosphorylated at serine 

139, gaining the nomenclature γ-H2AX and serving as a sensitive indicator of 

DSBs (for reviews of both H2A.Z and H2AX see (Redon, Pilch et al. 2002, Zlatanova 

and Thakar 2008, Bonisch and Hake 2012, Tsabar and Haber 2013)). H2B has 
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very few variants, however the ones that have been documented have specialised 

functions in chromatin compaction and transcription repression, particularly 

during gametogenesis (For review see (Poccia and Green 1992, Green, Collas et 

al. 1995)). 

 

1.2.2.3. The centromeric histone H3 variant, CENP-A 

 

There are two major histone H3 variants, H3.3 and centromeric H3, known as 

CENP-A in mammalian cells.  CENP-A is a conserved essential protein that binds 

to centromeres, is expressed throughout the cell cycle and often localizes to 

transcriptionally active regions of the chromosome (Ahmad and Henikoff 2002, 

Kamakaka and Biggins 2005). CENP-A shares similarity in histone-fold domain 

with canonical H3, but has highly divergent N-terminal tails (Kamakaka and 

Biggins 2005). 

 

1.2.2.4. Histone H4 

 

Histone H4, to date, has no known variants, with some suggesting that it is a 

slowly evolving protein (Malik and Henikoff 2003, Kamakaka and Biggins 2005). 

It is not clear why this core histone isn’t represented by multiple variants or 

subtypes. 

 

1.2.3. Post-translational Modification of Histones 

 

For the regulation of chromatin structure and function, histones are subject to a 

diverse set of post-translational modifications (PMTs). These PMTs include lysine 

acetylation, methylation, SUMOylation and ubiquitination, serine/threonine 

phosphorylation, proline isomerization, argenine methylation and ribosylation 

(Peterson and Almouzni 2013). PMTs can occur in the nucleosomal core, but the 
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majority of events affect the N- and C-terminal tail regions(Peterson and 

Almouzni 2013). Two broad mechanisms can explain how chromatin dynamics 

are regulated by post-translational modification. Firstly the creation or 

elimination of binding sites for non-histone proteins by PMTs can affect the 

structure and function of chromatin. Secondly, the stability of nucleosomes 

individually as well as the ability of chromatin fibres to fold into higher order 

structures is directly influenced by histone PMTs (Peterson and Almouzni 2013). 

The formation of a DNA double strand break can rapidly induce post-

translational modifications and the modification of histones in this way is thought 

to have a key role in the DNA damage response (DDR) (Figure 1.8) (Peterson and 

Almouzni 2013). An example of this role in the DDR can be seen in the 

phosphorylation of the histone variant H2A.X at S139 by ATM, ATR and DNA-PK. 

This phosphorylation of H2A.X (termed γH2AX) is an early event in the response 

to DNA DSBs and affects around a megabase of chromatin either side of the break, 

promoting the binding of DNA damage checkpoint mediators like MDC1, thus 

pausing the cell cycle and therefore mediating the repair of the damaged DNA 

(Rogakou, Boon et al. 1999, Stucki, Clapperton et al. 2005, Peterson and Almouzni 

2013). Below I will briefly introduce the most well-known PMTs: acetylation, 

methylation and phosphorylation. 
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Figure 1.8. The effect of histone modifications in chromatin on the DDR 
response. (A) Histone modifications that occur on chromatin with a DSB and 

the proteins that are associated. (B) The binding partners or regulators of 
histone modifications. Taken from (Peterson and Almouzni 2013). 
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1.2.3.1. Acetylation  

 

Lysine residues are able to undergo many post-translational modifications. The 

acetylation of lysine residues, meaning the transfer of an acetyl functional group 

from one molecule to another, at the ε-amino group neutralises the charge of the 

lysine and results in a change of the histone’s electrostatic properties. This 

change results in a weakened interaction with the negatively charged DNA, 

forming a more relaxed chromatin structure that is typically associated with a 

transcriptionally active state (Musselman, Lalonde et al. 2012).  Lysine residue 

acetylation can occur on H3 (K4, K9, K14, K18, K23, K27, K36 and K56), H4 (K5, 

K8, K12, K16, K20 and K91), H2A (K5 and K9) and H2B (K5, K12, K15, K16, K20 

and K120) (Musselman, Lalonde et al. 2012). Histone acetylation or deacetylation 

can be carried out by enzymes known as Histone/Lysine Acetyltransferases 

(HATs/KATs) or Histone/Lysine Deacetylases (HDACs/KDACs), for example the 

transcriptional activator lysine acetyltransferase 2A (KAT2A aka. GCN5), which I 

will introduce further in Chapter 3. The relaxed chromatin structure created by 

lysine acetylation can be reversed by a de-acetylation event. Relaxed DNA that is 

transcriptionally active can be referred to as euchromatin and the corresponding 

condensed version of chromatin is referred to as heterochromatin (Grunstein 

1997).  

Acetylated lysines are recognised by three types of histone effectors; the 

bromodomain, PHD fingers and PH domains. Bromodomains are well 

characterised as acetyl-lysine readers(Dhalluin, Carlson et al. 1999, Sanchez and 

Zhou 2009). A well conserved four-helix bundle structure, comprised of αA, αB, 

αC, and αZ helices, folds together to form the typical bromodomain’s structure. A 

deep hydrophobic cavity is created by inter-helical ZA and BC loops and it is 

within this cavity where the acetyllysine residue is inserted and have contact with 

several hydrophobic residues, for example two conserved tyrosines or the 

hydrogen bonding of a conserved asparagine which leads to stabilization 

(Musselman, Lalonde et al. 2012). Typically single bromodomains bind to 

acetylated lysines very weakly, however, binding can be substantially enhanced 

by a single bromodomains interaction with multiple acetylated sequences or the 
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recognition of the acetylated lysine by covalently linked tandem bromodomains 

(Musselman, Lalonde et al. 2012). 

PHD domains, such as the double PHD finger (DPF) of DPF3b, a key epigenetic 

factor for the development of heart and muscle that is associated with the 

SWI/SNF chromatin remodelling complex BAF, have also been found to recognise 

acetylated lysines at histones H3 and H4 (Lange, Kaynak et al. 2008, Zeng, Zhang 

et al. 2010). PH (pleckstrin homology) domains, such as the double PH domain of 

Rtt106, a histone chaperone has specifically be linked to the binding of H3K56-

acetylated histone H3-H4, implicating it in the regulation of nucleosome assembly 

during DNA replication and repair and disassembly during gene transcription (Su, 

Hu et al. 2012). 

Histone deacetylase 1 and 4 (HDAC1 and HDAC4) are responsible for the 

deacetylation of N-terminal lysine residues of the core histones (H2A, H2B, H3 

and H4). Epigenetic repression is marked by the deacetylation of histones, which 

play a key role in the progression of the cell cycle and developmental events as 

well as transcriptional regulation. HDACs can interact with a diverse range of 

non-histone proteins, thus making the terminology lysine de-acetyltransferases 

or KDACs more encompassing of the roles they actually carry out in vivo, although 

typically they are mostly referred to by their original nomenclature (Kadiyala and 

Smith 2014). There are currently eighteen mammalian HDACs that can be 

subdivided in to different families, decided by their homology with yeast HDACs 

(Bhaskara 2015). HDAC1 belongs to Class I HDACs, which is homologous to Rpd3 

in yeast, this class also contains HDACs 2, 3, and 8. HDAC4 belongs to Class IIa 

HDACs, which also contains HDAC 7 and 9 and is homologous to Hda1 in yeast 

(Ropero and Esteller 2007). 

HDAC1 is specifically recruited to sites of DNA damage during DNA repair as well 

as to chromatin around replication forks (Bhaskara 2015). HDAC1 is also 

involved with transcriptional repression that is regulated by the retinoblastoma 

protein Rb (Robertson, Ait-Si-Ali et al. 2000), as well as interacting with the 

nuclear receptor Estrogen receptor-α (ER-α), via its DNA-binding domain and 

activation function-2 (AF-2) domain (Kawai, Li et al. 2003).  

As well as having the broad HDAC activity, HDAC4 is also involved in muscle 
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maturation though its physical and functional interaction with the transcription 

factor MEF2C. MEF2C can recruit HDAC4 via its N-terminal domain to aid 

transcriptional repression (Wang, Bertos et al. 1999). HDAC4 is also known to 

associate and co-localize with a protein that causes Huntington’s disease, the 

aggregation-prone mutant huntingtin protein (mHTT) through its interaction 

with MAP1S (Yue, Li et al. 2015). 

HDACs make an attractive group of synthetic lethal candidates as there are 

currently several small molecule histone deacetylase inhibitors (HDIs) that 

inhibit various HDACs already in clinical studies. These HDIs are potent anti-

proliferative agents that are thought to selectively kill cancer cells (Bhaskara 

2015). 

 

1.2.3.2. Methylation 

 

Methylation can occur on two residues, lysine and arginine, and each has three 

possible methylation states (Musselman, Lalonde et al. 2012). Unlike other 

modifications, methylation does not affect overall charge, however it does alter 

the hydrophobic character and size of the modified residue (Musselman, Lalonde 

et al. 2012). Lysine can be mono-, di- and trimethylated on its ε-amino group. For 

histone H3 methylation sites typically occur at K4, K9, K26, K27, K36 and K79, for 

histone H4 at K20 and for histone H1 at K26. Excluding H3K79, these are all 

located in the N-terminal tails of the histone proteins. Readers of lysine 

methylation include ADD (ATRX-DNMT3-DNMT3L), ankyrin, bromo-adjacent 

homology (BAH), chromo-barrel, chromodomain, double chromodomain (DCD), 

MBT (malignant brain tumour), PHD (plant homeodomain), PWWP (Pro-Trp-

Trp-Pro), Tandem Tudor domain (TTD), Tudor, WD40 and the zinc finger CW (zf-

CW) (Musselman, Lalonde et al. 2012).  

In the context of cellular functions, methylation of lysine residues is the best 

characterised, with a defining role in transcriptional regulation. Methylation of 

H3K4 (H3K4me) is thought to be a gene-activation mark on global chromatin, 

with H3K4me1 distinguishing active enhancer elements, H3K4me2 being 
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associated with active or potentially active ‘permissive’ chromatin states and 

H3K4me3 occurring within active transcription (Bernstein, Humphrey et al. 2002, 

Schneider, Bannister et al. 2004, Jeong, Kim et al. 2011, Musselman, Lalonde et al. 

2012).  

H3K36me is also thought to have a role in transcription. A progressive shift from 

monomethylation to trimethylation of K36 between the 5’ and 3’ ends of genes 

was found by genome wide profiling (Bannister and Kouzarides 2005). H3K36me 

also has an additional roles in DNA damage response, DNA replication and mRNA 

alternative splicing (Musselman, Lalonde et al. 2012). H3K20me2 is a 

methylation mark that also has a role in the DNA damage response, being 

targeted by the TTD (Tandem Tudor Domain) of 53BP1 (Botuyan, Lee et al. 2006).  

H3K9 and H3K27 are typically associated with the formation of constitutive and 

facultative heterochromatin and gene silencing. At pericentromeric 

heterochromatin regions the methylation marks H3K27me1 and H3K9me3 are 

found, conversely H3K27me3 and H3K9me2 are found in repressed euchromatin 

regions (Peters, Kubicek et al. 2003, Rice, Briggs et al. 2003).  

Arginine can be monomethylated or dimethylated symmetrically or 

asymmetrically. It has been reported that arginine methylation can occur at H3R2, 

H3R8, H3R17, H3R26, H4R3, H2AR11 and H2AR29 (Musselman, Lalonde et al. 

2012). Functionally, very little is known about the significance of methylarginine 

readout in histone proteins, but it is thought that the recognition of these 

methylated residues can influence transcription processes (Musselman, Lalonde 

et al. 2012).  

 

1.2.3.3. Phosphorylation 

 

Phosphorylation occurs at serine or threonine residues. Bulky, negatively 

charged groups are added to the modified residues, altering the electrostatic and 

topographic properties of histones. Histones are phosphorylated on histone H3 

at T3, T6, S10, T11, S28 and T45, on histone H4 at S1, on histone H2A at S1 and 

T120, on H2AX at S139 and on histone H2B at S14. Phosphorylation at these 
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residues is important in the DNA damage response pathways, mitosis and 

transcriptional regulation (Musselman, Lalonde et al. 2012).  

 

1.2.4. Chromatin Remodelling Families 

 

As described, DNA is packaged in to chromatin and access to this tightly bound 

structure is integral to allow the participation of chromatin in roles such as the 

regulation of transcription and DNA repair to name a few. Specialised chromatin 

remodelling complexes have evolved to facilitate this access by dynamically 

mediating nucleosome composition in chromosomal regions (Clapier and Cairns 

2009). The energy from ATP hydrolysis is utilised by chromatin remodelling 

complexes to aid the sliding, ejection and repositioning of nucleosomes as well as 

mediating the exchange of histone variants. Other chromatin related factors work 

with these ATPase remodelers to guide the packaging and un-packaging of DNA, 

with a view to controlling not only the tightly bound structure of chromatin, but 

the regulation of essential processes, including DNA repair (Clapier and Cairns 

2009).  

Four different chromatin remodelling families are currently known, including the 

ISWI family, the CHD family, the INO80 family and the SWI/SNF family of 

remodelers. All families give rise to multi-subunit complexes that share a similar 

core catalytic ATPase domain, surrounded by uniquely associated subunits 

(Clapier and Cairns 2009). Strong affinity for nucleosomes, the recognition of 

histone modifications, similar ATPase domains, proteins that regulate these 

ATPase domains and subunits that interact with other chromatin or transcription 

factors are the five essential properties shared by all four families of remodelers 

(Clapier and Cairns 2009). Though the families of remodelers share properties, 

they also serve different purposes and act in very different biological contexts. 

The subject of this thesis is the SWI/SNF family of remodelers, specifically the 

PBAF complex, and so a thorough introduction of this family is described in 

section 1.4.  
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1.2.5. Chromatin Remodelling Complexes and Cancer 

 

Dysregulation of processes mediated by chromatin remodelling complexes 

including transcriptional regulation and DNA-damage repair have been 

implicated in cancer development. Genome-wide sequencing of human cancers 

in recent years have identified multiple genes involved in cancer progression. In 

those identified, somatic mutations affected multiple epigenetic processes such 

as DNA methylation or hydroxylation, as well as mutations being found in 

histone-modifying enzymes like EZH2 or SUZ12 (Masliah-Planchon, Bieche et al. 

2015).  ATP chromatin remodelling complexes, like epigenetic changes, are 

implicated in cancer formation. Most notably, mutations in subunits of the 

SWI/SNF family of remodelers have been found in a striking  19% of all human 

tumours, rivalling the frequency of TP53 mutations, which is found in 26% of all 

human cancers (Shain and Pollack 2013). I will discuss specific SWI/SNF subunits 

and their involvement in cancer in section 1.4.    

Other chromatin remodelling families have been implicated as having roles in 

cancer, for example the NuRD complex , which belongs to the CHD family of 

remodelers. The NuRD complex components, MTA1-3, have been associated with 

metastasis when overexpressed in cells and is thought to be linked with the 

invasive behaviour in several cancers (Denslow and Wade 2007). To give one 

example, in breast cancer, estrogen receptors (ERs) are regulators of 

proliferation and differentiation, and expression of these receptors can be used 

as a prognostic tool as well as a therapeutic target. MTA3 expression has been 

found to correlate with ER expression, and it has been suggested that this MTA3 

subunit is responsible for the regulation of invasive growth pathways and that 

mutations within this gene can lead to breast cancer development via direct 

inhibition of the transcriptional repressor Snail (Fujita, Jaye et al. 2003).
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1.3. The Genetics of Renal Cell Carcinoma 

 

Renal cell carcinomas (RCC) are a complex set of diseases that have a major 

socioeconomic impact and are seen to be rising in incidence throughout the world 

(Jonasch, Futreal et al. 2012). 338,000 new cases were diagnosed worldwide in 

2012 and there is thought to be a five-year survival rate of just ~12% when 

advanced in stage. Affecting both men and women alike, it is biologically distinct 

from kidney cancer, in that it doesn’t involve the renal pelvis or renal medulla and 

isn’t a single entity, but instead is a class of tumours of renal epithelial origin, for 

example the renal tubules. RCC mostly tends to arise sporadically, but can also be 

heritable, accounting for 1-4% of cases, with genetic mutations being the cause 

of some RCC cancer-prone families (Pavlovich and Schmidt 2004). Four major 

autosomal dominantly inherited RCC syndromes have been identified as; von 

Hippel-Lindau syndrome (VHL), which is also mutated in sporadic RCC, 

Hereditary leiomyomatosis and renal cell cancer (HLRCC), Hereditary papillary 

renal cancer (HPRC) and Birt-Hogg-Dube syndrome (BHD). We know that VHL is 

the gene mutated in von Hippel-Lindau disease (Latif, Tory et al. 1993), MET 

mutations are drivers in familial papillary renal cancer (Schmidt, Duh et al. 1997), 

fumarate hydratase (FH) mutations are found in hereditary leiomyomatosis and 

renal cell cancer (Tomlinson, Alam et al. 2002), as well as folliculin (FLCN) 

mutations in Birt-Hogg-Dubé syndrome (Nickerson, Warren et al. 2002). 

Clear cell renal cell carcinoma (ccRCC) accounts for about 80% of sporadic RCC 

(Shenoy and Pagliaro 2016). This major subtype of kidney cancer is characterised 

by 80-90% of these tumours having a frequent inactivation of the von Hippel-

Lindau (VHL) gene (Liao 2015) and the aberrant signalling of the hypoxia 

inducible factor (HIF) that subsequently ensues (Jonasch, Futreal et al. 2012). It 

is interesting to note that VHL can be considered as both a germline cancer 

susceptibility gene as well as one that can be somatically mutated. Most of these 

VHL mutations cause loss of the wild type (WT) allele via large-scale loss of 

heterozygosity of chromosome 3p, resulting in a loss of protein (Jonasch, Futreal 

et al. 2012). It is known that ccRCC tumours exhibit extremely diverse mutational 

heterogeneity and as well as VHL, there are known to be three other genes that 

are frequently mutated in ccRCC; PBRM1 (mutated in ~50%), BAP1 (~15%) and 
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SETD2 (~15%). These genes all cluster with VHL in a 43Mb region on 

chromosome 3p, a region that is deleted in over 90% of tumours due to the loss 

of one or more of these tumour suppressor genes (Pena-Llopis, Christie et al. 

2013). Loss of these genes are oncogenic drivers, which are distinct from 

passenger mutations in that they occur at mutation frequencies that are higher 

than expected by chance alone (Pena-Llopis, Christie et al. 2013).  

The genes frequently mutated in RCC are biologically very diverse and therefore 

multiple mechanisms and biological pathways can be implicated in the 

tumorigenesis of RCC (Pavlovich and Schmidt 2004). Currently it is not well 

understood how driver mutations in cancer genes can work together in the 

progression of tumorigenesis and RCC is a good example of the complex 

relationships that can arise between cancer genes (Pena-Llopis, Christie et al. 

2013). The most commonly mutated genes in ccRCC have strong links to 

chromatin (Figure 1.9) and ccRCC tumours are known to lack the hallmark 

genetic features of solid tumours, such as KRAS and TP53 mutations and are 

unresponsive to angiogenesis inhibitors, traditional chemotherapies, as well as 

highly resistant to radiation (Jonasch, Futreal et al. 2012). Thus, the study of the 

identified key tumour suppressors is vital, not only for the understanding of the 

mechanism behind ccRCC tumorigenesis, but also to exploit these known 

mutations to develop novel therapeutic treatments for a cancer that has a clear 

unmet clinical need.  
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Figure 1.9. Genes involved in ccRCC interact with chromatin. Adapted 
from (Liao, Testa et al. 2015). 
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1.3.1. VHL is the most frequently mutated gene in ccRCC 

 

Inactivation of the VHL tumour suppressor gene is the most significant driver of 

ccRCC, with 70-80% of all ccRCC tumours harbouring a biallelic inactivation of 

VHL through mutation, deletion, or hypermethylation of its promoter resulting in 

the loss of expression (Liao, Testa et al. 2015). Although loss of VHL is a key driver 

in the tumorigenesis of ccRCC, inactivation of this gene alone is not sufficient to 

cause ccRCC (Mandriota, Turner et al. 2002, Rankin, Tomaszewski et al. 2006). 

The VHL gene maps to chromosome 3p25 and is an established two-hit tumour 

suppressor gene, meaning that one allele is inactivated by mutation or promoter 

methylation and the other is inactivated through a large deletion resulting in loss 

of heterozygosity (LOH) (Gnarra, Tory et al. 1994, Gossage, Murtaza et al. 2014). 

Von Hippel-Lindau (VHL) gene mutations are associated with the development of 

both hereditary and sporadic clear cell renal carcinoma. The protein product of 

VHL (pVHL) forms an E3 ubiquitin ligase complex with Cul2 and Rbx1 that is able 

to regulate the hypoxia-inducible factor-1 (HIF-1), however the relationship 

between this function and ccRCC development is not clear (Mandriota, Turner et 

al. 2002, Liao, Testa et al. 2015). It has been demonstrated that in the kidneys of 

patients with VHL disease, HIF activation is an early event occurring in 

morphologically normal single cells within the renal tubules (Mandriota, Turner 

et al. 2002).  

 

1.3.1.1. The role of Hypoxia Inducible Factor (HIF) in ccRCC 

 

VHL is mutated in both hereditary kidney cancer as well as spontaneous clear cell 

renal cell carcinoma (Liao, Testa et al. 2015). The heterodimeric transcription 

factor hypoxia-inducible factor (HIF) contains α-subunits that are targeted by the 

VHL containing E3 ubiquitin ligase complex, resulting in poly-ubiquitination and 

proteosomal destruction (Liao, Testa et al. 2015). When HIFα is hydroxylated on 

either of the two prolyl residues by members of the Egl nine homolog family 

(otherwise known as either prolyl hydroxylase domain-containing proteins or 
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HIF prolyl hydroxylases), it can then be recognised by pVHL (Liao, Testa et al. 

2015). A loss or inactivation of pVHL promotes the synthesis and accumulation 

of HIFα proteins, which then form a complex with HIF1β protein, resulting in the 

activation of a transcriptional response to hypoxia in the nucleus (Liao, Testa et 

al. 2015). Not all HIF-induced genes result in tumour development (Niu, Zhang et 

al. 2012), however constituently active HIF activity is known to promote 

tumourigenesis and stimulate growth in ccRCC tumours (Kaelin 2005). 

Activation of HIF is thought to be an important step in the development of VHL 

mutant ccRCC. Development of VHL mutant ccRCC has been described as a 

sequence of events, starting with the loss of VHL activity, followed by the 

consequential activation of the HIF pathway, followed by interaction of the HIF 

pathway with other oncogenic pathways, resulting in genome-wide epigenetic 

changes and further inhibition of multiple tumour suppressor genes, finally 

ending with immune evasion (Shenoy and Pagliaro 2016). 

 

1.3.2. Intratumour heterogeneity and branched evolution 
 

Vast heterogeneity within individual tumours has been identified by large-scale 

sequencing analysis of solid tumours (Parsons, Jones et al. 2008, Varela, Tarpey 

et al. 2011). Intratumour heterogeneity (ITH) is a phenotype expressed in ccRCC. 

Sequencing analysis of ccRCC recently identified multiple genetically distinct 

subclones within primary tumours and their metastases (Gerlinger, Rowan et al. 

2012), revealing that the evolution of ccRCC was branched, rather than occurring 

in a linear fashion (Figure 1.10) (Gerlinger, Horswell et al. 2014). Genetic 

complexity of a tumour identified by single-biopsy may be therefore 

underestimated if ITH is not taken in to consideration. In ccRCC, mutations in VHL 

or PBRM1 are thought to be the main drivers or truncal mutations, however the 

clinical outcomes for patients with ccRCC can differ greatly from patient to 

patient. This is likely due to subclonal driver mutations acquired by tumours 

during progression (Gerlinger, Horswell et al. 2014). Subclonal driver events 

present in solid tumours may provide an explanation for the acquired resistance 

to targeted therapeutics in late stages of disease (Gerlinger, Horswell et al. 2014). 
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Greater knowledge of the evolution of truncal mutations and the consequential 

subclonal branches they form in ccRCC may be useful in future prediction of 

tumour evolution in patients and ultimately may be able to identify new targets 

for therapeutics.   
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Figure 1.10. Phylogenetic tree for tumour analysis. Adapted from 
(Gerlinger, Rowan et al. 2012). Normal tissue that acquires a ubiquitous 

driver mutation forming the ‘trunk’, the ‘branches’ that arise from this driver 
mutation represent the intratumour heterogeneity displayed in ccRCC. 
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1.3.3. PBRM1 is another key tumour suppressor in kidney cancer 

 

Whole exome sequencing of ccRCC tumours has revealed that PBRM1, the gene 

that encodes BAF180, is mutated in over 40-50% of cases (Varela, Tarpey et al. 

2011). Found on chromosome 3p21, PBRM1 mutations lead to loss of protein and 

are typically associated with gross chromosomal aberrations, such as loss of 

heterozygosity (LOH) (Varela, Tarpey et al. 2011). While we know that PBRM1 is 

frequently mutated in ccRCC and is known to be a driver of this cancer, we still 

require a greater understanding of the molecular mechanism of how this gene 

acts as a tumour suppressor, before we can fully exploit it for the development of 

cancer therapies.  

PBRM1has multiple cellular functions that could contribute to tumorigenesis. 

This is the focus of our study and so will be discussed in much greater detail in 

Section 1.5, 

 

1.3.4. BAP mutations in cancer and its tumour suppressor role in 

ccRCC 

 

BRCA1- associated protein-1 (BAP1) is mutated in ccRCC at a frequency of around 

15% (Liao, Testa et al. 2015). It was first identified as a protein that interacted 

with BRCA1’s RING finger in a yeast two-hybrid screen (Jensen, Proctor et al. 

1998). In the study from Jensen et al, BAP1 was found to enhance BRCA1-

mediated inhibition of breast cancer cell growth and was suggested to be a new 

tumour suppressor gene that functions within the BRCA1 growth control 

pathway (Jensen, Proctor et al. 1998). BAP1 shares homology with the ubiquitin 

C-terminal hydrolases (UCH) family of deubiquitases and has deubiquitinase 

activity (Jensen, Proctor et al. 1998). As well as harbouring its deubiquitinase 

activity in its N-terminal domain, BAP1 also has a BARD1 interaction domain (BA), 

a UCH37 domain located in the C-terminus, a YY1-binding domain, two nuclear 
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localisation signals and its interaction with host cell factor-1 (HCF-1) requires its 

NHNY sequence (Liao, Testa et al. 2015).  

BAP1’s role in the BRCA1 growth control pathway is complex and not fully 

understood, however it is thought that BAP1, under circumstances such as in 

response to DNA damage, can then interact with BRCA1 (Yu, Pak et al. 2014).  

BAP1 has key roles not only in the DNA damage response (DDR), but in the 

control of cell cycle, cellular growth and regulation of chromatin architecture by 

de-ubiquitination of histone H2A (Piva, Santoni et al. 2015), and these 

subsequently allow for the promoters of several target genes to become 

accessible to transcription factors. It is interesting to note that BAP1 

deubiquitinates the mono-ubiquitinated K119 residue on histone H2A, however 

this does not seem to associate with its ability to repress cell growth (Liao, Testa 

et al. 2015). 

Mutations in BAP1 result in the development of metastases in uveal melanoma 

(UM) (Harbour, Onken et al. 2010) as well as other malignancies such as 

malignant pleural mesotheliomas (Bott, Brevet et al. 2011). BAP1 mutations have 

conflicting implications in cancer. They present as a paradox in which, both 

overexpression (Jensen, Proctor et al. 1998, Ventii, Devi et al. 2008), as well as 

knockdown (Pan, Jia et al. 2015), result in growth suppression and the down 

regulation of E2F-responsive growth-related genes. It has been postulated that 

this BAP1 paradox could be explained by BAP1 contributing to a delayed but 

more permissive G1/S checkpoint, where cells may in fact grow more slowly, but 

still in an uncontrollable manner (Bott, Brevet et al. 2011).  

As previously mentioned, BAP1 is mutated in uveal melanoma metastases, the 

most important cytogenetic predictor of this being the loss of chromosome 3. 

BAP1, like VHL and SETD2, is located on chromosome 3, specifically on the short 

(p) arm of chromosome 3, at band location 3p21, which is extremely close to the 

PBRM1 gene. Like VHL, BAP1 is modelled as a two-hit tumour suppressor in 

ccRCC, where the wild type allele compensates for the mutated allele (Piva, 

Santoni et al. 2015).  
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Mutations of BAP1 in ccRCC are mostly inactivating mutations and that in a large 

portion of tumours studied, were subclonal rather than ubiquitous.  

In almost all tumours where BAP1 is mutated, VHL is also inactivated. Mutation 

of VHL results in high allelic burden with mutations typically resulting in loss of 

heterozygosity (LOH), however tumours with subsequent mutations in BAP1 

tended to show this burden as being significantly lower. BAP1 mutations may be 

more likely to be acquired in tumours with pre-existing VHL mutations and 

therefore subsequently contribute to tumour progression because of selection 

pressure (Sato, Yoshizato et al. 2013).  

BAP1 mutations in ccRCC are associated with poor outcome, tumour 

aggressiveness and high Fuhrman grade, with more than 50% of tumours with 

mutant BAP1 exhibiting coagulative necrosis (Pena-Llopis, Vega-Rubin-de-Celis 

et al. 2012, Kapur, Pena-Llopis et al. 2013). 

As mentioned, BAP1 is frequently mutated in tumours with a driver mutation in 

VHL. BAP1 and PBRM1 mutations, however, appear to be mutually exclusive 

(Pena-Llopis, Vega-Rubin-de-Celis et al. 2012, Kapur, Pena-Llopis et al. 2013). 

When two genes function within the same pathway, they are often thought to 

have mutation exclusivity, however BAP1 and PBRM1 have been suggested to be 

involved in two separate processes as they are mutually exclusive in ccRCC 

(Brugarolas 2013). Evidence supporting this is first seen in the parallels in 

outcome prognosis after mutation in each gene. BAP1 mutations are associated 

with poor outcome and high Fuhrman grade as well as activation of mTORC1, 

however, PBRM1 mutant ccRCC’s are thought to be low grade, have a lack of 

mTORC1 activation and have a markedly better outcome (Pena-Llopis, Vega-

Rubin-de-Celis et al. 2012, Kapur, Pena-Llopis et al. 2013). Secondly, the gene 

expression signatures of BAP1-mutant and PBRM1-mutant tumours are highly 

specific and quite distinct from one another, which typically suggests tumours 

with different pathological features and different patient outcomes (Kapur, Pena-

Llopis et al. 2013). Therefore, it would not infer that BAP1 and PBRM1 mutations 

are mutually exclusive because they act in the same pathway, in fact, it would 

suggests that the mutations define two different molecular subtypes of ccRCC, 
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which have different biology, act in different pathways and result in markedly 

different outcomes (Brugarolas 2013). The mutual exclusive relationship 

between BAP1 and BAF180 could be exploited therapeutically by harnessing 

synthetic lethality, which will be further discussed in section (3.8.4). 

 

1.3.5. SETD2 in renal cancer 

 

Set domain-containing 2 (SETD2), a gene known to produce at least three 

alternative splicing transcripts that produce histone methyltransferases, is 

known to trimethylate histone H3 at lysine 36 (H3K36me3) (Piva, Santoni et al. 

2015). It is mutated in multiple cancers, including breast cancer and leukemias 

(Al Sarakbi, Sasi et al. 2009, Zhang, Ding et al. 2012), but first being identified as 

inactivating mutations in ccRCC in 2010 (Dalgliesh, Furge et al. 2010). It is now 

known to be mutated in 3-16% of all human ccRCC tumours (Wang, Liu et al. 2016) 

and is associated with loss of DNA methylation at non-promoter regions (Piva, 

Santoni et al. 2015). Most cases of ccRCC with a SETD2 mutation were found to 

have either a VHL or PBRM1 mutation also, and as previously mentioned, all three 

genes map to chromosome 3p. This suggests that the mutations are functionally 

non-redundant and that physical linkage of these three genes may be the driver 

for the loss of fitness and the large scale 3p loss of heterozygosity (LOH) seen in 

over 90% of ccRCC cases, perhaps due to haploinsufficiency (Varela, Tarpey et al. 

2011).  

It has been hypothesised that there may be high selection pressure for mutations 

of SETD2 after analysis of different SETD2 mutations in a panel of multiple ccRCC, 

show a tendency to be subclonal and showed that different regions of the same 

tumour could harbour different SETD2 mutations(Gerlinger, Rowan et al. 2012). 

In one example given by Gerlinger et al, the same tumour was biopsied in multiple 

sites and within these sites three different SETD2 mutations were found, 

including a missense mutation, a splice-site mutation, and a frameshift deletion 

(Gerlinger, Rowan et al. 2012). It is interesting to note that the ubiquitous loss of 

one gene allele could provide a foundation for the subsequent loss of protein 

function, driven by different mutations that are regionally separated. Tumours 
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that harbour missense or frameshift mutations of SETD2 have notably down-

regulated trimethylation of H3K36 (Gerlinger, Rowan et al. 2012), which would 

suggest active transcription would not be carried out in these regions, however 

the H3K36me3 signature has also been linked with alternative splicing as well as 

transcriptional repression (Wagner and Carpenter 2012), making it unclear what 

role this down-regulation of H3K36me3 by SETD2 mutation plays in the biology 

of ccRCC.  

In context of the DNA damage response, SETD2 is known to play an important 

role. It is thought to act in a similar way to RAD51, in that it promotes the repair 

of DNA DSB’s through homologous recombination, by facilitating the recruitment 

of repair proteins (Pfister, Ahrabi et al. 2014). SETD2 mutated cancers are also 

thought to be unable to activate p53-mediated checkpoints, without the need for 

additional mutations in TP53, a known guardian of the genome that is very rarely 

mutated in ccRCC (Carvalho, Vitor et al. 2014).  

SETD2 plays a significant role in ccRCC disease progression and like BAP1 

mutations, is typically associated with poorer cancer-specific survival (CSS) 

(Hakimi, Ostrovnaya et al. 2013). However, unlike BAP1 mutations that are 

typically mutually exclusive with PBRM1 mutations, SETD2 mutations are often 

found to occur in tumours where PBRM1 was mutated more frequently that 

would be expected by chance alone, suggesting some level of cooperation 

between the loss of these two genes in the tumorigenesis of ccRCC (Pena-Llopis, 

Christie et al. 2013). While this study focuses on mutant PBRM1 ccRCCs, it is still 

important to note that study of SETD2 mutant cancers could too have 

translational potential in the clinic.  

 

1.3.6. JARID1C/KDM5C mutation in ccRCC 

 

Trimetylation of Histone H3 at Lysine 4 (H3K4me3) is an epigenetic modification, 

which identifies the transcription start sites (promoters) of active genes 

(Benayoun, Pollina et al. 2014). The methylation state of the lysine residues of 

histone H3 and the modification that takes place here is implicated in 
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transcriptional control by its regulation of chromatin structure (Varela, Tarpey et 

al. 2011). JARID1C, also known as KDM5A, is a histone demethylase that removes 

a methyl group from lysine 4 on histone H3 (H3K4Me3) and is mutated in 3-7% 

of ccRCC tumours, most of which are subclonal mutations (Dalgliesh, Furge et al. 

2010, Liao, Testa et al. 2015). JARID1C mutation is linked with poor prognosis of 

ccRCC patients, having an association with advanced tumour stage and grade as 

well as overall tumour invasiveness (Sankin, Hakimi et al. 2014). Amplification or 

mutation of JARID1C can also be observed in other urological malignancies, such 

as prostate adenocarcinoma and papillary RCC to name a few (Liao, Testa et al. 

2015). As mentioned previously, HIF’s are known to increase the transcription of 

histone demethylases and so, unsurprisingly, JARID1C mRNA and protein 

expression are HIF-dependent (Niu, Zhang et al. 2012). VHL negative cells have 

low levels of H3K4me3 and this could be due to reduced methyltransferase 

activity or increased demethylase activity, or both. It has been suggested that 

there could be a HIF-induced JARID1C negative feedback loop that could be linked 

to tumour size. This model would see a loss of JARD1C leading to an increase in 

H3K4me3 in VHL-defective kidney cancer and would therefore form larger 

tumours (Niu, Zhang et al. 2012) 

 

1.3.7. UTX/KDM6A mutation in ccRCC 

 

The trimethylation of histone H3 at lysine 27 is the most prominent histone 

modification that is associated with transcriptional repression. Enzymes that 

modify this site, such as EZH2, are frequently mutated in cancer (Yamaguchi and 

Hung 2014). UTX, otherwise known as KDM6A, is a H3K27 demethylase that is 

mutated at low frequencies in ccRCC and at higher levels in bladder cancer and 

others (van Haaften, Dalgliesh et al. 2009, Dalgliesh, Furge et al. 2010, Liao, Testa 

et al. 2015). UTX mutations in a study of ccRCC samples, were found in a subset 

of cancer cells within a tumour, meaning these mutations are subclonal rather 

than driver mutations, although little is known about them and how they impact 

ccRCC tumorigenesis at present (Liao, Testa et al. 2015).  
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1.4. SWI/SNF Remodelling Family 

 

Originally identified in S. cerevisiae by both genetic screens and biochemical 

purification, the SWI/SNF (switching defective/sucrose nonfermenting) family of 

chromatin remodelers are typically composed of 8 to 14 subunits (Clapier and 

Cairns 2009). The SWI/SNF subfamily of complexes work to remodel chromatin 

by moving or ejecting nucleosomes, allowing for the proper frequency and 

positioning of nucleosomes at genes and other loci (Kasten, Clapier et al. 2011). 

The complex, in most eukaryotes, centres around two variant catalytic subunits, 

which subsequently form two well-defined members of this sub-family of 

chromatin remodelers, BAF and PBAF (Brownlee, Meisenberg et al. 2015). The 

BRG1 catalytic subunit belongs to the PBAF complex, whereas the BAF complex 

can contain either BRG1 or BRM (Table 1) (Brownlee, Meisenberg et al. 2015).  

BRG1 and BRM are both catalytic ATPase subunits, comprised of an N-terminal 

HSA (helicase-SANT) domain, a post-HSA domain that is split in to two areas 

separated by a linker, called DExx and HELICc, as well as a C-terminal 

bromodomains (Clapier and Cairns 2009). Both BAF and PBAF share a number of 

core and accessory subunits and have additional subunits that are unique to each 

complex (Figure 1.11). As mentioned previously, the genes that encode these 

subunits are frequently mutated in human cancers, earning their title as tumour 

suppressor genes (Shain and Pollack 2013). SWI/SNF complexes have a well-

described role in the regulation of gene expression (Wilson and Roberts 2011, 

Romero and Sanchez-Cespedes 2014, Masliah-Planchon, Bieche et al. 2015). 

More recently, SWI/SNF has been found to play a vital role in transcription-

independent pathways, contributing to genome stability via DNA repair, sister 

chromatid cohesion and the DNA damage response (Brownlee, Meisenberg et al. 

2015).  

 

1.4.1. Discovery of the RSC chromatin remodelling complex 

 

The SWI/SNF-family of chromatin remodelers exists as SWI/SNF and RSC 

(remodels the structure of chromatin) in budding yeast, with RSC being ten times 
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more abundant than SWI/SNF (Cairns, Lorch et al. 1996). The yeast SWI/SNF 

(ySWI/SNF) was first identified by genetic screening in 1984, where yeast 

mutants defective in either mating-type switching (swi mutants) or sucrose 

fermentation (snf mutants) were screened together (Neigeborn and Carlson 1984, 

Stern, Jensen et al. 1984, Breeden and Nasmyth 1987). The identification of RSC 

came slightly later, being isolated by mass spectrometry and limited sequence 

analysis based on the homology to the ySWI/SNF complex (Cairns, Lorch et al. 

1996). The RSC subunits known to date are; Sth1, Rsc1, Rsc2, Rsc3, Rsc4, Rsc5, 

Rsc6, Rsc7, Rsc8/Swh3, Rsc9, Rsc10/Rsc56, Rsc14/Ldb7, Htl1, Sfh1, Arp7, Arp9 

and Rtt102 (Kasten, Clapier et al. 2011), at least three of which are homologous 

to the ySWI/SNF components (Cairns, Lorch et al. 1996). The catalytic ATPase 

‘core’ subunit of RSC, Sth1, closely resembles the ySWI/SNF catalytic subunit 

Swi2/Snf2, both being activated by single-strand, double-strand and nucleosomal 

DNA (Cairns, Lorch et al. 1996). As well as having similarities within the ATPase 

catalytic subunits, there is an extended conservation of four core subunits, 

Swi2/Snf2, Swp73, Swi3 and Snf5 in ySWI/SNF and their RSC homologs Sth1, 

Rsc6, Rsc8 and Sfh1 (Figure 1.11). This homology extends to higher eukaryotes, 

such as human SWI/SNF (hSWI/SNF), suggesting that conservation of the core 

proteins is functionally important (Cairns, Lorch et al. 1996), either to maintain 

the complex integrity or to preserve remodelling activity (Tang, Nogales et al. 

2010). RSC and ySWI/SNF have many similarities, however, they are thought to 

regulate different regions of chromatin and the function of RSC is vital for cell 

survival (Tang, Nogales et al. 2010). It is plausible that the addition/subtraction 

of accessory subunits allows for this more specialised function of RSC, just as the 

addition of novel subunits to mammalian BAF and PBAF (Figure 1.11), for 

example, can allow for selective regulation of certain genes and functional 

specificity (Yan, Cui et al. 2005).  
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1.4.2. The RSC complex can exist as two distinct isoforms 

 

It is known that in budding yeast, the RSC complex can exist as two related 

complexes containing either Rsc1 or Rsc2 (Cairns, Schlichter et al. 1999). The RSC 

complex, as previously described, was identified from yeast extracts in 1996 

(Cairns, Lorch et al. 1996). Rsc1 and Rsc2 are similar in domain architecture, 

being composed of two bromodomains, an AT hook motif, a bromo-adjacent 

homology (BAH) domain and two regions in the carboxyl termini (C-terminal) of 

high and moderate identity respectively, CT1 and CT2 (Figure 1.12) (Cairns, 

Schlichter et al. 1999). The mammalian PBAF complex, interestingly carries a 

subunit, BAF180, which consists of six bromodomains, two BAH domains and a 

high-mobility group (HMG), therefore appearing to be a fusion of the yeast Rsc1, 

Rsc2 and Rsc4 (Figure 1.13) (Goodwin and Nicolas 2001, Mohrmann and 

Verrijzer 2005, Chambers, Pearl et al. 2013).  

 

1.4.2.1. Bromodomains and AT hook functionality in RSC 

 

Bromodomains, such as the ones found in the Rsc components as well as in many 

other proteins, are important for the regulation of transcription and the 

structural integrity of chromatin (Cairns, Schlichter et al. 1999). They exist as 

110-amino acid acetyl-lysine binding motifs (Dhalluin, Carlson et al. 1999), 

binding to the amino-terminal tails of histones H3 and H4 (Ornaghi, Ballario et al. 

1999). The second bromodomain (BD2) of Rsc1 and Rsc2 (Figure 1.12), with the 

BAH and C-terminal domain, are entirely required for function, where loss or 

mutation of these areas results in null phenotypes (Cairns, Schlichter et al. 1999). 

However, the first bromodomain (BD1) and the AT hook are only required in a 

subset of functions. Rsc1 can lose BD1 without impeding any function, however 

in Rsc2, BD1 was found to be required for its function in media supplemented 

with caffeine (effecting osmotic stability and cAMP signalling), a demonstration 

that Rsc1 and Rsc2 bromodomains are functionally distinct (Cairns, Schlichter et 
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al. 1999). The bromodomains found in the Rsc4 subunit of RSC, appear in tandem 

and both preferentially bind at different sites. It is thought that the BD1 domain 

binds directly to Rsc4 itself at the acetylated lysine K25, whereas the BD2 domain 

binds the acetylated lysine at K14 of histone H3 (H3K14ac) (VanDemark, Kasten 

et al. 2007). Gcn5 has activating and inhibitory roles with Rsc4, it is known that 

Gcn5 acetylates the ligands for BD1 and BD2, K25 and H3K14 respectively. These 

acetylated ligands are then thought to compete for binding to Rsc4, however it is 

known that Rsc4 K25 acetylation directly inhibits Rsc4 binding to acetylated 

H3K14. It has therefore been postulated that there is an auto-regulatory 

mechanism, with Gcn5 acting as a switch for RSC at sites of remodelling. In this 

model, Gcn5 would promote RSC-nucleosome binding by acetylation of H3K14, 

therefore enabling remodelling, with the subsequent acetylation of K25, releasing 

RSC from the interaction (VanDemark, Kasten et al. 2007).   

 

AT hooks (Figure 1.12) associate preferentially with the minor groove of AT-rich 

DNA and were first identified as short DNA-binding motifs in the high-mobility 

group chromosomal protein HMG-I (Reeves and Nissen 1990, Aravind and 

Landsman 1998). The functional domains of chromatin proteins and DNA-

binding proteins, such as histone folds and zinc fingers, are known to associate 

with AT hooks and they are commonly found preceding bromodomains by 20-40 

amino acids (Cairns, Schlichter et al. 1999). It is thought that these AT hooks can 

facilitate changes in the structure of DNA either cooperating as part of a protein 

with multiple domains, like Swi2 in yeast, or as a single polypeptide, as in HMG-I 

(Aravind and Landsman 1998). In RSC, it is thought that the AT hook is only 

required for Rsc1, but not Rsc2 functions. The cooperation between AT hooks and 

bromodomains may facilitate specific interactions with defined nucleosomes. For 

example the AT hook in the catalytic subunit BRM of the BAF mammalian 

SWI/SNF complex has been found to bind DNA as well affecting the complexes 

association with chromatin (Bourachot, Yaniv et al. 1999). In contrast, the RSC 

catalytic subunit Sth1, does not contain an AT hook, therefore these specific 

functions may be carried out by Rsc1/Rsc2.  
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Figure 1.12. Rsc1, Rsc2 and Rsc4 are bromodomain containing 
members of RSC. Adapted from (Cairns, Schlichter et al. 1999). 
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1.4.2.2. BAH domain function in RSC  

 

First identified in the chicken polybromo (BAF180) protein (gPB) (Nicolas and 

Goodwin 1996), Bromo-adjacent homology (BAH) domains are often associated 

with chromatin proteins, protein complexes and proteins that facilitate gene 

transcription and repression and are thought to be involved in protein-protein 

interactions (Goodwin and Nicolas 2001). BAH domains interact with 

nucleosomes and can be classified in two ways, the first being, ‘Remodels the 

Structure of Chromatin (RSC)-like’, which can be found in the yeast Rsc1 and Rsc2 

and their mammalian homologue BAF180 (Chambers, Pearl et al. 2013). RSC-like 

BAH domains can also be found in transcription factors, such as Ash1, as well as 

the CpG-DNA methylase DNMT1 (Oliver, Jones et al. 2005). Secondly, BAH 

domains can be classified as ‘Silent information regulator 3 (Sir3)-like’ and this 

classification includes Orc1 homologues and the Sir3 protein found in budding 

yeast (Chambers, Pearl et al. 2013).  

The BAH domains of Orc1 and Sir3 have a key role in the mediation of 

transcriptional silencing at telomeres (Norris and Boeke 2010) and can both bind 

nucleosomes (Noguchi, Vassilev et al. 2006, Onishi, Liou et al. 2007, Norris, 

Bianchet et al. 2008, Muller, Park et al. 2010). Interestingly Orc1 BAH domain 

nucleosome binding in mammals is determined by an interaction with the tail of 

histone H4 dimethylated at lysine 20, whereas the Sir3 BAH domain interacts 

with both H3 and H4, by binding nucleosomes at the Loss of Ribosomal Silencing 

(LRS) region of the nucleosome. As well as being able to bind nucleosomes, the 

Orc1 BAH domain can interact with the silent information regulator Sir1 and the 

heterochromatin-associated protein HP1 in yeast and higher eukaryotes 

respectively.  

In the context of RSC, it is known that the BAH domains of both Rsc1 and Rsc2 are 

required for function and viability, but have no role in the assembly of the 

complex and relatively little is known about their binding partners (Cairns, 

Schlichter et al. 1999). However, recently in our lab, it was found that the Rsc2 

BAH domain is able to bind specifically with histone H3 as well as being important 

for rDNA transcriptional silencing (Chambers, Pearl et al. 2013).  



53 
 

 

1.4.2.3. Structural conformation of RSC 

 

The structure of the RSC complex has been determined using cryo-electron 

microscopy, revealing a ring of protein densities around a large central cavity 

with the size and shape that would be appropriate for nucleosome binding 

(Asturias, Chung et al. 2002). It has been suggested that this cavity acts as a 

nucleosome binding pocket, due to the observation that addition of nucleosomes 

to the complex experimentally leading to an increase in density in this region 

(Lorch, Cairns et al. 1998, Asturias, Chung et al. 2002, Skiniotis, Moazed et al. 

2007). To accommodate a nucleosome in this binding pocket, RSC can exist in two 

conformations, ‘open’ and ‘closed’, which were determined when Rsc2-RSC 

(Leschziner, Saha et al. 2007) as well as the mixture of Rsc1-RSC and Rsc2-RSC 

were analysed (Skiniotis, Moazed et al. 2007, Chaban, Ezeokonkwo et al. 2008). 

The open conformation is thought to allow the entrance or release of a 

nucleosome, whereas in the closed conformation the movement/conformation of 

the distal portion of the bottom domain or ‘arm’, which becomes very close in 

proximity, is the most important for enveloping the docked nucleosome (Chaban, 

Ezeokonkwo et al. 2008). The dynamically mobile distal portion of RSC is thought 

to be stabilised by the presence of acetylated histone H3 N-terminal tail peptides 

(Skiniotis, Moazed et al. 2007). A portion of the complexes formed by the mixture 

of both Rsc1-RSC and Rsc2-RSC isoforms were found to appear in a third 

conformation, where ~16% of the complexes had either a reduced density or 

were completely lacking part of the distal arm, a conformation that could be 

attributed to Rsc1 isoform specificity (Skiniotis, Moazed et al. 2007, Chambers 

and Downs 2012).  

 

1.4.2.4. Biochemical activity of RSC 

 

In vitro assays have been carried out on mixed populations of Rsc1 and Rsc2-

containing complexes as well as Rsc2 only containing complexes to establish the 
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biochemical activity of these chromatin remodelers. From these studies, the RSC 

complex is known to be involved in nucleosome remodelling, repositioning, 

disassembly and histone octamer transfer. DNA of at least 25bp in length is 

thought to be able to stimulate the ATPase activity of the RSC complex, at a rate 

of ~7.5 molecules ATP/second under optimal conditions, which is not further 

stimulated by the addition of nucleosomes (Cairns, Lorch et al. 1996, Boyer, Logie 

et al. 2000, Saha, Wittmeyer et al. 2002). The catalytic Sth1 subunit, when 

compared to the intact Rsc2-RSC complex, is thought to have approximately 2.5 

times lower ATPase activity, suggesting that the cooperation of the other RSC 

subunits is necessary for maximal complex activity (Saha, Wittmeyer et al. 2002). 

Using atomic force microscopy, RSC was found to form relaxed supercoiled loops 

of around 400-700bp or 20-1200bp respectively on DNA that was tethered and 

stretched at low forces as well as on nucleosomal templates (Lia, Praly et al. 2006, 

Zhang, Smith et al. 2006). The loops formed in an ATP-dependent manner and 

slippage was observed in both templates. However, a greater translocation 

rate, >500bp/s compared to 12bp/s, was seen in the naked DNA, rather than the 

nucleosome-bound DNA template. The loops formed may provide a molecular 

basis for the functions of chromatin remodelling complexes (Zhang, Smith et al. 

2006). It has been suggested that these loops may cause the formation of a bulge 

of DNA on the nucleosome surface that has the capability of forming a larger loop 

by translocation and on dissolution of this large loop can facilitate remodelling 

activities such as reverse translocation, nucleosome position jump or nucleosome 

sliding (Chambers and Downs 2012). 

 

1.4.2.5. In vivo functions of RSC 

 

It has been well established that the RSC complex is important for the activation 

and repression of transcription of multiple genes in S. cerevisiae and is found to 

be co-immunoprecipitated with all three RNA polymerases (Angus-Hill, 

Schlichter et al. 2001, Ng, Robert et al. 2002, Soutourina, Bordas-Le Floch et al. 

2006). The RSC complexes role in vivo isn’t restricted to transcriptional control 

however, it is also thought to be important for proper kinetochore function (Hsu, 
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Huang et al. 2003), adaption to the spindle assembly checkpoint (Rossio, Galati et 

al. 2010), correct localisation of the nuclear pore complex (Titus, Dawson et al. 

2010), and sister chromatid cohesion (Baetz, Krogan et al. 2004) to name a few.  

 

1.4.3. Mammalian SWI/SNF exists as BAF and PBAF 

 

As previously described, mammalian SWI/SNF can exist as the BRG1- or hBRM-

associated factor (BAF or SWI/SNF-A) or the polybromo BRG1-associated factor 

(PBAF or SWI/SNF-B) complexes (Wilson and Roberts 2011). Two mutually 

exclusive catalytic ATPase subunits define each complex, either brahma 

homologue (BRM) or BRM/SWI2-related gene 1 (BRG1), with the BAF complex 

containing BRG1 or BRM and the PBAF complex containing only BRG1 (Table 1.1) 

(Wilson and Roberts 2011). Both complexes contain a set of highly conserved 

‘core’ subunits, SNF5, BAF155 and BAF170 (Table 1.1). Variant subunits associate 

with each complex and are thought to facilitate complex targeting, assembly and 

the regulation of lineage-specific functions of each complex (Wang, Cote et al. 

1996, Phelan, Sif et al. 1999, Wilson and Roberts 2011). Subunits unique to the 

BAF complex include, AT-rich interactive domain-containing protein 1A (ARID1A) 

and ARID1B and subunits that are unique to the PBAF complex include, BAF180, 

BAF200 and bromodomain-containing 7 (BRD7) (Wang, Cote et al. 1996, Wang, 

Nagl et al. 2004, Mohrmann and Verrijzer 2005, Kaeser, Aslanian et al. 2008). 

SWI/SNF complexes are able to remodel nucleosome structure by the 

mobilisation of nucleosomes by sliding and by catalysing the ejection and 

insertion of histone octamers (Saha, Wittmeyer et al. 2006, Wilson and Roberts 

2011).  The sequential steps of nucleosome sliding are thought to be initiated by 

SWI/SNF complex binding to a fixed position of nucleosome DNA, followed by the 

disruption of histone-DNA contacts, the ATPase subunit then can translocate DNA 

and DNA loop formation can then propagate around the nucleosome and 

subsequently generate sites that are accessible to DNA binding factors (Saha, 

Wittmeyer et al. 2006, Lorch, Maier-Davis et al. 2010, Wilson and Roberts 2011). 

Less is known about the mechanism employed for nucleosome ejection and 
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insertion, however it may be aided by histone chaperones. It has been suggested 

that histone ejection may not occur at nucleosomes directly bound by SWI/SNF 

complexes, but rather at adjacent nucleosomes as a consequence of repositioning 

the bound nucleosome (Dechassa, Sabri et al. 2010). SWI/SNF complexes may 

have effects on higher order chromatin structure other than nucleosome 

remodelling, which is the most studied, and this could be due to the complexes 

interaction with various other chromatin proteins (Wilson and Roberts 2011).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1.1. SWI/SNF subunits. Taken from (Brownlee, Meisenberg 
et al. 2015). 
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SWI/SNF complexes were originally identified in budding yeast because of their 

roles in transcriptional activation, but there is mounting evidence to suggest roles 

for mammalian SWI/SNF in transcriptional repression as well as activation. Some 

examples of the duality of the subunits in these complexes are highlighted below.  

For example, BRG1 and BAF57 are required for the reciprocal regulation of 

CD4/CD8 expression, acting to silence CD4 and to activate CD8 expression during 

mammalian T lymphocyte development (Chi, Wan et al. 2002). BRG1 is also 

thought to act as both a repressor that inhibits programs linked to differentiation 

and a facilitator of the expression of core pluripotency programmes in the BAF 

complex of embryonic stem cells (Ho, Jothi et al. 2009). 

It was discovered that SNF5 deletion in murine fibroblasts (MEFS) leads to 

transcriptional activation (Isakoff, Sansam et al. 2005). In gene expression arrays 

comparing SNF5 deleted MEFS to appropriate controls, significantly more genes 

were defined as being upregulated compared to those that were down regulated 

(Isakoff, Sansam et al. 2005). Conversely to this, SNF5 has also been implicated in 

the repression of transcription. It is known that histone deacetylases (HDACs) 

can be recruited by SWI/SNF complexes, to aid the removal of transcriptionally 

activating acetyl marks from histone tails. SNF5 was found to exert tumour 

suppressor activity by mediating cell cycle arrest by the direct recruitment of 

HDAC activity to the cyclin D1 (CCND1) promoter and therefore causing 

repression (Zhang, Davies et al. 2002). The PBAF complex is also thought to have 

a role in DNA induced transcriptional repression, which will be discussed further 

in section 1.5.  

These data suggest that mammalian SWI/SNF complexes have dynamic and 

essential roles in many gene expression programs by regulating both activation 

and repression.  
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1.4.3.1. Epigenetic antagonism between Polycomb and SWI/SNF 

complexes 

 

The dynamic structure of chromatin is regulated by two classes of enzymes: those 

that mediate covalent modifications on either histone proteins or DNA, like the 

Polycomb (PcG) complex, and those that use energy created from ATP hydrolysis 

to remodel chromatin structure, like the SWI/SNF complexes.   

There are two main PcG complexes; polycomb repressive complex 1 (PRC1) and 

2 (PRC2). The catalytic subunit of the PRC2 complex is the protein 

methyltransferase, EZH2, and it is known to promote H3K27me3, a covalent 

chromatin modification associated with repressed heterochromatin. The 

H3K27me3 mark at PcG-regulated promoters facilitates PRC1 recruitment, 

subsequently repressing transcription by the BMI1-dependent promotion of H2A 

monoubiquitination at K119 (Cao, Tsukada et al. 2005). The catalytic activity of 

SWI/SNF complexes, mediated by either BRG1 or hBRM, results in a relaxed, open 

state of chromatin that is associated with active transcription. Epigenetic 

modifications, like those carried out by PcG and SWI/SNF complexes, can be 

defined as somatically heritable changes in gene expression that is derived from 

alterations in chromatin structure, rather than from DNA sequence changes. 

These modifications are important in cell fate decisions and have roles in 

oncogenic transformation (Jones and Baylin 2007, McKenna and Roberts 2009). 

However, unlike DNA mutations, epigenetic modifications are reversible and 

therefore are good targets for effective cancer therapy.  

The antagonistic relationship between PcG and SWI/SNF complexes toward their 

roles in development was first identified by analysis of Drosophila mutants 

(Kennison and Tamkun 1988). The mechanism by which this antagonism 

occurred was discovered to be that the PcG proteins maintain repression of Hox 

genes during embryogenesis, while the SWI/SNF complex promotes Hox gene 

activation (Kennison and Tamkun 1988).  

Mammalian complexes were also found to be antagonistic, due to PcG proteins 

counteracting the repositioning of nucleosomes and chromatin remodelling 
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carried out by the enzymatic activity of SWI/SNF (Shao, Raible et al. 1999, 

Francis, Saurin et al. 2001). A cancer based mechanistic relationship was 

identified between PcG and SWI/SNF when the SWI/SNF subunit, SNF5, was re-

expressed in a SNF5-deficient rhabdoid tumour cell line, resulting in increased 

activation of the tumour suppressor protein p16INK4a and removal of PcG proteins 

at the p16INK4a locus (Kia, Gorski et al. 2008). Additional evidence supporting a 

role for PcG and SWI/SNF complexes in cancer was seen when primary SNF5-

deficient tumours as well as primary cells with experimentally inactivated SNF5 

were found to have elevated EZH2 expression (Wilson, Wang et al. 2010). 

Elevation of EZH2 expression levels in both models infers that the effect is not a 

secondary consequence of oncogenic transformation. Wilson et al also showed 

that Polycomb targets are broadly H3K27-trimethylated and repressed in SNF5- 

deficient fibroblasts and cancers (Wilson, Wang et al. 2010). They also found that 

antagonism between the complexes is found in the regulation of stem-cell 

associated programs and that SNF5 loss activates those programs (Wilson, Wang 

et al. 2010). Furthermore in mouse models, inactivation of EZH2 blocks tumour 

formation that is driven by SNF5 loss (Wilson, Wang et al. 2010). 

An increase in EZH2 expression has also been reported in other types of cancer, 

some in which SWI/SNF mutations occur, for example ovarian and renal cell 

carcinomas (Wagener, Holland et al. 2008, Lu, Han et al. 2010). These data 

suggests there is an epigenetic antagonism between PcG and SWI/SNF complexes 

and this antagonism may be mechanistically important in the prevention of 

tumorigenesis. 

 

1.4.3.2. SWI/SNF and DNA repair 

 

As introduced in section 1.1.3, DNA double strand breaks can be repaired by HR 

or NHEJ. The choice between repair pathways after damaged DNA is recognised 

is thought to rely on the composition of chromatin that surrounds the break. 

Compaction of chromatin and the presence of active transcription prior to the 

induction of the break is thought to be important in the choice between repair 

pathways (Aymard, Bugler et al. 2014, Pfister, Ahrabi et al. 2014). 
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Both BAF and PBAF have been implicated in DNA double strand break repair via 

HR and NHEJ. Consistent with data from yeast, the SWI/SNF complex is recruited 

to sites of DNA DSBs and is thought to have a direct role at DNA lesions (Park, 

Park et al. 2006, Peng, Yim et al. 2009, Ogiwara, Ui et al. 2011). Several proteins 

and protein modifications have been implicated in the recruitment of SWI/SNF 

to damage. BRIT1 is known to interact with two subunits common to both BAF 

and PBAF, BAF170 and BAF155. It was found that globally and at DNA DSBs, 

BRG1 and hBRMs association with chromatin was impaired upon BRIT1 

depletion. Depletion of BRIT1 results in defects in both NHEJ and HR activity. 

Therefore BRIT1 may be important for the mediation of SWI/SNF complex 

recruitment to DSBs (Peng, Yim et al. 2009). Subunits of BAF, but interestingly 

not PBAF, were recently found to promote NHEJ in a model where I-SceI-induced 

DSBs, which require some end processing, were used to monitor NHEJ (Watanabe, 

Ui et al. 2014).  

In contrast, work in our lab identified that the PBAF, not BAF complex is required 

for the repair of a subset of DSBs in the area surrounding actively transcribed 

genes (Kakarougkas, Ismail et al. 2014). This is thought to reflect NHEJ activity as 

it was epistatic with LIGIV when repair was analysed following irradiation 

(Kakarougkas, Ismail et al. 2014). We have speculated that neither BAF or PBAF 

is essential for NHEJ, but perhaps that BAF might promote resection-mediated 

end joining, while PBAF may be required for NHEJ in the vicinity of actively 

transcribed genes (Jeggo and Downs 2014). 

Histone acetylation has also been implicated in mediating the recruitment of 

SWI/SNF to chromatin at sites of DNA damage (Lee, Park et al. 2010, Ogiwara, Ui 

et al. 2011). At DSBs, histones H3 and H4 are acetylated by the histone 

acetyltransferase (HAT), CBP/p300. hBRM recruitment to DNA DSBs is impaired 

when CBP/p300 was ablated (Ogiwara, Ui et al. 2011). Recent work in our lab has 

also identified a role for BAF180 in the replication of damaged DNA, by repriming 

stalled replication forks (Niimi, Chambers et al. 2012, Niimi, Hopkins et al. 2015). 

This will be introduced in detail in section 1.5. 

 



61 
 

1.4.3.3. Mutation spectrum of SWI/SNF subunits 

 

SWI/SNF mutations are widespread across a diverse range of human cancers 

(Reisman, Glaros et al. 2009, Weissman and Knudsen 2009, Wilson and Roberts 

2011). SNF5 is a SWI/SNF subunit with a well characterised role as a tumour 

suppressor. It is known to be homozygously inactivated in nearly all rhabdoid 

tumours, a rare paediatric malignancy (Versteege, Sevenet et al. 1998). 

Consistent with this, SNF5 knockout mice are prone to forming similar tumours 

(Roberts, Galusha et al. 2000). SNF5 and other SWI/SNF subunit mutations, for 

example BRG1, have also been implicated in lung cancer (Medina, Carretero et al. 

2004, Medina, Romero et al. 2008). 

Whole exome sequencing surveys of human cancers have identified frequent 

mutations in SWI/SNF subunits in various single cancer types (Jones, Wang et al. 

2010, Wiegand, Shah et al. 2010, Birnbaum, Birnbaum et al. 2011, Li, Zhao et al. 

2011, Varela, Tarpey et al. 2011, Wang, Kan et al. 2011, Shain, Giacomini et al. 

2012). To appreciate the spectrum of human cancers with SWI/SNF subunit 

mutations on a larger scale, Shain and Pollack exploited whole-exome sequencing 

studies, mining 24 studies, representing 669 patient samples across 18 different 

cancer diagnosis (Shain and Pollack 2013) . Strikingly, SWI/SNF mutations rates 

were highest in ovarian clear cell carcinoma, with 75% of the samples harbouring 

a mutation. SWI/SNF mutations were also found in clear cell renal cell carcinoma 

(57%), hepatocellular carcinoma (40%), gastric cancer (36%), melanoma (34%) 

and pancreatic cancer (36%) (Shain and Pollack 2013). The overall rate of 

mutation across all tumour types for SWI/SNF subunits was 19%, rivalling that 

of TP53, comparatively mutated at 26% across all tumour samples (Shain and 

Pollack 2013). The authors show that SWI/SNF genes with mutations had an 

increased tendency to be deleterious mutations, i.e. frameshift, nonsense, 

rearrangement, splice-site and missense-damaging) at a frequency greater than 

predicted, compared to missense-benign and missense-damaging. Thus, 

SWI/SNF mutations are most likely driver mutations (Shain and Pollack 2013). 

Of the SWI/SNF mutations identified in this study, the majority appeared to 

preferentially effect the enzymatic and targeting subunits, inferring they may be 
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critical for SWI/SNF function. ARID1A (9%), PBRM1 (4%), SMARCA4 (3%), 

ARID1B (2%) and ARID2 (2%) were the five most frequently mutated SWI/SNF 

genes, with other mutations being found in scaffolding subunits at much lower 

rates (Shain and Pollack 2013). The main impact of mutations may be to 

compromise in part or whole the functional activity of SWI/SNF, reinforced by 

the fact that mutations were found across a varied range of SWI/SNF subunits 

(Shain and Pollack 2013). Assessing the frequency at which SWI/SNF gene 

mutations occur together with other mutations in known oncogenic or tumour 

suppressor pathways revealed that SWI/SNF and TP53 mutations are frequently 

mutually exclusive (Kadoch, Hargreaves et al. 2013). ARID1A and TP53 

mutations, for example, were found to be mutually exclusive, but coincided with 

PIK3CA and CTNNB1 mutations in clear-cell ovarian carcinoma (Kadoch, 

Hargreaves et al. 2013). 

SWI/SNF is known to control the expression and activity of specific genes and 

pathways including, Rb, TP53, Polycomb, sonic hedgehog, Myc, stem cell 

programs and nuclear hormone receptor signalling (Guan, Wang et al. 2011, 

Wilson and Roberts 2011). The regulation of these genes/pathways may be how 

SWI/SNF exerts its tumour suppressor activity. We also know that SWI/SNF, 

specifically PBAF, have roles in the DNA damage response as well as in correct 

sister chromatid cohesion. It is well known that defects in the DNA damage 

response and sister chromatid cohesion can contribute to tumorigenesis, 

therefore SWI/SNF complexes, namely PBAF, may exhibit their tumour 

suppressing function by the regulation of these factors. I will develop this theory 

in the following section and in subsequent chapters. 
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1.5. The BAF180 subunit of PBAF  

 

BAF180 is a protein encoded for by the Polybromo-1 (PBRM1) gene and is one of 

three subunits that are unique to the PBAF (SWI/SNF-B) chromatin remodelling 

complex, with the other two being BRD7 and ARID2. These unique subunits 

distinguish the PBAF complex from the BAF (SWI/SNF-A) complex (Wilson and 

Roberts 2011).  

Little is known about the specific biological functions of BAF180, however its high 

mutation in cancer has suggested its role as a tumour suppressor gene. BAF180 

is mutated in a diverse range of cancers, for example in bladder cancer (Huang, 

Peng et al. 2015) and in breast cancer (Xia, Nagase et al. 2008, Mo, Li et al. 2015), 

but its strikingly high mutation frequency in clear cell renal cell carcinoma (ccRCC) 

has drawn the most attention.  

BAF180 is the second most frequently mutated gene in (ccRCC) and is thought to 

be mutated at a frequency of around 41% in all ccRCC (Varela, Tarpey et al. 2011), 

however this is reportedly higher in other studies, with some showing mutation 

frequency at ~50% (Brugarolas 2013). Mutation of BAF180 is believed to be an 

early event in carcinogenesis, but how it functions as a tumour suppressor is not 

well understood. As described previously, ccRCC is a disease that effects several 

thousands of people, with very limited treatment options and poor prognosis, 

therefore the continued study of BAF180 and its function as a tumour suppressor 

is important for the progression of new cancer therapeutics.  

 

1.5.1. BAF180 structure and domains 

 

BAF180 is conserved from yeast to humans, with BAF180 appearing to be a fusion 

of the budding yeast genes Rsc1, Rsc2 and Rsc4 (Figure 1.13) (Chambers, Pearl et 

al. 2013). BAF180 contains six tandem bromodomains responsible for binding 

acetylated histones, two bromo-adjacent homology (BAH) domains that can 

mediate protein-protein interactions and a high-mobility group (HMG) box that 
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can bind nucleosomal DNA (Figure 1.13) (Wilson and Roberts 2011, Brownlee, 

Chambers et al. 2012). The functional activity of these domains, in particular the 

bromodomains and their binding of acetylated histones, is thought to facilitate 

the recruitment, targeting, retention and orientation of the PBAF complex on 

chromatin (Brownlee, Chambers et al. 2012). The binding targets of BAF180’s 

bromodomains are yet to be conclusively identified. Two studies to date have 

examined the ability of BAF180’s bromodomains to bind acetylated histone 

peptides and they come to different conclusions. In one study they found that the 

first five bromodomains of BAF180 had binding affinity with different acetylated 

peptides, BD1-H3K4Ac, BD2-H3K9Ac, BD3-H3K9Ac, BD4-H3K23Ac and BD5-

H3K14Ac, with BD6 having no preference for any of the tested H3 peptides 

(Chandrasekaran and Thompson 2007). Contrary to this study, another found 

entirely different binding of BAF180s bromodomains to acetylated peptides, 

observing binding between BD1 and H3K36Ac, BD2 and K3K14Ac and 

H2BK116Ac, BD3 and H3K115Ac, H4K12Ac, H2BK15Ac and H2BK120Ac, BD4 

and H3K14Ac and H3K11Ac, BD5 and H3K36Ac and BD6 and H2BK24Ac and 

H2BK116Ac (Charlop-Powers, Zeng et al. 2010). It is unusual that these two 

studies come to such different conclusions as in each study all six bromodomains 

were individually expressed and purified before being used in in vitro binding 

assays, but perhaps the discrepancies could be accounted for in the different 

methodologies used by each lab (Brownlee, Chambers et al. 2012). This 

conflicting data does not help answer the question of what are the physiological 

targets of BAF180’s bromodomains. However, recent work in out lab has found 

that the BAH domain of Rsc2 and the homologous second BAH domain of 

mammalian BAF180 has the ability to bind to unmodified H3 (Chambers, Pearl et 

al. 2013). We can infer from this that the bromodomains of BAF180, like the BAH 

domains, may also have preference for histone H3, recognising acetylated lysine 

residues on this histone or neighbouring histones. 

It is unclear what role BAF180 plays in the prevention of tumorigenesis in cells, 

but what is known is that mutation within the bromodomains of BAF180 could 

lead to loss of function of the protein itself, potentially resulting in the onset of 

cancer (Brownlee, Chambers et al. 2012). 
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1.5.2. BAF180 and DNA damage 

 

It was shown recently that the yeast homolog of BAF180, Rsc2, has a role in 

repriming stalled replication forks at sites of damage (Niimi, Chambers et al. 

2012). DNA lesions, such as damaged bases, block DNA polymerases and in order 

to bypass the lesion, traditional DNA polymerases must be replaced for a group 

of specialised translesion synthesis (TLS) polymerases (Lehmann, Niimi et al. 

2007). Mono-ubiquitination of PCNA is required for this switching from 

replicative to TLS polymerases at stalled replication forks (Lehmann, Niimi et al. 

2007). RSC2 deletion, but not deletion of RSC1, results in a significant reduction 

in PCNA ubiquitination after DNA-damage caused by UV irradiation, or treatment 

with either HU or MMS (Niimi, Chambers et al. 2012). It was also found that siRNA 

depletion of BAF180 after DNA-damage with UV-irradiation, resulted in a 

reduction of PCNA ubiquitination as well as unmodified chromatin-associated 

PCNA and the STUbL E3 ligase that ubiquitinates PCNA, Rad18 (Niimi, Chambers 

et al. 2012). Interestingly, we recently found that specifically, the BAH domains 

of BAF180 are required for the ubiquitination of PCNA (Niimi, Hopkins et al. 

2015). 

Another role for BAF180 in the DNA damage response was shown by recent work 

in our lab. The PBAF complex, which uniquely harbours the BAF180 subunit, was 

identified as important for DSB-induced transcriptional silencing (Kakarougkas, 

Ismail et al. 2014). PBAF also promotes repair of a subset of DNA DSBs at early 

time points, which can be rescued by inhibiting transcription globally. 

Phosphorylation of BAF180 is required for both processes (Kakarougkas, Ismail 

et al. 2014). Transcription is repressed in response to a DSB in an ATM-

dependent manner and leads to H2A monoubiquitination at Lysine 119 (H2-

K119ub) (Shanbhag, Rafalska-Metcalf et al. 2010). H2A-K119ub levels are 

dependent on the PBAF complex and therefore could mediate the regulation of 

H2A-K119ub at both sites of damage as well as transcription repression 

(Kakarougkas, Ismail et al. 2014). Work from other members in our lab had 

previously identified two cancer-associated mutations of BAF180, which were 

found to not de-stabilise the protein (Brownlee, Chambers et al. 2014). In context 
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of transcriptional repression, these BAF180-mutants were unable to restore the 

ability of BAF180-depleted cells to repress transcription-flanking DSBs or 

promote efficient repair at early time points (Kakarougkas, Ismail et al. 2014). 

This data suggests that PBAFs role in repressing transcription near DSBs may 

contribute to its tumour suppressor activity. 

The yeast homologues of BAF180, Rsc1 and Rsc2, have been shown to have 

defects in HR-dependent DNA repair (Chai, Huang et al. 2005, Oum, Seong et al. 

2011). The RSC complex was found to physically interact with the recombination 

protein Rad59 and functions in HR (Oum, Seong et al. 2011). Studies have 

revealed that RSC is required for recombination between sister chromatids by its 

ability to promote sister chromatid cohesion by the recruitment of cohesin at 

DNA break sites (Oum, Seong et al. 2011). The defective sister chromatid HR at 

double strand break sites, in Rsc2 mutant cells specifically, is thought to be due 

to impaired accumulation of DSB-induced cohesin at the break (Oum, Seong et al. 

2011). It is possible that mammalian BAF180, like its yeast homologues, 

cooperates with cohesion factors to facilitate cohesin-dependent HR. 

Before this study, work in our laboratory had previously never directly looked at 

BAF180’s role in HR. However, BAF180 was found to be hypersensitive to 

mitomycin C (MMC), resulting in increased levels of structural chromosome 

aberrations after treatment. This mimics phenotypes seen in cells with defects in 

HR or cohesin subunits after MMC treatment (Brownlee, Chambers et al. 2012). 

We can infer from this that BAF180 may have a role in HR-dependent DNA repair. 

 

1.5.3. BAF180 and the PBAF complex have a role in sister chromatid 

cohesion 

 

Work in our lab has recently identified a transcription-independent role for 

BAF180 in promoting sister chromatid cohesion (Brownlee, Chambers et al. 

2014). Sister chromatid cohesion is dependent on the activity of several 

regulatory factors, including the cohesin loader components Scc2 and Scc4 and 

the cohesion establishment factors Eco1, Scc3, Pds5 and Wapl. In mammalian 
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cells, Scc3 homologs are SA1 (STAG1) and SA2 (STAG2), Eco1 homologs are 

ESCO1 and ESCO2 and Pds5, whose homologs are PDS5A and PDS5B. SA1, ESCO2 

and PDS5B are thought to promote cohesion, specifically at pericentromeric 

regions (Canudas and Smith 2009, Whelan, Kreidl et al. 2012, Carretero, Ruiz-

Torres et al. 2013). Chromosome biorientation and segregation is reliant on 

centromeric cohesion and defects here result in aneuploidy, defined as the 

presence of an abnormal number of chromosomes in a cell, a typical 

characteristic of cancer cells. 

In yeast, interactions have been found to occur between genes involved in sister 

chromatid cohesion and the Rsc2 gene (Chambers and Downs 2012). 

Furthermore, studies have shown that when looking at Rsc1 and Rsc2 deletion 

strains in G2 phase of the cell cycle, increased separation of sister chromatids can 

be observed as well as a greater tendency to lose chromosomes in comparison to 

a wild type strain (Chambers and Downs 2012). There is evidence showing an 

interaction between the cohesin complex and RSC, however it a matter of debate 

as to whether RSC’s role in sister chromatid cohesion is during loading of cohesin 

or the establishment of cohesion (Chambers and Downs 2012).  

Loss of BAF180 in mouse and human cells results in defective sister chromatid 

cohesion at the centromeric locus, as opposed to chromosome arms, implying 

that BAF180 specifically regulates centromere cohesion (Brownlee, Chambers et 

al. 2014). This study also found increased levels of micronuclei formation, 

abnormal anaphase events and aneuploidy associated with BAF180-depletion. 

This suggests both chromosome instability (CIN) and consequently genome 

instability after the loss of BAF180-mediated centromere cohesion (Brownlee, 

Chambers et al. 2014). 

BAF180 is known to localize to the kinetochores of mitotic chromosomes and it 

has been implied that BAF180 therefore plays a role there during mitosis (Xue, 

Canman et al. 2000). In yeast, there is evidence showing that chromosome 

kinetochores can promote cohesin loading by Scc2-Scc4 (Natsume, Muller et al. 

2013). We can hypothesise that PBAF, via BAF180s localisation to kinetochores, 

may in turn aid cohesin loading. 
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1.5.4. Transcriptional roles for BAF180 

 

BAF180 is thought to contribute to transcriptional regulation by altering 

chromatin structure and controlling the accessibility of DNA (Thompson 2009). 

p53 is a well characterised tumour suppressor protein whose normal activity 

prevents tumorigenesis. It is well known as a transcription factor that regulates 

the expression of many genes involved in apoptosis, genome stability and 

angiogenesis. Recently it was demonstrated that PBRM1 regulates p53 function 

by influencing p53 transcriptional activity and is required for p53-induced 

senescence and proper p21 expression (Xia, Nagase et al. 2008, Burrows, 

Smogorzewska et al. 2010, Macher-Goeppinger, Keith et al. 2015). It was 

suggested that BAF180 acts together with BRD7 to promote p53 transcriptional 

activity directed towards a plethora of target genes and that loss or disruption of 

the PBAF complex results in compromised p53 function (Burrows, 

Smogorzewska et al. 2010).  

Another transcriptional role for BAF180 is seen in association with p21, BAF180 

has been described as a physiological mediator of p21 expression (Xia, Nagase et 

al. 2008). 

BAF180 has also been found to interact with the bromodomain containing 1 

(BRD1) gene, which is implicated with transcriptional regulation, brain 

development and susceptibility to schizophrenia and bipolar disorder (Fryland, 

Christensen et al. 2016). 

 

1.5.5. BAF180 is frequently mutated in human cancers 
 

Truncating mutations in PBRM1 that abrogated protein expression, were first 

identified in breast cancer in a screen for novel breast cancer tumour suppressor 

genes (Xia, Nagase et al. 2008). They identified four truncating mutations in the 

bromodomains of BAF180 that were associated with loss of wild-type BAF180. 

Microsatellite markers that flank the locus of BAF180 on 3p21 were used to 

screen tumour samples and of the 52 samples tested, 48.1% (25 samples) had 
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BAF180 loss of heterozygosity, suggesting that BAF180 loss may contribute to 

tumour progression (Xia, Nagase et al. 2008). In addition to this study, further 

work has identified low PBRM1 expression in breast cancer tissues, correlating 

with more advanced tumour stage, lymph node metastasis and lower overall 

survival (OS) for patients compared to those with higher PBRM1 levels. This data 

strengthens the argument for BAF180 acting as a tumour suppressor in breast 

cancer and identifies the potential as a valuable prognostic marker (Mo, Li et al. 

2015). 

Although the first BAF180 cancer mutations were identified in breast cancer, 

arguably the most influential study in regards to BAF180 cancer mutations was 

carried out by Varela et al, identifying BAF180 truncating mutation in a striking 

41% of clear cell renal cell carcinoma (ccRCC) (Varela, Tarpey et al. 2011). In this 

study exome sequencing was used to elucidate the mutation spectrum of seven 

ccRCCs, in which four cases presented with truncating mutations in PBRM1, three 

of which were frame-shift insertions and the fourth being a nonsense mutation. 

They next sequenced a further 257 cases of RCC, which included 36 cases of 

papillary chromophobe and other non-ccRCC cancers, finding PBRM1 truncating 

mutations in 88/257 (34%) cases, all of which were from the 221 ccRCC tumour 

samples. In 38 tumours sequenced, PBRM1 mutations were all found in the 

context of chromosome 3p loss of heterozygosity (LOH). ccRCC tumours with 

PBRM1 mutations were also frequently found to have mutations in VHL (Varela, 

Tarpey et al. 2011). Of the 38 PBRM1-mutant tumours studied, 36 exhibited a 

hypoxia signature, which is often linked to loss of VHL, however this signature 

was found in cases that did not have a detectable VHL mutation (Varela, Tarpey 

et al. 2011). Increased proliferation was observed in four out of five RCC cell lines 

after PBRM1 siRNA knockdown. The cell line with the outlying result was found 

to have a homozygous truncating mutation in PBRM1 and had no PBRM1 protein 

expression (Varela, Tarpey et al. 2011), this was the RCC cell line A704, which we 

have subsequently used in our study. Knockdown of PBRM1 was also associated 

with increased colony formation potential in soft-agar and increased cell 

migration, suggesting an increase in transformed phenotype (Varela, Tarpey et 

al. 2011). 
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In a panel of 727 cancer cell lines, with various histologies, exome sequencing 

was carried out to elucidate PBRM1’s contribution in other cancers. Congruent to 

the study carried out by Xia et al, PBRM1 homozygous deletion was found in the 

HCC-1143 breast cancer cell line (Xia, Nagase et al. 2008). Five homozygous 

truncating mutations in PBRM1 were identified in this study, including a frame 

shift deletion in the RCC line, A704, the small-cell lung cancer cell line NCI-H2196 

and the gall bladder cancer cell line TGBC24TKB. Nonsense mutations were found 

in two lines, the squamous-cell lung cancer cell line NCI-H226 and the pancreatic 

adenocarcinoma line PANC-10-05 (Varela, Tarpey et al. 2011).  

In addition to the data put forward by Varela et al, multiple other studies have 

linked PBRM1 mutation with loss of tumour suppressor activities in multiple 

cancers.  

PBRM1 maps to chromosome 3p21, interestingly, structural abnormalities were 

also frequently detected in this region in bladder cancers (Abat, Demirhan et al. 

2014). In a study by Huang et al, PBRM1 was found to be downregulated in 

bladder cancer cell lines and was associated with shorter overall survival in 

bladder cancer patients (Huang, Peng et al. 2015). They also found that PBRM1 

induced G2 cell cycle arrest by repressing cyclin B1 and suggest that it is this 

PBRM1-dependent block of the G2/M transition that allows PBRM1 to function 

as a tumour suppressor in bladder cancer (Huang, Peng et al. 2015). 

Recently PBRM1 mutations were also identified in a study of 68 diffuse large B-

cell lymphomas (Morin, Mendez-Lago et al. 2011, Pasqualucci, Trifonov et al. 

2011, Lohr, Stojanov et al. 2012), as well as in a sample of head and neck cancers 

(Agrawal, Frederick et al. 2011, Stransky, Egloff et al. 2011). Truncating 

mutations in PBRM1 were also reported in a mutational screen of pancreatic 

cancers (Jones, Zhang et al. 2008).  

To conclude, while it is not known the exact mechanism by which BAF180 

functions in cell biology, we do know that loss of this protein impacts on repair, 

replication, cohesion, DNA-damage induced transcriptional silencing and 

regulation of gene expression. The impairment of these factors, together with the 

wide mutation spectrum of BAF180 in human cancers, solidifies the notion that 

BAF180 is an important tumour suppressor gene. In this work we will discuss 
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how we have tried to exploit BAF180’s mutational status, specifically in ccRCC, to 

identify novel opportunities for therapeutic intervention. 
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1.6. Synthetic Lethality and Cancer Therapy 

 

The identification of chemical compounds that will kill cancer cells has never 

been a barrier to the progression of medical oncology. The challenge we are faced 

with instead, is how to use these identified chemical compounds at 

concentrations that will specifically target cancer cells, without effecting healthy 

cells. Traditional chemotherapeutic drugs aim to damage rapidly dividing cells, 

which encompasses cancer cells rather than normal non-cancer cells. However, 

some normal cells such as skin, hair and the healthy lining of the digestive system, 

can also rapidly divide and be at risk of damage from these non-specific agents. 

Most clinically available chemotherapeutic agents have limited efficacy for late 

stage patients and are associated with toxic side effects, such as hair loss and 

severe sickness (Chan and Giaccia 2011). A challenge facing current 

chemotherapies is in finding the concentration of drug needed to produce a 

therapeutic effect, while also taking in to consideration that high drug 

concentrations cause unwanted toxicity. Finding this perfect balance is known as 

the therapeutic window, which is often very narrow in current 

chemotherapeutics. Thus, there is a clear unmet clinical need for the 

development of new anti-cancer agents and the concept of synthetic lethality 

could provide scaffolding for the development of new, more cancer-cell-specific, 

cytotoxic agents. 

 

1.6.1. Synthetic Lethality 

 

The concept of synthetic lethality was first described in the fruit fly Drosophila 

melanogaster by Dobzhansky in the 1940’s, where he found that mutations in two 

different genes could promote a synthetic lethal interaction (Dobzhansky 1946). 

Two genes are typically referred to as ‘synthetic lethal’ if a mutation in both leads 

to cellular death, but mutation in either of the genes alone is consistent with 

viability (Hartwell, Szankasi et al. 1997, Hartman, Garvik et al. 2001, Kaelin 2005, 

Boone, Bussey et al. 2007). This type of interaction can also exist in an 
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intermediate state, where mutation in two genes result in a non-lethal impaired 

growth phenotype, referred to as ‘synthetic sickness’ (Kaelin 2005). 

Identification of a synthetic sick interaction between two genes can further be 

enhanced by acquiring additional mutations in one or more non-essential genes 

(Canaani 2014). The terms synthetic lethality and synthetic sickness are 

generally grouped together to encompass a broader definition of synthetic 

lethality as a whole. Under this more general description of synthetic lethality an 

identified pair of synthetic lethal genes may actually only cause a partial, rather 

than a total decrease in viability. There are three different mechanisms in which 

synthetic lethal genes interact to cause cellular lethality. Firstly, mutation of two 

genes in one essential pathway can result in synthetic lethality. Secondly, 

synthetic lethality can occur if two genes that exist in parallel pathways were 

mutated, consequently hindering the formation of an essential product that 

would normally arise from both functional pathways. Finally, a mutation in two 

genes that are located on two independent survival pathways can also result in 

synthetic lethality (Canaani 2014).  

Synthetic lethality typically describes two genetic perturbations, however, a 

revolutionary hypothesis by Hartwell and Friend in the 1990’s has allowed us to 

broaden the scope of this phenomenon to include cellular synthetic lethality 

caused by a combination of a genetic mutation, for example loss of a tumour 

suppressor gene and chemical inhibition (Hartwell, Szankasi et al. 1997). It was 

this revelation that revealed the potential exploitation of chemical and genetic 

synthetic lethal screening for the development of new therapeutics/drug targets 

for cancer therapy.  To date, multiple synthetic lethal screens have been 

performed in various model organisms, such as Saccharomyces cerevisiae 

(Bender and Pringle 1991), Drosophila (Lucchesi 1968) and human cancer cell 

lines e.g. (Bryant, Schultz et al. 2005, Farmer, McCabe et al. 2005, Helleday 2011). 

The use of screens like these to identify new synthetic lethal interactions is on 

track to becoming advanced enough to identify interactions in specific cancer 

types and even individual tumours, a progression within the field that would be 

an invaluable addition to therapeutic decision making. 
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1.6.2.  Exploration of synthetic lethal interactions in Saccharomyces 

cerevisiae 

 

In the study of synthetic lethal gene interactions, a well characterised model 

organism is the budding yeast, S. cerevisiae, having been examined on a genome-

wide scale. This high-throughput survey of synthetic lethal interactions in S. 

cerevisiae has led to the discovery of multiple genetic interaction networks and 

allowed for a more diverse functional annotation of multiple genes (Pan, Ye et al. 

2006, Hillenmeyer, Fung et al. 2008, Lin, Qi et al. 2008, Costanzo, Baryshnikova 

et al. 2010, Nijman 2011). For example, RSC1, which is known to be an important 

factor in transcriptional regulation, was subsequently found to be required for 

chromosome stability (Measday, Baetz et al. 2005).  

In yeast, the evolution of high-throughput screening for synthetic lethality has 

been facilitated by the development of synthetic genetic array (SGA) analysis 

(Tong, Evangelista et al. 2001). Tong and Boone carried out the first example of 

SGA analysis of high-throughput synthetic lethal screening in 2001; they used 

two individually viable mutants and showed that when mutated together the 

result was a substantial fitness defect. It was found that genes were more likely 

to exhibit synthetic lethal phenotypes if the mutated genes were located in either 

the same essential pathway or two parallel non-essential pathways (Tong, 

Evangelista et al. 2001). They extrapolated data between two gene sets, 

identifying the number of genetic interactions and used statistical analysis to 

organise genetic interaction networks (Tong, Evangelista et al. 2001, Lin, Qi et al. 

2008). The evolvement of this type of screening and analysis has expanded our 

knowledge of DNA integrity and the understanding of functional relationships 

among different processes (Pan, Ye et al. 2006), as well as broadening our 

assessment of post-translational modifications of histones (Lin, Qi et al. 2008) to 

name a few contributions.  Whether using yeast gene interactions, as a prediction 

of synthetic lethality in higher eukaryotes is actually accurate and useful, remains 

unclear. There is debate to whether the general lack of conservation of synthetic 

lethal interactions is due to technical limitations, or the fact that some 

interactions may only be conserved in certain biological processes (Nijman 2011). 
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However, there are examples where yeast genetic interactions have been 

successfully translated in to mammalian cells (Yu, Lopez et al. 2008, Conde-Pueyo, 

Munteanu et al. 2009, McLellan, O'Neil et al. 2009, McManus, Barrett et al. 2009), 

so it suggests that even if it does come with limitations, there is some level of 

conservation between the two organisms. 

 

1.6.3.  Identification of human synthetic lethal interactions 

 

BRCA1/2 and PARP have a robust and reproducible synthetic lethal phenotype 

Hartwell and Friend’s proposal that exemplified the possibility of a synthetic 

lethal interaction between a genetic mutation and chemical inhibition facilitated 

a plethora of research in the mammalian model (Hartwell, Szankasi et al. 1997). 

The first model and to date the most striking example of this hypothesis coming 

to fruition lies in the synthetic lethal interaction found between BRCA1/2-

deficient tumours and Poly(ADP-Ribose) polymerase (PARP) inhibition (Bryant, 

Schultz et al. 2005, Farmer, McCabe et al. 2005, Helleday 2011).  

The tumour suppressor genes BRCA1 and BRCA2 are involved in the repair 

double strand breaks (DSB’s) by Homologous Recombination (HR) (Tutt and 

Ashworth 2002), mutation or loss of these genes in mammalian cells can lead to 

an increased incidence of breast, ovarian, prostate and other cancers (Canaani 

2014). PARP is an enzyme known to be involved in the repair single strand breaks 

(SSBs) (Strom, Johansson et al. 2011). If something goes awry in the repair of 

these SSBs, either naturally or by PARP inhibition, then at the point of DNA 

replication, the persistence of these unrepaired SSBs at replication forks will 

cause the fork to collapse and allow the SSBs to be converted to DSBs. The DSBs 

will subsequently be repaired by HR (Underhill, Toulmonde et al. 2011). It is 

thought that mechanistically, BRCA1/2-deficient tumours are synthetic lethal 

with PARP inhibition as a consequence of both the single strand break repair 

pathway and the HR pathway being compromised (Bryant, Schultz et al. 2005, 

Farmer, McCabe et al. 2005). After treatment with PARP inhibitors in BRCA1/2-

deficient tumours, it is postulated that the DSBs that arise aren’t able to be 
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repaired by HR and instead are repaired, for example via NHEJ, a process by 

which several chromatid aberrations are gained, ultimately resulting in cell death 

(Underhill, Toulmonde et al. 2011). Pre-clinically, as a ‘proof of principle’ 

different examples of BRCA-deficient cell lines and even mouse xenografts have 

been demonstrated to be sensitive to PARP inhibition (Bryant, Schultz et al. 2005, 

Farmer, McCabe et al. 2005). Consequently, the synthetic lethal relationship 

between BRCA1/2 and PARP was the first to be determined in mammalian cells 

and exploited clinically for cancer therapy as both a PARP1-inhibitor single agent 

or in combination with classical chemotherapies.  

 

Other examples of synthetic lethality  

Like BRCA1/2, other genes involved in HR or the DNA damage response (DDR) 

have been identified as sensitive to treatment with PARP inhibitors. For example; 

RAD51, ATM, ATR, ATRX, NBN, CHK1, CHK2, SHFM1, RPA1, mir-182, SWI5-SFR1, 

USP1/UAF1, CDK1, PTEN1, TMPRSS2-ERG fusion, PDS5B, as well as several 

Fanconi anemia proteins (Xia, Sheng et al. 2006, Lord and Ashworth 2012, Papeo, 

Casale et al. 2013, Canaani 2014).  

The term ‘BRCAness’ has been adopted to describe some genes that have 

phenotypic traits mimicking tumours with BRCA1 and BRCA2 mutations and can 

be defined as a defect in double strand break repair by HR. This state of BRCAness 

can be induced by various tumour-specific genetic or epigenetic signatures, for 

example blocking sites of ubiquitination at DNA damage contributes to the 

proapoptotic phenotype induced by proteasome inhibitors. Proteasome 

inhibitors can decrease nuclear foci formation of DNA damage response 

molecules like RAD51, due to defective ubiquitination. These changes together 

can inforce this state of BRCAness (Jacquemont and Taniguchi 2007). 

Oncogenic drivers, such as KRAS and MYC can also be targeted by synthetic-

lethality approaches, where previously they were not thought to be ‘druggable’. 

In a recent study, oncogenic mutations in KRAS were shown to exhibit synthetic 

lethality after topoisomerase inhibition (Steckel, Molina-Arcas et al. 2012) and 

Myc-driven cancers are found to have a synthetic lethal interaction with 
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mammalian target of rapamycin (mTOR)-dependent phosphorylation of 

eukaryotic translation initiation factor 4E binding protein-1 (4EBP1) 

(Pourdehnad, Truitt et al. 2013). These unique identifications are providing novel 

therapeutic approaches to make these commonly deregulated oncogenes 

druggable in the clinic. 

Interestingly, synthetic lethal gene targets for VHL-mutant cancers have been 

identified recently in a shRNA synthetic lethal screen. As mentioned previously, 

VHL is the most frequently mutated gene in ccRCC, with BAF180 (PBRM1) being 

the second. A screen of 100 shRNA vectors, targeting 88 kinases, was performed 

to identify synthetic lethal ‘hits’ that inhibit viability of VHL-/- renal carcinoma 

cells. This screen identified multiple hits including CDK6, MET and MAP2K1 

(MEK1) and found that small molecule inhibition of Cdk4/6 had preferential 

activity against VHL-/- renal carcinoma cells (Bommi-Reddy, Almeciga et al. 

2008). This suggests that shRNA screening for synthetic lethality has the 

potential to identify novel therapeutic targets. 

 

1.6.4.  Limitations and translational challenges 

 

Excluding the translation of the BRCA/PARP interaction from hypothesis to 

clinical therapy, there have been very few other interactions that have 

successfully progressed from discovery to the clinic. For several years we have 

had extensive knowledge of synthetic lethal interactions in mammalian cells, and 

though progress has been relatively slow, there are still endless interactions to 

be exploited and great potential for valuable therapeutic elucidation of these 

relationships. 

One of the contributing factors to this slow progression is the lack of potent 

inhibitors that are specific to a single target and that are cell permeable (Fece de 

la Cruz, Gapp et al. 2015). Most chemical inhibitors have a broad spectrum of 

potential cellular targets (Lehar, Stockwell et al. 2008), so regardless of an 

impartial, systematic approach to identifying targets, actually targeting them 

with available inhibitors in a gene-specific manner is a challenge. There is a very 
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real concern that genetic synthetic lethal interactions may never have 

pharmacological representation (Nijman and Friend 2013).  

Another factor that hinders the translation of synthetic lethal interactions is our 

restricted understanding of how they are influenced by the tumour 

microenvironment, along with genetic and epigenetic variation (Nijman and 

Friend 2013). Most cancers do not harbour just one mutation, there are generally 

multiple driver and passenger mutations that contribute to tumour progression 

(Pon and Marra 2015) and therefore it is important to take in to account the 

context of the molecular heterogeneity that is exhibited in individual cancers 

when treating therapeutically. A good example of where looking at the overall 

context of the tumour has paid off in the clinic is in colon cancer cells that harbour 

mutations in the BRAF gene. These cancers do not respond to BRAF inhibitors 

and are not targetable by chemical inhibition. However, it was found that these 

cancers deterred the effects of BRAF inhibition by a feedback mechanism that 

promotes signalling by the epidermal growth factors and therefore could be 

successfully treated with a combination of BRAF and epidermal growth factor 

inhibitors (Corcoran, Ebi et al. 2012, Prahallad, Sun et al. 2012, Nijman and Friend 

2013).  

It will be advantageous to develop a broader understanding of how synthetic 

lethal interactions are influenced by multiple factors, rather than to just rule out 

interactions because they do not immediately validate with a single drug. In turn, 

this gained knowledge of tumour context should progress target validation as 

well as allow for the development of better biomarkers and will pave the way for 

precision therapy. 
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1.7. PolyADP-Ribose Polymerase (PARP) 

 

When a target protein is modified with monomeric, short chains, or long 

branching chains of ADP-ribose (ADPR), it is a post-translational modification 

known as ADP-ribosylation, which can be carried out by various ADP-

ribosyltransferases and polymerases (ADP-RTs and PARPs.  

Poly(ADP-ribose) polymerases (PARPs) are enzymes that can transfer these 

poly(ADP-ribose) (PAR) groups to themselves as well as to target proteins and 

function within the DNA damage network (Dantzer and Santoro 2013). When 

DNA damage occurs, poly(ADP)ribosylation is rapidly catalysed by poly(ADP-

ribose) polymerases (PARPs) at DNA lesions and it is this which subsequently 

facilitates DNA damage repair (Li and Yu 2015). The modifications formed by 

PARPs are known to be involved in a number of functions in the DNA damage 

response, such as detection and signalling of DNA damage, chromatin relaxation, 

recruitment of DNA repair factors, repair of the lesion and restoration of 

chromatin structure (Figure 1.14) (Curtin and Sharma 2015). 
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Figure 1.14. PARP affects many cellular processes. The DNA repair 
process is affected by the post-translational modification of PARPs and other 
chromatin components by mono (ADP-ribose) (ADPR) or poly (ADP-ribose) 

(PAR) 
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1.7.1. The PARP superfamily 

 

Members of the PARP family can be found across a wide range of species and 

domains and have a conserved function as essential molecules from lower to 

higher eukaryotes. ADP-ribosyltransferases (ARTs) possess the ability to transfer 

ADP ribose groups from nicotine adenine dinucleotide (NAD+) on to a single or 

multiple charged amino acids found on target proteins (Curtin and Sharma 2015). 

Specifically poly(ADP-ribosyl)ation of nuclear proteins can establish a molecular 

link between DNA damage and chromatin modification after DNA damage. 

Advancements in genome sequencing and improved genetic approaches 

illuminated the possibility that there was more than one enzyme involved in the 

conversion of NAD+ to ADP-ribose polymers. To date there are at least eighteen 

proteins that contain PARP domains (Ame, Spenlehauer et al. 2004), however 

only 6 of these are known to have predicted or confirmed PARP activity, in which 

they are able to form short (oligomers) or long chains (polymers) of poly ADP-

ribose (PAR) extending from the surface of the target protein (Curtin and Sharma 

2015). Differences found in core motifs of the catalytic domains of these proteins 

account for the differences in catalytic activity (Kleine, Poreba et al. 2008).  

Polymerase activity is initiated when a PARP protein binds to a free end of DNA, 

this allows PARP to auto-ribosylate itself and/or trans-ribosylate target proteins, 

which includes histones and DNA repair factors that are in close proximity to the 

break (Curtin and Sharma 2015). Of the six PARP proteins that are thought to 

have PARP activity, only three are able to bind DNA, PARP1, PARP2 and PARP3 

(Curtin and Sharma 2015). The DNA binding capability of these three proteins 

comes from their N-terminal DNA binding domains and WGR domains that reside 

close to their catalytic domains (Langelier, Planck et al. 2012). 

The catalytic core domain of PARPs 1, 2 and 3, which is comprised of a triad of 

histidine, tyrosine and glutamate residues is conserved (Johansson 1999, Kleine, 

Poreba et al. 2008, Langelier, Planck et al. 2012). This conservation is particularly 

strong in the pocket within the catalytic core that coordinates the NAD+ substrate 

and it is this that is targeted by many PARP inhibitors, which act by providing a 

block for NAD+ binding (Clark, Ferris et al. 1971, Johansson 1999). 
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Although there is strong conservation between PARPs 1, 2 and 3, there is also 

notable variations found in the sequences of the N-terminal binding domains, 

which subsequently allows each PARP to react differently to stimulation from 

different substrates (Johansson 1999).  

As well as variations in the N-terminal domains, the length of poly ADP-ribose 

polymers produced by the different PARPs, while being chemically very similar, 

can vary greatly. For example, PARP3 typically uses mono ADP-ribose to modifiy 

proteins, but it is also known to generate short chains (Johansson 1999, Ame, 

Spenlehauer et al. 2004, Rulten, Fisher et al. 2011). However, it is still not known 

how polymer length, or the consequences that follow, are regulated in vivo and 

why (Hakme, Wong et al. 2008).  

To date, there is a vast amount of evidence that various cellular and physiological 

processes are influenced by the biological properties of different PARPs (De Vos, 

Schreiber et al. 2012). Localisation of PARP family members to a multitude of 

cellular components, which include the nucleus, cytoplasm, mitochondria and 

vault particles, have been identified, however the function of all of the known 

PARPs is still to be determined (Ame, Spenlehauer et al. 2004, Hassa and Hottiger 

2008). Members of the PARP family that localise primarily to the nucleus are 

PARPs 1, 2 and 3, as well as tankyrase 1 and 2 (aka. PARP-5a and -5b) (Schreiber, 

Dantzer et al. 2006, Hassa and Hottiger 2008). Other family members such as v-

PARP (PARP-4), PARP-6, PARP-8, PARP-9, PARP-10 and the Bal proteins Bal1-3 

(PARP-13, -14, -15) can too be found in the nucleus, however they are not 

restricted here (Krishnakumar and Kraus 2010). 

The incredibly varied interaction between PARP family members with multiple 

processes gives rise to a plethora of biological outcomes, that include but aren’t 

limited to, differentiation, development, stress responses, inflammation and 

cancer and therefore makes them an attractive family of proteins to research 

(Krishnakumar and Kraus 2010).  
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Figure 1.15. Functional domains of the key PARPs. Adapted from Rulten et 
al chapter within (Curtin and Sharma 2015). 
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1.7.2. PARP1 

 

The 113-kDa human protein, PARP1, is a nuclear enzyme involved in the 

detection of DNA strand breaks and is the founding member of the PARP 

superfamily.  

The most abundant and active of the three DNA-binding PARPs, PARP1 and its 

activation have been associated with acting downstream of multiple processes, 

including chromatin remodelling, transcription and telomere maintenance.  

PARP1 is thought to have an important role in DNA damage signalling and 

accelerating single strand break repair (SSBR) (Sanderson and Lindahl 2002, 

Fisher, Hochegger et al. 2007). It is a stable component of chromatin and accounts 

for 80-90% of the detectable PAR signal following DNA damage (Mullins, Giri et 

al. 1977, Giri, West et al. 1978, Lindahl, Satoh et al. 1995).  The N-terminal domain 

of PARP1 is responsible for its initial recruitment to sites of DNA damage, binding 

to this damage, whether it be a single strand or double strand break, its mediated 

by the two zinc fingers in this N-terminal domain. These zinc fingers also allow 

for the dimerization of PARP1 (Ali, Timinszky et al. 2012).  

Other repair factors are allowed to bind to sites of DNA damage after the 

dissociation of PARP1 from the break, this dissociation is an important step in the 

repair process that is mediated by auto-ribosylation of PARP1 with negatively 

charged PAR (Ferro and Olivera 1982, Zahradka and Ebisuzaki 1982). DNA 

binding and auto-modification of PARP1 attracts DNA repair proteins involved in 

SSBR, such as XRCC1, to the sites of damage, but is not thought to be essential for 

SSBR (de Murcia, Niedergang et al. 1997, Wang, Stingl et al. 1997, Shall and de 

Murcia 2000, El-Khamisy, Masutani et al. 2003). Recruitment of XRCC1 then acts 

as a scaffold for the further recruitment of other repair factors such as the end 

processing factors PNKP and Aprataxin and the chromain remodelers APLF and 

ALC1. Ligation of the repaired break is carried out by DNA ligase IIIα, which forms 

a heterodimer with XRCC1. 

PARP1 also binds to double strand breaks (DSBs) and has been implicated in 

several pathways that mediate DSB repair. The homologous recombination (HR) 

pathway, as described in section 1.1.3.2 uses the intact sister chromatid as a 
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template for repair. Loss or inhibition of PARP1 is able to induce a hyper-

recombination phenotype, presenting as spontaneously increased levels of sister 

chromatid exchange (SCE). Conversely, overexpression of PARP1 can suppress 

DNA damage-induced SCEs, suggesting the presence or absence of PARP1 is able 

to influence HR (de Murcia, Niedergang et al. 1997, Meyer, Muller et al. 2000). HR 

accessory factors, including breast cancer type 1 susceptibility protein (BRCA1), 

which forms a heterodimer with BRCA1-associated RING-domain protein 1 

(BARD1), can be recruited to sites of damage by PARP1 to accelerate repair (Li 

and Yu 2013, Curtin and Sharma 2015). PARP1 can also recruit the RNA-binding 

motif protein X-linked (RBMX) to sites of damage, positively regulating HR by the 

stabilisation of breast cancer type 2 susceptibility protein (BRCA2) (Adamson, 

Smogorzewska et al. 2012).  

 

1.7.3. PARP2  

 

PARP2 was first identified after the embryonic fibroblasts derived from PARP1 

deficient mice showed signs of residual DNA-dependent PARP activity (Shieh, 

Ame et al. 1998, Ame, Rolli et al. 1999). PARP2 is thought to have a key role in 

genome surveillance and protection and has been implicated in numerous 

cellular functions, which include genome and chromosome stability, 

heterochromatin integrity, cell death, differentiation and inflammation (Yelamos, 

Schreiber et al. 2008). Mammalian PARP2 is a 66.2kDa protein, with a catalytic 

domain that is 69% similar to that of PARP1 (Ame, Rolli et al. 1999, Oliver, Ame 

et al. 2004). Like PARP1, PARP2’s catalytic activity is stimulated by the presence 

of DNA strand breaks. Their targets, which include histones, DNA repair proteins 

and transcription factors, as well as themselves via auto-ribosylation, suggest 

they have a strong involvement in chromatin structure and DNA metabolism 

(Schreiber, Dantzer et al. 2006).  

PARP2 produces PAR that is of similar length and composition to PARP1, but it 

much less catalytically active, working at a rate of around 10-25% compared to 

PARP1 activity (Ame, Rolli et al. 1999). Similarly to PARP1, PARP2 is able to bind 
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DNA, with a functional DNA binding domain located at its N-terminus, together 

with a nuclear localisation signal (Shieh, Ame et al. 1998, Ame, Rolli et al. 1999, 

Leger, Bar et al. 2014). 

The DNA binding domain of PARP2 has similar homology to SAP domains that 

can be found in numerous nuclear proteins, such as AP-endonuclease and Ku70, 

which are known to be involved in chromosomal organisation and DNA repair 

(Aravind and Koonin 2000). 

PARP2 is able to form a homodimer with itself as well as a heterodimer with 

PARP1 and each protein can poly(ADP-ribosyl)ate the other (Schreiber, Ame et 

al. 2002). In PARP1 deficient systems, it is thought that PARP2 activity could 

compensate for this PARP1 loss, this is due to the proteins having similar targets 

as well as similar activity and profiles of stimulation (Curtin and Sharma 2015).  

As mentioned above, PARP1 and PARP2 have similar target proteins. Proteins 

involved in the base excision repair pathway, XRCC1 (x-ray cross complementing 

factor 1), DNA polymerase β and DNA ligase III, which are known partners of 

PARP1, have also been seen to interact with PARP2 (Schreiber, Ame et al. 2002). 

Like with PARP1, XRCC1 negatively regulates PARP2 activity as well as being a 

polymer acceptor for both PARP1 and PARP2 (Schreiber, Ame et al. 2002). To 

elucidate PARP2’s role in the DNA damage response, Schreiber et al treated 

PARP2-deficient cells with the alkylating agent N-nitroso-N-methylurea (MNU) 

and subsequently saw a delay in the repair of breaks that was comparable to the 

delay seen in PARP1 deficient cells, suggesting that PARP2 has an active role in 

base excision repair (Schreiber, Ame et al. 2002).  

It is worth mentioning that PARP2-/- mice, like PARP1-/- mice, are viable, however 

mice that are deficient in both genes are not, suggesting that there are 

overlapping essential development functions of PARP1 and PARP2 (Menissier de 

Murcia, Ricoul et al. 2003). Loss of PARP2 is also found to be embryonic lethal in 

mice in combination with ATM, where single deletion of each gene results in 

viable mice (Huber, Bai et al. 2004). 

As mentioned, PARP2 appears to have many overlapping functions and target 

proteins with PARP1 and it has been stipulated that it may act in a compensatory 
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manner following PARP1 deletion. However, PARP1 and PARP2 deficient mice 

are known to also exhibit different developmental and immunological defects, 

which could indicate a role for PARP2 in its own specific pathways, independent 

of PARP1 (Yelamos, Schreiber et al. 2008, Robert, Dantzer et al. 2009). 

 

1.7.4. PARP3  

 

PARP3 has a mass of 60.1kDa and was first discovered by searching an expressed 

sequence tag library with the sequence of human PARP1, with an aim to identify 

novel proteins with related sequences (Johansson 1999). Structurally, PARP3 is 

similar to PARP2 (Figure 1.15) and has a conserved catalytic domain, as identified 

by crystal structure, that is similar to PARP1 and PARP2 (Ruf, Mennissier de 

Murcia et al. 1996, Oliver, Ame et al. 2004, Lehtio, Jemth et al. 2009). PARP3 also 

has a DNA binding domain at the N-terminus that is divergent to PARP1 and 2 

and a WGR domain that is enriched with tryptophan, glycine and arginine (Dai, 

Rulten et al. 2015).  In mammalian cells, two isoforms of PARP3 exist, that vary at 

the N-terminal domain by just seven amino acids and it is unknown if the two 

isoforms carry out different functions, only the short isoform is present in mice 

(Augustin, Spenlehauer et al. 2003).  

PARP3 has diverse roles in multiple cellular processes, such as mitotic 

progression, maintenance of telomere stability and importantly in the damage 

response to repair DNA. 

PARP3 is implicated in the base excision repair pathway, as well as NHEJ, through 

its interaction with several proteins (Rouleau, McDonald et al. 2007). The ADP-

ribosyltransferase activity of PARP3 is thought to be able to be stimulated by DNA 

DSBs and has been shown to function together with APLF to promote NHEJ 

(Rulten, Fisher et al. 2011). 

PARP3 also has roles in the stabilisation of the mitotic spindle and in telomere 

integrity by regulating the mitotic components NuMA and tankyrase 1 (Boehler, 

Gauthier et al. 2011). After DNA damage occurs, PARP3 is also thought to affect 



89 
 

the choice between repair by HR and NHEJ pathways by limiting DNA end 

resection (Beck, Boehler et al. 2014).  
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2 Materials and Methods 

 

2.1. Materials  

 

2.1.1.  Mammalian expression plasmids 

 

GIPZ lentiviral shRNA vectors 

BAF180 and non-silencing control (NSC) GIPZ lentiviral shRNA vectors were 

purchased from Thermo Scientific and grown from glycerol stocks on LB (low salt) 

Ampicillin plates before isolating plasmid DNA using an EndoFree (Endotoxin-

free) Maxi-prep kit (Qiagen). The purchased vectors contain TurboGFP 

fluorescent marker, which was switched out for either GFP or RFP(mCherry) with 

a nuclear localisation signal (NLS), using primers provided by Hung Quang Dang 

(as listed in Table 2.2). The GFP/NLS and mCherry/NLS PCR fusion products (as 

described in Figure 2.1) were cloned in to pGEM-T-Easy Vector acting as a holding 

vector to allow for amplification. Restriction enzymes XBaI/NotI and SpeI/NotI 

were used to insert the GFP/NLS and mCherry/NLS respectively in to the GIPZ 

shBAF180 and shControl vectors. The plasmids subsequently created were 

named shBAF180+GFP/NLS, shBAF180+mCherry/NLS, shNSC+GFP/NLS and 

shNSC+mCherry/NLS.  

 

CRISPR Cas9 wild type/gRNA plasmids 

Cas9 wild type/gRNA plasmids with five different guide RNA’s were obtained 

from Horizon discovery as part of a free CRISPR guide program, coordinated by 

Chris Thorne, guide sequences as shown in Table 2.1. Due to low transfection 

efficiency of the Cas9/gRNA plasmids, co-transfection with a second plasmid with 

a selection marker was necessary. The pcDNA4-GFP-IRES-Puro plasmid was 

kindly provided by Prof. Keith Caldecott (University of Sussex). 
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Table 2.1. CRISPR Guide RNA’s used in this study 

Gene Gene ID Given Name  Sequence 

PBRM1 153269 CRISPR Construct 1 ATAGAAGAAGTTGGATTCCA 

PBRM1 153270 CRISPR Construct 2 CCCGCTGACACTGCTGGAAG 

PBRM1 153271 CRISPR Construct 3 GGCCTGGTGTTGACACAGAA 

PBRM1 153272 CRISPR Construct 4 AGGATCTACAGTTGGAAGAT 

PBRM1 153272 CRISPR Construct 4 GGCAATCTACACATTAGCAA 

 

2.1.2. Primers 

 

Primers used in this study for cloning of GIPZ lentiviral shRNA vectors and for 

SURVEYOR mutation assay are shown in Table 2.2.  

Table 2.2. Primers used in this study 

Primer Name Sequence 

o417_pGIPZ-CMV-XbaI-F ACGTGCTGCAGGTCCGAGGTTCTAGACGTATTACC 

o418_pGIPZ-CMV-AcGFP-

SpeI-R 

GGTGGCAGAACTAGTTCCTCTAGTAGAGTCGGT 

o419_pGIPZ-CMV-AcGFP-

SpeI-F 

ACCGACTCTACTAGAGGAACTAGTTCTGCCACCATGGT

GAGCAAGGGCG 

o420_pGIPZ-AcGFP-NotI-R GGGGCGGAATTTGCGGCCGCTTATCTAGATCCGGTGGA

TCC 

o421_pGIPZ-mCherry-R1 CTTCTTTTTTGGATCAGCTCGAGATCTGAGTCCGGACT

TGTACAGCTCGTCCATGCC 

o422_pGIPZ-mCherry-R2 GGGCGGAATTTGCGGCCGCTTATACCTTTCTCTTCTTT

TTTGGATCTACCTTTCTCTTCTTTTTTGGATCTACCTT

TCTCTTCTTTTTTGGATCAGCTCG 

F-CRISPR-1-4 CAAGGAAGTCCAGGGCTTA 

R-CRISPR-1-4 TTGTTTCCACATGGCTATATCC 

F-CRISPR-5 ACCAGGAGCATAAATCTGATG 

R-CRISPR-5 AGTCTCCCATGTAGCTGGGA 

F-CRISPR5(2) GAGTATGTAGGGCCCACACAAG 

R-CRISPR5(2) GTATCATTTAAGCCCATTCCTGC 
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Figure 2.1. Cloning strategy for the establishment of shRNA pGIPZ 
vectors expressing either GFP/NLS or mCherry/NLS 
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2.1.3. Antibodies 

 

In this study two commercially available human BAF180 antibodies, 

BAF180/PB1 (A301-591A) and BAF180 (ABE70) were purchased from Bethyl 

Laboratories (via Cambridge Bioscience, Cambridge, UK) and Merck Millipore 

(Hertfordshire, UK) respectively. Antibodies against ASF1A/B (sc-53171), BAP1 

(sc-28383), CTF18 (sc-374632), GCN5 (sc-130654), HDAC1 (sc-7872), HDAC4 

(sc-46672), RNF4 (sc-21351), TIP60 (sc-5727), CENPF (sc-22791) and RAD51 

(sc-8349) were purchased from Santa Cruz (California, USA). 53BP1 BP13 (A300-

272A antibodies were obtained from Bethyl Laboratories (via Cambridge 

Bioscience, Cambridge, UK), EZH2 D2C9 (5246), cleaved Caspase 3 Asp175 (9661) 

and H2AZ (2718) antibodies were purchased from Cell Signalling (Massachusetts, 

USA) and PARP1 (MCA15226) and PARP3 (ab96601) were purchased from Bio-

Rad (California, USA) and AbCam (Cambridge, UK) respectively. The loading 

controls Alpha-actin (A5060) and Alpha-tubulin DM1A (ab7291) were obtained 

from Sigma-Aldrich (Dorset, UK) and AbCam (Cambridge, UK) respectively. 

Mouse (PO260), Goat (PO449) and Rabbit (PO448) HRP conjugated 

immunoglobulins for use as secondary antibodies were purchased from Dako 

(Denmark). 

Antibody dilutions used for Western blotting, flow cytometry and 

immunofluorescence are further described in Table 2.3.  

 

2.1.4. Cells 

 

All cell lines used in this study were grown in 37oC incubators with 5% CO2 and 

all media was supplemented with 1% Penicillin/Streptomycin and 1% L-

Glutamine purchased from Gibco (Thermo Fisher), unless otherwise stated.  

The human osteosarcoma cell line, U2OS, were cultured in Dulbecco’s Modified 

Eagle Medium (DMEM) purchased from Gibco (Thermo Fisher) supplemented 

with 15% Foetal Bovine Serum (FBS). The lung cancer cell line, A549 and the two 

renal cell carcinoma cell lines, A-498 and A-704 were cultured in Minimum 
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Essential Media (MEM) purchased from Gibco (Thermo Fisher) supplemented 

with 10% FBS.The breast cancer cell line T47D and the two renal cell carcinoma 

cell lines, 786-0 and 769-P were cultured in Roswell Park Memorial Institute 

(RPMI) 1640 medium purchased from Gibco (Thermo Fisher), supplemented 

with 10% FBS. The renal cell carcinoma cell line Caki-1 was grown in McCoy’s 5a 

medium from Gibco (Thermo Fisher) and was supplemented with 10% FBS.  

All cell lines grow as a monolayer and were allowed to grow to around 70-90% 

confluency before being re-plated to Corning T-75 tissue culture flasks every 3-5 

days. No cell line was continually passaged for more than 6 weeks at a time to 

avoid sub-culturing, a decrease in cellular productivity and cellular 

differentiation, to name a few deleterious passage effects.  

 

2.1.5. Radiation 
 

Cells treated with irradiation were exposed to the radioisotope Caesium-137 

(137Cs 64 TBq – 1989). This radiation source emits radiation in the form of 

gamma rays and to a lesser extent, high-energy beta particles. As this source 

decays over time, the reading as of January 2016 was 6.2Gy/min. 
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Table 2.3. Antibodies used in this study 

  



96 
 

2.2. Methods 

 

2.2.1. siRNA knockdowns 

 

siRNA knockdowns were carried out using either HiPerfect transfection reagent 

(Qiagen) or Lipofectamine RNAiMAX reagent (Invitrogen). Cell lines were 

typically seeded at a density of 1-3x105 cells per 6cm dish in 3ml appropriate 

media and siRNA knockdowns were carried out as per the specific 

manufacturer’s instructions, using either single siRNA sequences or 

SMARTpool’s of four siRNA’s (Dharmacon ON-TARGETplus) on the day of seeding 

as well as 24 hours later. Treated cells were left for 72 hours from first 

transfection before being detached using 0.05% Tryspin-EDTA (Gibco) and were 

either harvested for whole cell extracts or taken on to further experiments.  

 

2.2.2. Whole cell extracts  

 

Cells were grown in either 6cm or 10cm dishes until confluent or until a specific 

time-point and de-attached using 0.05% Trypsin-EDTA (Gibco), which was 

deactivated by FBS containing media about 1 minute after Trypsin addition. Cells 

were pelleted by centrifugation at 1500 rpm at 4oC for 5 minutes. Pellets were 

washed twice with ice cold phosphate-buffered saline (PBS) and were either 

stored at -20oC or processed immediately. Whole cell extracts were prepared 

from the pellets using an edited version of Tanaka’s method (Tanaka et al., 1992). 

Method edited by Cornelia Meisenberg. The pellet was re-suspended in 1ml ice 

cold PBS and centrifuged at 3600 rpm at 4oC for 10 minutes and the supernatant 

was carefully removed. Pellets were re-suspended in around 4 packed cell 

volumes (PCV’s) of IP lysis buffer containing 20mM Tris-HCL ph7.5, 10mM EDTA 

ph 8.0, 100mM NaCl, 1% Triton X-100 and freshly added protease inhibitors 

(950μl IP lysis buffer with 50μl protease inhibitors). The cells were mixed 

thoroughly by rocking at 4oC for 30 minutes and subsequently sheered by two 

rounds of sonication set to 30 seconds on/30 seconds off pulses, using the 
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Diagenode Bioruptor sonicating water bath. Cell lysate was centrifuged at 13000 

rpm at 4oC for 10 minutes. Supernatant was carefully collected and stored at -

20oC or -80oC for long term storage until needed. 

 

2.2.3. Protein concentration - Bradford assay 

 

The Bradford assay was used to measure the protein concentrations of whole cell 

extracts for western blotting, using Bio-Rad protein assay reagent (Bio-Rad). 2μl 

of whole cell extract sample were diluted in 18μl ddH20 and further diluted in 

980μl of the dye reagent at 1 x concentration. A blank sample was used to 

standardize sample readings and absorbance measurements at an optical density 

of 595 nm were read using a UV spectrophotometer. A reference BSA protein 

standard at 0.2mg/ml sample was also measured for calculation of protein 

concentration. 

 

2.2.4. Western blotting – SDS-PAGE 

 

Proteins were resolved on 8, 10, 12 or 15% separating gels depending on the size 

of the protein of interest by sodium dodecyl sulfate (SDS) polyacrylamide gel 

electrophoresis (PAGE). Separating gel solutions were made as described in 

Table 2.4 below and poured between 1.5mm Mini-PROTEAN spacer plates (Bio-

Rad) leaving a 1-1.5 inch gap for the stacking gel. A layer of isopropanol was 

swiftly added to the top of the separating gel allowing it to set with a straight edge. 

The isopropanol was completely removed before the stacking gel solution (see 

Table 2.4) was added to the gel cast along with a protein gel comb and was 

allowed to set.   
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Table 2.4. Separation and stacking gel components for SDS-PAGE 

Gel Type 8% 10% 12% 15% Stacking 
(2ml) 

ddH20 2.9ml 2.5ml 2.1ml 1.5ml 1.0ml 
Separation buffer 1.5ml 1.5ml 1.5ml 1.5ml -- 

Stacking buffer -- -- -- -- 0.5ml 
APS 75µl 75µl 75µl 75µl 25µl 

TEMED 7.5µl 7.5µl 7.5µl 7.5µl 2.5µl 
Acrylamide 

(30% - 37:5:1) 
1.6ml 2.0ml 2.4ml 3.0ml 0.5ml 

 

Protein concentration was determined by Bradford assay (as described in 2.2.3) 

to allow for accurate loading. 20-40μg of whole cell extract was diluted in 4x 

NuPAGE LDS Sample Buffer (Novex, Thermo Fisher) with 5% 2-Mercaptoethanol 

(BME) freshly added, before being denatured at 95oC for 5-10 minutes. The 

previously made gels were transferred to Mini-PROTEAN Tetra Vertical 

Electrophoresis Cell tanks (Bio-Rad), which were then filled with 1x SDS-PAGE 

running buffer. Samples were loaded in the gel alongside a molecular weight 

ladder, Precision Plus Protein Dual Color Standards (Bio-Rad) and run at 150 V 

for approximately 1 hour or until the dye front reached the bottom of the gel. 

Resolved proteins were then immobilised on nitrocellulose membrane (GE 

Healthcare) at 250 mA with constant Amps for 90 minutes in SDS-PAGE transfer 

buffer. Membranes were then blocked in 5% Milk-TBST (Tris-Buffered Saline and 

Tween 20) or 3% BSA-TBST for 1 hour at room temperature. Membranes were 

either left whole or cut with a sterile scalpel to further incubate with specific 

antibodies. Appropriate primary antibodies were diluted in 5% Milk-TBST or 3% 

BSA-TBST and added to the membrane, before being transferred to 4oC overnight 

with shaking. The membrane was washed three times for 5 minutes with PBS and 

then incubated for at least 1 hour with a similarly diluted secondary antibody. 

Membranes were washed again with PBS three times and then proteins were 

visualised on film using enhanced chemiluminescence (ECL). 
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2.2.5. Agarose gel electrophoresis 

 

1% agarose gels were generally used throughout the study to analyse DNA 

samples, however in experiments such as the SURVEYOR mutation detection 

assay (as described in 2.2.15), where DNA fragments smaller than 500 bp are 

separated, 2% gels were used. Agarose powder (Sigma) was added to 1 x TAE 

buffer and heated using a microwave until completely dissolved. The mixture was 

allowed to cool for about 5 minutes before ethidium bromide was added to a final 

concentration of around 0.2-0.5μg/ml (usually around 1μl/40ml). The agarose 

mixture was poured in to a gel tray with gel combs and allowed to set. Gels were 

placed in to gel tanks filled with 1 x TAE buffer and DNA samples diluted in 6x 

loading buffer (NEB) were loaded alongside either 1 kb or 100 bp DNA ladders 

(NEB), depending on the expected size of DNA fragments, for size comparison. 

Electrophoresis was carried out, running the gels at around 90-120V, depending 

on gel size, for 30 minutes before DNA bands were analysed using UV 

transillumination.  

 

2.2.6. Gel Purification 

 

DNA bands were observed from agarose gels after separation by electrophoresis, 

using UV transillumination. Correct bands were excised from the gel using a 

sterile scalpel and DNA was subsequently purified using QIAquick Gel Extraction 

Kit (Qiagen), following the manufacturer’s instructions. 

 

2.2.7. Restriction Digests 

 

Double and single restriction digests were typically set up using restriction 

enzymes and CutSmart Buffer purchased from NEB. 1-3µg DNA, usually around 

2-5µl, was typically digested in a 50µl reaction, composed of 5µl 10x CutSmart 

buffer, 1µl of each restriction enzyme and made up to the total volume with 
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sterile water. Digestions were typically left for at least 1 hour, sometimes 

overnight, at 37oC. Digestions were analysed by agarose gel electrophoresis (see 

section 2.2.5) and correct fragments were gel purified (see section 2.2.6) before 

being ligated in to a secondary plasmid. 

 

2.2.8. Ligation 

 

20µl ligation reactions were carried out using T4 DNA ligase (NEB), 10x T4 DNA 

Ligase Buffer (NEB), sterile water and a given ratio of purified DNA insert to 

vector. The amount of insert needed for a specific ratio was calculated by first 

observing the standard 1:1 ratio:  

[Length Insert (kb) / Length Vector (kb)] x ng of Vector = ng insert needed for 1:1 

Typically a 4:1 Insert : Vector ratio was used. Ligation reactions were incubated 

for at least 15 minutes at room temperature, but in most cases were typically left 

overnight before being transformed in to XL1-Blue Competent E. Coli cells (as 

described in section 2.2.9). 

 

2.2.9. XL1-Blue E. Coli transformation 

 

Freshly prepared ligation reactions (As described in 2.2.8) or plasmid DNA 

(around 100-200ng) were added to 50µl XL1-Blue competent cells that had 

previously been thawed on ice for 15 minutes. The DNA/E. Coli mixture was 

gently pipetted and incubated on ice for 40 minutes. The cells were heat shocked 

in a 42oC water bath for 40 seconds and then placed back on ice. 500µl LB broth, 

without antibiotic, was added and cells were allowed to recover at 37oC for 1 hour. 

Cells were pelleted using a bench top centrifuge at 1500rpm for 1 minute and all 

but 100µl of the supernatant was subsequently discarded. The cell pellet was re-

suspended in the remaining supernatant and spread on LB plates containing the 

appropriate antibiotics and further incubated at 37oC overnight.  
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2.2.10. Blue-white screening of bacterial colonies 

 

100µl of 100mM IPTG (Isopropyl β-D-1-thiogalactopyranoside) and 20µl of 

50mg/ml XGal (5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside) were 

spread over solid LB plates with appropriate antibiotics and allowed to dry prior 

to use in transformation reactions (as described in 2.2.9). Blue white screening 

was used to analyse the correct intake of recombinant E. Coli containing plasmids 

by the production of blue or white colonies formed by either functional β-

galactosidase (encoded by the lacZ gene) or disrupted/inactivated β-

galactosidase production respectively.  

 

2.2.11. PCR Amplification of DNA 

 

PCR amplifications were carried out using the high-fidelity DNA polymerase, 

Phusion (NEB) and a typical 50µl reaction was set up on ice as follows:  

 

Component 50µl Reaction 

MilliQ H20 To 50 µl 

5X Phusion HF Buffer 10 µl 

5mM dNTPs 2 µl 

10 µM Forward Primer 1 µl 

10 µM Reverse Primer 1 µl 

Template DNA Variable 

Phusion DNA Polymerase 0.5 µl 

 

PCR reaction mixtures were immediately transferred to a bench top themocycler 

for amplification. 

A typical PCR cycling programme was as follows:  
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Step Temperature Time 

Initial Denaturation 98oC 2 min 

30 Cycles – Denature 

Annealing 

Extension 

98oC 

60oC 

72oC 

10 secs 

30 secs 

3 min 

Final Extension 72oC 10 min 

Finish Hold 4oC Infinite 

 

PCR products were either stored at 4oC or 1-5µl was immediately analysed by 

agarose gel electrophoresis (as described in section 2.2.5). 

  

2.2.12. Stable shRNA cell line transfection 

 

Using both the unaltered and the altered pGIPZ shRNA plasmids (as described in 

2.1.1), cells were seeded at a density of 2x105 per well in a 24 well plate and 

transfected with the plasmid DNA 24 hours later as per the manufacturer’s 

instructions (Thermo Scientific). After optimisation of the protocol, 4µg rather 

than the recommended 1µg of DNA was used, as well as 6µl rather than the 

suggested range of 1-2.8µl of TurboFect was diluted in 100µl OptiMEM. 

Transgene expression was analysed in the 24-48-hour period following 

transfection and cells that appeared to express either the GFP or mCherry 

fluorescent proteins were put under continuous puromycin (Fisher Scientific) 

antibiotic selection. Antibiotic dose response curves were carried out for each cell 

line to determine the minimum dose of antibiotic to kill any non-transfected cells, 

details of which are noted in the table below: 

Cell Line Puromycin Dose 

U2OS 1.5 μg/ml 

A549 0.75 μg/ml 

786-0 0.9 μg/ml 

T47D 1 μg/ml 
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2.2.13. CRISPR cell line transfection 

 

Creation of BAF180 CRISPR knockout cell lines, using guide RNA’s (section 2.1.1.) 

was carried out with direction from Chris Thorne (Horizon Discovery), however 

optimisation of their protocol, as well as the introduction of a secondary plasmid 

(section 2.1.1.) was required to achieve significant transfection levels.  

Cells were seeded at a density of 5x104 cells per well in a 24 well plate and were 

transfected 24 hours later. A transfection reagent comprised of 100μl OptiMEM, 

2μl TurboFect, 0.5μg of each given CRISPR construct and 0.25μg of the empty 

vector pcDNA4-GFP-IRES-Puro was incubated for 30 minutes and then added 

drop wise to the cells. Transient GFP expression from the empty vector plasmid 

was analysed 24 hours later and successfully transfected cells were put under 

puromycin antibiotic selection for 3-5 days. Successfully transfected cells were 

grown for gDNA extraction (section 2.2.14) and the success of each CRISPR guide 

was determined using the SURVEYOR mutation detection assay (see section 

2.2.15). A single CRISPR guide was then chosen as ‘most efficient’ and cells that 

had been previously transfected with that guide were single cell diluted to 

establish a clonogenic cell line. Single clones were grown to confluency in 96 well 

plates and then split to three new 96 well plates, one for continuous passage, one 

for genomic DNA extraction and one for freezing. Genomic DNA was harvested 

from these plates (section 2.2.14) and successful clones were determined again 

by the SURVEYOR mutation detection assay (section 2.2.15). Any clones that 

appeared to have the mutation introduced by the CRISPR guide was then 

expanded and BAF180 expression was checked by Western blotting (section 

2.2.4) as well as by sequencing (GATC-biotech). 

 

2.2.14. Genomic DNA extraction  

 

Genomic DNA extraction from cultured cells – Large scale format 

U2OS and 786-0 cells were grown in 10cm tissue culture dishes and harvested 

when confluent, giving a typical yield of around 4x106 cells. Harvested cells were 
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pelleted by centrifugation at 1500 rpm for 5 minutes and then re-suspended in 

500µl Tail lysis buffer for genomic DNA extraction, composed of 50mM Tris-HCL, 

pH 8.8, 100mM EDTA, 100mM NaCl and 1% SDS. To this, 500µl 

Phenol/Chloroform/Isoamyl (25:24:1) alcohol was added and cells were agitated 

until an emulsion formed. The samples were centrifuged in a bench top microfuge 

at maximum speed for 5 minutes, here you can observe the lysis solution forming 

three distinct layers. The top layer, or aqueous phase, was carefully removed to a 

new Eppendorf and 200µl saturated NaCl (5-6M) was added and then the mixture 

was shaken vigorously for 5 minutes before being centrifuged for 10 minutes at 

maximum speed. The supernatant was carefully poured in to a new Eppendorf 

and 700µl Isopropanol was added and mixed by inversion. At this stage you can 

see the DNA appear as a cloud within the solution. The solution was then spun 

again at maximum speed for 10 minutes, revealing a very clear, spread out pellet 

of DNA. The pellet was washed with 70% ethanol for 1 minute and further 

centrifuged for 5 minutes at maximum speed, forming a smaller, more compact 

pellet. An appropriate amount of TE buffer was added to the pellet and was then 

left at room temperature overnight to aid DNA re-suspension.  

 

Genomic DNA extraction from cultured cells - 96 well plate format 

Genomic DNA was harvested from 96 well plates as set out by Sigma-Aldrich in a 

technical bulletin that describes the harvesting of genomic DNA after delivery of 

zinc finger nucleases (http://www.sigmaaldrich.com/content/dam/sigma-

aldrich/docs/Sigma/Bulletin/1/ckozfndbul.pdf).  

 

2.2.15. SURVEYOR mutation detection assay  

 

The detection of mutated/deleted DNA sequences, introduced by the transfection 

of CRISPR guides to cells, was carried out using the SURVEYOR mutation 

detection kit (Transgenomic). Genomic DNA was harvested from CRISPR gRNA 

transfected ‘test’ cells as well as from untreated ‘control’ cells (as described in 

http://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma/Bulletin/1/ckozfndbul.pdf
http://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma/Bulletin/1/ckozfndbul.pdf
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2.2.14) and the specific region of interest, i.e. where the CRISPR guide should ‘cut’ 

the DNA, was amplified by PCR (section 2.2.11) using primers listed in Table 2.2. 

The PCR products were analysed on 2% agarose gels. Alongside ‘test’ and ‘control’ 

DNA samples, the SURVEYOR mutation detection kit provides two reference 

plasmid DNAs, Control C and Control G, which were also PCR amplified, as per the 

manufacturer’s instructions. The PCR amplified DNA samples were then 

hybridized to form hetero- and homoduplexes. A typical set up of this reaction 

was as follows: 

 

PCR Amplified Component Amount 

SURVEYOR Control C  30 µl 

SURVEYOR Control C + Control G 15 µl + 15 µl 

Untreated ‘Control’ Cells 40 µl 

CRISPR gRNA treated Cells 40 µl 

Control Cells + CRISPR gRNA Cells 20 µl + 20 µl 

 

The hybridization reaction tubes were secured with Eppendorf cap locks, to stop 

the lids from popping open, and were heated in a heat block at 95oC for 5 minutes. 

The entire block was then allowed to cool to 30oC before digesting the samples 

with the SURVEYOR nuclease exactly as described in the manufacturer’s 

instructions. A typical set up of this digestion reaction was as follows:  

 

For SURVEYOR Control C and 

Control C + Control G Reactions 

 For ‘Control’ and ‘Test’ hetero- and 

homoduplexes 

Component Amount  Component Amount 

Hybridized Sample 12 µl  Hybridized Sample 30 µl 

0.15M MgCl2 1.2 µl  0.15M MgCl2 3 µl 

SURVEYOR Enhancer S 1 µl  SURVEYOR Enhancer S 1 µl 

SURVEYOR Nuclease S 1 µl  SURVEYOR Nuclease S 1 µl 

Stop Solution (added 

after incubation) 

1.5 µl  Stop Solution (added 

after incubation) 

3.5 µl 
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The digestions were mixed gently by vortex and subsequently incubated at 42oC 

for 60 minutes. Immediately after the incubation period, the SURVEYOR Stop 

Solution was added to each reaction and products were either stored at -20oC or 

analysed by agarose gel electrophoresis immediately (section 2.2.5). 

Homoduplexes appear on 2% agarose gels as a single DNA band, whereas 

heteroduplexes are cleaved by the SURVEYOR nuclease enzyme and will appear 

as fragmented DNA.  

 

2.2.16. CellTiter-Glo viability assay 

 

Viability after siRNA gene knockdown 

For viability assays performed after siRNA treatment, cells were treated as 

described in 2.2.1, harvesting those 72 hours after primary transfection. Cells 

were counted and re-seeded at a density of 3x103 per well in triplicate per 

condition in to a flat bottom white 96 well microplate (Nunc – Thermo Scientific). 

Viable or metabolically active cells, determined by quantification of active ATP, 

were measured 24 hours later. CellTiter-Glo reagent (Promega) was added in a 

1:1 ratio with media to the cells and left at room temperature for 15 minutes, 

luminescence was observed using the GloMAX-Multi Microplate reader 

(Promega). 

 

Viability after drug treatment 

Cells were seeded at a density of 8x103 per well directly in to a flat bottom white 

96 well microplate (Nunc – Thermo Scientific) and left to adhere. 24 hours after 

seeding, fresh medium was added to the cells, supplemented with drug. Drug 

doses were performed in triplicate wells and DMSO was used as a vehicle control 

in all cases. Cells were left in the supplemented medium for a further 96 hours 

before being treated with the CellTiter-Glo reagent as described above.  

 



107 
 

2.2.17. High-throughput siRNA screening 

 

shBAF180+GFP/NLS and shControl+mCherry/NLS U2OS cells were seeded at a 

1:1 density of 8000 cells per well in 96-well plates. Cells were reverse transfected 

with a RNAi library of 446 genes with Lipofectamine RNAi MAX at a final siRNA 

concentration of 20nM. Cells were grown for 72 hours, permeabilised, fixed in 4% 

PFA and stained with DAPI. Screened cells were imaged at 10x magnification in 

16 frames per well, imaging more than 10,000 cells per well. 

 

2.2.18. Clonogenic survival assay 

 

Clonogenic survival after siRNA gene knockdown 

siRNA knockdowns were carried out as described in 2.2.1 and at the 72 hour time 

point after primary transfection, cells were either harvested for Western blot 

(section 2.2.4) or were seeded to 6cm dishes at a density of 300 cells per dish, in 

triplicate per condition. Cells were allowed to grow for 12-14 days, or until visible 

colonies were observed. Media was discarded from the plates and cells were 

stained with methylene blue for 1 hour. The methylene blue stain was washed 

away gently with water and plates were allowed to dry before scoring colonies 

using a Stuart Scientific SC6 colony counter (Sigma-Aldrich). Any colony that 

appeared to contain 50 cells or more was counted and the surviving fraction was 

worked out as a percentage of the siRNA treated cells compared to siControl cells. 

 

Clonogenic survival after drug treatment (+/- Irradiation) 

Cells were plated to 10cm dishes at a density of 300 cells per plate in 9ml of 

appropriate medium and were left to adhere for at least 4 hours, or overnight if 

seeding took place late in the evening and treatment was carried out early the 

next morning to ensure cells haven’t gone through a cellular division before 

treatment. The cells were then treated with varying doses of drug in triplicate, 
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made up in 1ml of appropriate medium and this was added to the medium 

already in culture, making a total plate media volume of 10ml. The plates were 

incubated for 12-14 days or until visible colonies were observed. The plates were 

stained and counted as described above. For plates treated with irradiation as 

well as drug, the lowest concentration of drug where you are able to observe a 

difference was determined and varying doses of gamma irradiation was inflicted 

on the plates containing the 300 adhered cells, after addition of the drug.  

 

2.2.19. Immunofluorescence 

 

Cells were grown in 96 well plates and siRNA treated in the same manner as 

described in the high-throughput siRNA screen (section 2.2.17). When cells were 

70-90% confluent, media was removed and cells were washed with PBS before 

fixing in 4% paraformaldehyde for 10 minutes. Cells were washed twice with PBS 

and were either immediately subjected to antibody staining or were kept at 4oC 

for up to 72 hours. PBS was removed and cellular membranes were 

permeabilized with PBS + 0.2% Triton X-100 for 3 minutes before being 

incubated in primary antibody (at appropriate dilution) in PBS + 2% w/v BSA for 

1 hour. Cells were washed three times with PBS before incubating with secondary 

antibody (at appropriate dilution) in PBS + 2% w/v BSA for 30 minutes at room 

temperature in the dark. Cells were washed three times with PBS, incubated with 

DAPI and visualised at 20x objective using the EVOS fluorescent digital inverted 

microscope.   

 

2.2.20. Flow Cytometric Immunofluorescence Analysis 

 

For flow cytometric immunofluorescence analysis, U2OS stable shControl and 

shBAF180 cells were seeded at a density of around 1x106 in 10 cm dishes and 

cultured for 24 hours before the addition of the drugs Olaparib and Camptothecin 

at stated doses in duplicate per dose/time point. Cells were harvested at 0, 24, 48, 

72 and 96 hour time points and pelleted by centrifugation at 1500 rpm for 5 



109 
 

minutes. To fix the cells, 1ml 70% Ethanol (EtOH) was added drop wise to the 

pellets whilst gently vortexing, storing the fixed cells at -20oC until the final time 

point is harvested. Once all samples are collected, the fixed cells are then pelleted 

by centrifugation at 1000 rpm for 3 minutes and gently washed in PBS before a 

second round of centrifugation. The cells are then re-suspended in 1ml PBS + 0.1% 

BSA using a Gilson pipette and centrifuged again before re-suspending in 2ml PBS 

+ 0.5% BSA + 0.25% Triton X-100 and incubated on ice for 15 minutes and 

subsequently centrifuged again at 1000 rpm for 3 minutes. The pellet, depending 

on size was then re-suspended in 50-100µl PBS + 0.5% BSA + 0.25% Triton X-

100 cleaved Caspase 3 Asp175 (9661) at 1:500 dilution and incubated at room 

temperature for at least 1 hour. The cells were then washed with PBS + 0.5% BSA 

+ 0.25% Triton X-100, re-pelleted by centrifugation and further incubated in 50-

100µl PBS + 0.5% BSA + 0.25% Triton X-100 with anti-rabbit 488 secondary 

antibody at a 1:500 dilution at room temperature in the dark for 30 minutes. Cells 

were then washed with PBS + 0.5% BSA + 0.25% Triton X-100 and re-suspended 

in 200-400µl Propidium Iodide (PI) solution with 5µg/ml PI and 100µg/ml 

RNAase I and incubated at room temperature in the dark for 15 minutes. Samples 

were then transferred to 4oC for overnight storage. Cells were passed through a 

fine-gauge needle prior to sampling on the BD Accuri C6 plus flow cytometer (BD 

Bioscience). 

 

2.2.21. RAD51 foci formation assay 

 

For RAD51 foci formation, U2OS cells were seeded at a density of 3x105 in to two 

6cm tissue culture dishes in 3ml of medium per dish. A transfection reagent 

composed of 200µl OptiMEM (Gibco), 12µl HiPerfect (Qiagen) and 6µl of either 

siControl or siBAF180 (ON-TARGETplus SMARTpool Dharmacon) at 20μM stock 

was then added drop wise to the cells. 24 hours later the transfection reagent was 

made as before and was added to the area of two sterile coverslips in fresh 6cm 

dishes. The cells were gently detached, using trypsin and were re-seeded to the 

new 6cm dishes containing coverslips. 48 hours later, or when cells appear 

almost confluent on the coverslips, Aphidicolin (Sigma-Aldrich) was added to the 



110 
 

medium at a dilution of 1:1000 to prevent S phase cells from progressing to G2. 

One coverslip from each dish was then taken to a new dish and washed twice with 

PBS, permeabilization of the cellular membrane was then achieved by adding PBS 

+ 0.2% Triton to the cells for no more than 60 seconds. The cells were then fixed 

in 4% paraformaldehyde for 10 minutes before being washed three times with 

PBS and stored at 4oC. The coverslips that remain in the 6cm dishes with media 

were irradiated with gamma radiation to the extent of 3 Gy and were returned to 

the 37oC incubator with 5% CO2 for 2 hours before being permeabilised and fixed 

as described previously. Coverslips were either antibody stained immediately or 

stored at 4oC for up to 72 hours. If immediately sampling coverslips, PBS was 

removed and slips were incubated in PBS with 1:200 dilution of Anti-RAD51 (sc-

8349) primary antibody for 1 hour, with 1:200 dilution of Rabbit Cy3 secondary 

antibody for 30 minutes, with 1:1000 dilution of Anti-CENPF (sc-22791) primary 

antibody for 1 hour and finally with a 1:400 dilution of Alexa-488 secondary 

antibody for 30 minutes. Between each antibody addition, coverslips were 

washed with PBS three times. Coverslips were then mounted to microscope slides 

using VECTASHIELD Antifade Mounting Medium with DAPI (Vector 

Laboratories). RAD51 foci were scored by eye in G2 positive cells only using the 

Zeiss 3D microscope. 
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3. Hypothesis driven synthetic lethal screen 

 

3.1. Introduction 

 

The principle of synthetic lethality, as described fully in section 1.6, defines a 

genetic relationship between a pair of genes, where the loss of either gene is 

permissive for cell survival but the combinatory loss of both genes together is 

resultant in cell death or a retardation of growth. Synthetic lethality can be 

observed in genes that act in the same biochemical pathway as well as in distinct, 

but compensatory pathways (Pan, Ye et al. 2006).  

Originally, the phenomenon of synthetic lethality was exploited to elucidate 

functional relationships between genes in yeast, but more recently the principle 

has been harnessed in the search for targeted cancer therapy. As previously 

described, there have been multiple examples where yeast genetic interactions 

have been translated to mammalian cells (Yu, Lopez et al. 2008, Conde-Pueyo, 

Munteanu et al. 2009, McLellan, O'Neil et al. 2009, McManus, Barrett et al. 2009). 

Using this potentially translatable observation as well as the data from three 

independent synthetic lethal screens in yeast, we identified eight genes with 

synthetic lethal interactions with yeast homologues of BAF180 (Rsc1 and Rsc2) 

to take forward for experimentation in mammalian cells (Table 3.1). Of the many 

potential synthetic lethal candidate genes that could be explored, we chose these 

eight due to their strong sequence conservation from yeast to mammalian cells, 

they were all synthetic lethal or synthetic sick with Rsc1 and/or Rsc2, the 

deletion of all genes alone are not thought to be deleterious to ‘normal’ cells and 

they are all potentially targetable by drugs. 

Of the eight genes identified as potentially synthetic lethal with BAF180, four of 

them, Asf1 (ASF1A, ASF1B), CTF18 and SLX5 (RNF4), were identified in a screen 

that sought to use global genetic analysis to identify novel synthetic fitness or 

lethality defect interactions in the DNA integrity network of S. cerevisiae (Pan, Ye 

et al. 2006).  
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Anti-silencing function 1 (Asf1) is a histone chaperone that participates in both 

nucleosome assembly and disassembly (Park and Luger 2008, Krebs and Tora 

2009, Oh, Ruskoski et al. 2012). Asf1 is a histone H3/H4 chaperone in the context 

of DNA replication and together with CAF-1 and PCNA works to assemble 

nucleosomes on replicated DNA (Franco, Lam et al. 2005, Sanematsu, Takami et 

al. 2006, Groth, Corpet et al. 2007, Miller, Yang et al. 2008). Cells that have lost 

the Asf1 protein have impairments in DNA replication (Schulz and Tyler 2006). 

In mammalian cells there are two isoforms of Asf1, which are ASF1A and ASF1B. 

These mammalian isoforms have a highly conserved N-terminus, which acts as a 

binding interface for both the H3.1-H4 replicative histones and the H3.3-H4 

replacement histones (De Koning, Corpet et al. 2007, Corpet, De Koning et al. 

2011). Like Asf1 in yeast, the mammalian isoforms also interact with CAF-1 in the 

replication-coupled assembly pathway (Mello, Sillje et al. 2002). A good 

representation of the conservation between yeast Asf1 and the two human 

isoforms can be seen when human ASF1A introduced in to yeast is able to rescue 

the DNA damage response defect created from the depletion of endogenous Asf1 

(Tamburini, Carson et al. 2005, Corpet, De Koning et al. 2011). Furthermore, 

introduction of human ASF1B to Asf1 depleted yeast cells can compensate for the 

associated growth defects and the sensitivity to replication stress (Tamburini, 

Carson et al. 2005, Corpet, De Koning et al. 2011). 

The rather aptly named Chromosome transmission fidelity protein 18 (CTF18) is 

required for the faithful segregation of chromosomes (Hanna, Kroll et al. 2001). 

It is a component of the CTF18-RFC complex, composed of Ctf18, Ctf8, Dcc1 along 

with four small subunits (Rfc2-5) of replication factor C (RFC), which as a whole 

is necessary for sister chromatid cohesion and faithful chromosome transmission 

(Mayer, Gygi et al. 2001, Bylund and Burgers 2005). Loss of CTF18 is associated 

with a severe sister chromatid cohesion defect, failed maintenance of telomeres, 

and results in a preanaphase accumulation of cells that depends on the spindle 

assembly checkpoint. CTF18-defective cells have an increased sensitivity to 

microtubule depolymerizing drugs and hypersensitivity to the chemotherapeutic 

drugs methyl methanesulfonate (MMS) and hydroxyurea (HU) (Hanna, Kroll et al. 

2001, Mayer, Gygi et al. 2001, Kubota, Hiraga et al. 2011). 
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RING finger protein 4 (RNF4), also known as small nuclear RING finger protein 

(SNURF) (Moilanen, Poukka et al. 1998) is an E3 ubiquitin-protein ligase that 

mediates the proteasomal degradation of several proteins including the 

promyelocytic leukaemia (PML) protein and the transcriptional activator PEA3. 

A C3HC4 (RING-HC)-type RING finger motif resides at RNF4s C-terminal domain 

(Moilanen, Poukka et al. 1998). RNF4 is the best characterised SUMO targeted 

ubiquitin ligase (STUbL) in human cells. STUbLs can contain individual or 

multiple SUMO interacting motifs (SIMs) that can recognise SUMO chains and 

target poly-SUMOylated proteins for proteasome-mediated degradation. RNF4, 

using SIMs, can recognise SUMO chains, for example the poly-SUMOylated PML, 

acting to ubiquitinate the PML as well as the poly-SUMO chains attached to it, 

subsequently directing PML for proteasomal degradation (Tatham, Geoffroy et al. 

2008). RNF4 has also been associated with chromosome alignment and spindle 

assembly by the regulation of the kinetochore complex CENPH-CENPI-CENPK, 

targeting poly-SUMOylated CENPI for proteasomal degradation (Hickey, Wilson 

et al. 2012). 

Using genome wide analysis, Lin et al found that the yeast homologs of our two 

candidate HDACs, HDAC1 and HDAC4 and one HAT gene, KAT5 (TIP60), were all 

synthetic lethal with the BAF180 yeast homologue Rsc2 (Lin, Qi et al. 2008). Yeast 

counterparts of HDAC1 and KAT5 were also synthetic lethal with Rsc1 however 

HDAC4 had a less severe phenotype, exhibiting a synthetic growth defect with 

Rsc1 upon double deletion (Lin, Qi et al. 2008).  

Histone (lysine) acetyltransferase 5 (KAT5), also referred to as TIP60 and 

denoted as such in this thesis, is the catalytic subunit of the nucleosome 

acetyltransferase of H4 (NuA4)/TIP60 complex. NuA4 primarily acetylates the 

nucleosomal histones H4 and H2A to mediate transcriptional activation of 

various genes, but is also a regulator of the cellular response to DNA damage, 

apoptosis, cell signalling and cell cycle control (Doyon and Cote 2004, Sun, Jiang 

et al. 2005, Brown, Bourke et al. 2016). Mammalian NuA4, which confusingly is 

also referred to as TIP60, is a multi-protein complex (Jha, Gupta et al. 2013, 

Mahajan and Stanley 2014). Yeast NuA4 has 13 subunits with the Esa1 subunit as 

the catalytic core, homologous to TIP60 (Doyon and Cote 2004). TIP60 has a 
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direct role in histone exchange, working with SRCAP and p400 to remove 

H2A/H2B dimers and replace them with H2A.Z/H2B (Cai, Jin et al. 2005, Ruhl, Jin 

et al. 2006, Wong, Cox et al. 2007). The hypoxia inducible factor 1A (HIF1A) is 

known to interact with and recruit TIP60 to chromatin and TIP60 is thought to 

be required for HIF1A-dependent chromatin modification and RNA polymerase 

II activation in hypoxia (Perez-Perri, Dengler et al. 2016). An important role for 

TIP60 is in the regulation of the repair of DNA DSBs via acetylation and 

subsequent activation of ATM and other proteins involved in the DDR (Sapountzi, 

Logan et al. 2006, Judes, Rifai et al. 2015).  

Our final candidate gene, KAT2A (GCN5), was identified as synthetic lethal with 

both Rsc1 and Rsc2 in a small scale screen that aimed to identify whether RSC 

together with the SAGA genes were required for cell viability (Cairns, Schlichter 

et al. 1999). GCN5 is a histone acetyltransferase (HAT) that is part of the SAGA 

(SPT-ADA-GCN5 acetylase) coactivator complex and was first identified in the 

yeast S. cerevisiae, working to promote transcriptional activation in specific genes 

within chromatin (Martinez, Palhan et al. 2001). In mammalian cells there are 

two homologs of GCN5, GCN5L and PCAF, which have been found in multiple 

different complexes that resemble the yeast SAGA complex, the PCAF complex, 

TFTC (TATA-binding-protein-free TAFII-containing complex), STAGA (SPT3-

TAFII31-GCN5L acetylase) and more recently the ATAC complex, which 

resembles the ATAC (Ada Two-A containing) complex in Drosophila (Wang, 

Faiola et al. 2008) (Martinez, Palhan et al. 2001, Wang, Faiola et al. 2008, Guelman, 

Kozuka et al. 2009). These multi-protein complexes are involved in a wide range 

of biological processes by acetylating histones H3 and H4 as well as several non-

histone proteins, therefore regulating chromatin and gene specific transcription 

(Wang, Faiola et al. 2008). Yeast GCN5 is synthetic lethal with both homologues 

of BAF180 Rsc1 and Rsc2 (Cairns 1999). In mammalian cells it is known as KAT2A 

and the relationship between it and BAF180 has not been fully explored. 

In addition to our hypothesis driven candidate synthetic lethal genes that were 

chosen based on our knowledge of yeast gene interactions, we also used current 

mammalian cell literature as well as our knowledge of the genes frequently 
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mutated in renal cell carcinoma to identify two more potential synthetic lethal 

with BAF180 gene candidates: BAP1 and EZH2.  

As discussed in section 1.3.3, BAP1 is known to be one of the four main drivers of 

tumourigenesis in ccRCC, mutated at a frequency of around 15% in all tumours. 

Although it has been classified as a main driver mutation in ccRCC, these 

mutations do not tend to correlate with PBRM1 mutation. Mutations that occur 

in BAP1 in ccRCC are also though to exhibit different biology as well as leading to 

a different prognosis and overall survival (OS), when comparing to ccRCC’s with 

mutations in PBRM1. This, together with the mutually exclusive relationship 

observed between these mutation frequencies, suggested that they could be 

exploited therapeutically in a synthetic lethal manner. 

EZH2 is the catalytic subunit of the polycomb repressive complex 2 (PRC2) and 

works by catalysing the methylation of lysine 27 on histone H3, which is a 

chromatin modification that is associated with transcriptionally repressed 

heterochromatin.  

Recently, in our lab, it has been shown that depletion of EZH2, results in the 

formation of fewer H2AK119ub foci in irradiated cells, a phenotype that is 

mirrored in both BAF180 and BMI1 (PRC1) depleted cells. This suggests that 

PRC2 is required for IR-induced H2AK119ub and that PRC2 may promote PRC1 

activity at sites of DNA damage (Kakarougkas, Ismail et al. 2014). It was also 

observed that similar to cells lacking the PBAF complex, there was a delay in the 

repair of a subset of DSBs at early time points following IR in EZH2 depleted cells 

and this is consistent with the idea that a failure to repress transcription flanking 

DSBs impeded efficient repair. It was postulated that PBAF remodels chromatin 

surrounding DSBs in order to facilitate PRC2 and therefore PCR1 activity toward 

their respective substrates (Kakarougkas, Ismail et al. 2014).  

Wilson et al describe an imbalanced epigenetic antagonism between the 

SWI/SNF complex and the PRC2 complex (Wilson, Wang et al. 2010). They find 

that loss of a core SWI/SNF subunit, SNF5, in cancer cells results in the 

upregulation of EZH2 and that inactivation of EZH2 activity ultimately blocks 

tumour progression in mouse models (Wilson, Wang et al. 2010). An observation 

that could be exploited therapeutically in vivo.  
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Since this finding, multiple other studies have arisen to determine if this synthetic 

lethal interaction between SNF5 and EZH2 could be reproduced with other 

subunits of the SWI/SNF complex (Kim, Kim et al. 2015).  

It was shown recently that cancers that lack the ARID1A, PBRM1 and SMARCA4 

subunits of SWI/SNF were dependent on both the catalytic and non-catalytic 

activity of EZH2 (Kim, Kim et al. 2015). It was also found that treatment of 

ARID1A-mutated ovarian cancer cells with EZH2 methyltransferase inhibitors 

resulted in synthetic lethality (Bitler, Aird et al. 2015). In a combinatory approach, 

Fillmore et al found that treatment with EZH2 inhibitors in BRG1 and EGFR 

mutated non-small-cell lung cancers sensitized these tumours to treatment with 

TopoII inhibitors, presenting a new therapeutic strategy in a genetically complex 

disease (Fillmore, Xu et al. 2015). Our aim was to determine whether this 

synthetic lethal phenotype could be reproduced in BAF180 deficient cancers. 

 

3.2. Aims 

 

The aim of this work was to use a hypothesis driven approach to explore and 

validate synthetic lethal interactions in BAF180-depleted cells. 
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3.3. A subset of yeast synthetic lethal interactions are 

not conserved in mammalian cells  

 

To identify which candidate genes selected by yeast high-throughput screen data 

(Figure 3.1a) could have conserved synthetic lethal interactions between yeast 

and mammalian cells we first carried out viability assays after siRNA depletion. 

U2OS cells were transfected with short interfering RNA targeting human BAF180 

mRNA or a nonsense scrambled control mRNA as well as the candidate genes 

ASF1A, ASF1B, CTF18, HDAC1, HDAC4 and TIP60 and the viability measured 

(Figure 3.1b). Western blotting (Figure 3.1c) was used to confirm knockdown.  

For both ASF1A and ASF1B there was no significant decrease in viability in cells 

depleted for both ASF1 and BAF180 when compared to appropriate controls 

(Figure 3.1b). However, although not significant statistically, knockdown of 

ASF1B did appear to decrease viability of BAF180 depleted cells more favourably 

compared to the control. Similarly, no significant synthetic lethal interaction was 

detected between either HDAC1 or HDAC4 and BAF180. 

While the synthetic lethal interaction between TIP60 and BAF180 was not 

significant in these assays, there was a trend towards reduced viability in the cells 

depleted of both relative to either single depletion (Figure 3.1b), and further 

analyses uncovered a significant relationship (Hopkins, McGregor et al. 2016). 

The reasons for the lack of synthetic lethality in these assays are not clear, but 

may be due to variation in knockdown efficiency between assays. 
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Figure 3.1. A subset of yeast synthetic lethal interactions are not 
conserved in mammalian cells. (A) List of gene candidates chosen 

for hypothesis driven synthetic lethal mini screen. (B) U20S cells were 
transfected with short interfering RNA targeting human BAF180 

mRNA, as well as a scrambled ‘control’ siRNA and either ASF1A, ASF1B, 
CTF18, HDAC1, HDAC4 or TIP60 mRNA (C) Western blot analysis of 

siRNA treated U20S cells. Whole cell extracts were analysed with the 
indicated antibodies, using either actin or α-tubulin as a loading 

control. 

B 
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3.4. U2OS cells have reduced viability after co-depletion 

of BAF180 and RNF4 

 

Cell titre glow viability assays were performed with cells depleted of BAF180 

and/or RNF4 to investigate a potential synthetic lethal relationship.  There was 

an 18% difference in average viability is seen between cells treated with siRNF4 

alone, compared to RNF4 and BAF180 siRNA treatment, with a p value of 0.086, 

determined by student T-test. Although the p value is not statistically significant, 

the trend is very reproducible. The siRNA depletion of RNF4 was not efficient, 

raising the possibility that further depletion would lead to more substantial 

effects on viability. 

 

3.5. U2OS cells have a reduced viability after co-

depletion of BAF180 and GCN5 

 

To establish if there was a conserved synthetic lethal interaction between KAT2A 

and BAF180, we used siRNA transfection in U2OS cells to knock down KAT2A 

alone, BAF180 alone and the two together and then viability was measured. We 

observed a significant reduction in viability after siRNA knockdown of KAT2A 

together with BAF180 (Figure 3.3a). Knockdown efficiency was determined by 

Western blotting (Figure 3.3b). These data suggests that the histone 

acetyltransferase KAT2A has a synthetic lethal interaction with BAF180.  
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Figure 3.2. U20S cells have reduced viability after co-depletion 
of BAF180 and RNF4. (A) Viability was measured following siRNA 

treatment targeting either human BAF180 or RNF4 mRNA was 
introduced in to U20S cells alongside a sequence of scrambled or 
‘control’ siRNA. (B) Western blot analysis of siRNA treated U20S 

cells. Whole cell extracts were prepared and analysed using 
antibodies raised against BAF180 or RNF4, using or α-tubulin as a 

loading control. 
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Figure 3.3 U20S cells have reduced viability after co-depletion 
of BAF180 and GCN5. (A) Cell viability was observed after siRNA 

transfection of siBAF180, siGCN5 and siControl, in U20S cells. siRNA 
knockdown of both GCN5 and BAF180 in U20S cells results in a 

reduction of cell viability compared to each of the individual 
knockdowns. (B) Western blot analysis of siRNA treated U20S cells 
using antibodies raised against BAF180 or GCN5, using α-tubulin as 

a loading control. 
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3.6. Depletion of EZH2 in BAF180 shU2OS cells results in 

a synthetic lethal interaction 

 

This hypothesis was tested in stable U2OS cell lines expressing short hairpin RNA 

(shRNA) targeting BAF180 or a control sequence described in Chapter 4.  

Clonogenic survival assays were carried out after siRNA depletion of either 

human EZH2 mRNA or a scrambled ‘control’ mRNA. shBAF180 cells were 

significantly more sensitive to EZH2 knockdown in three independent 

experiments (Figure 3.4a). A representative western blot of this knockdown is 

shown in (Figure 4.3). To confirm efficient siRNA knockdown of EZH2, whole cell 

extracts were harvested 72 hours after primary transfection and were analysed 

by western blot (Figure 3.4b). Interestingly, there appears to be increased EZH2 

levels in the shBAF180 cells compared with the shControl cells (Figure 3.4b). This 

is consistent with the finding by Wilson et al, where they see an overexpression 

of EZH2 after the loss of SNF5 (Wilson, Wang et al. 2010). These data suggest a 

synthetic lethal interaction between BAF180 deficiency and EZH2 loss.  

To further investigate this interaction, we used the drug GSK126, which acts by 

inhibiting the methyltransferase activity of EZH2. The cells deficient in BAF180 

were inherently more sensitive to treatment with GSK126 at all doses, in 

agreement with Kim et al (Kim, Kim et al. 2015). These data suggest that EZH2 

inhibitors may be a new therapeutic treatment for BAF180-mutated cancers, 

such as ccRCC. 
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Figure 3.4 BAF180 depleted shU20S are more sensitive to EZH2 siRNA and 

inhibitors. (A) shBAF180 cells (see chapter 4) were more sensitive to EZH2 

knockdown in clonogenic survival assays (n=3). Statistical significance is 

represented by * for p<0.05, as analysed by Student’s t-test. (B) Western Blot 

analysis of depletion of EZH2 in shControl and shBAF180 cells. (C) shBAF180 cells 

were more sensitive to treatment with GSK126 than control cells in clonogenic 

survival assays. 
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3.7. BAP1 and BAF180 are synthetic lethal 

 

3.7.1. BAF180 depleted shU2OS are more sensitive to depletion 

of BAP1 

 

To test the hypothesis that BAF180 and BAP1 exhibit a synthetic lethal 

interaction we first tested survival after siRNA knockdown in shControl and 

shBAF180 cells. Colony formation assays were carried out in triplicate to assess 

viability changes in these stable U2OS cells after knockdown with both siControl 

and siBAP1 (Figure 3.5a).  

First, we found that BAP1 depletion reduced the viability of both shControl and 

shBAF180 cells (Figure 3.5a). It is the hope that depletion of a single gene that we 

wish to exploit therapeutically would not have such a significant effect on our 

‘normal’ cell population. However, we know that cancer cells can grow efficiently 

without the presence of BAP1 in vivo and so a severe reduction in total cell 

viability here may be specific to U2OS cells. Alternatively, there may be off target 

siRNA effects. Nevertheless, there was still a small, yet statistically significant 

decrease in the surviving fraction of shBAF180 cells compared to shControl 

(Figure 3.5a). The knockdown efficiency was assessed by Western blot (Figure 

3.5b). 

 

3.7.2. BAP1 and BAF180 are synthetic lethal in a ccRCC model 

 

To investigate the relationship between BAF180 and BAP1 in a more clinically 

relevant manner, we then decided to look at cell viability after BAP1 and BAF180 

siRNA depletion in a panel of renal cell cancers. The A704 and 769-P cell lines 

were derived from human ccRCC and have inactivating mutations in BAF180 and 

BAP1 respectively.  In the renal cells, A704, lacking BAF180, cell viability is 

greatly compromised after further depletion of BAP1 (Figure 3.6a). Similarly, but 

not as strikingly, depletion of BAF180 in a BAP1 mutant cell line, 769-P, also 
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resulted in a reduction of viability compared to siControl only (Figure 3.6a). By 

Western blot analysis, we find that the A704 cell line harbouring the BAF180 

mutation leads to a total loss of protein. Whereas the 769-P cell line that harbours 

the BAP1 mutation, does not abrogate protein expression but does result in a loss 

of function (Pena-Llopis, Vega-Rubin-de-Celis et al. 2012). Together, these data 

suggest that BAP1 is synthetic lethal with BAF180 in a number of systems, 

including U2OS, as well as the more clinically relevant ccRCC system. 
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Figure 3.5 BAF180 depleted shU20S are more sensitive to depletion of BAP1. 

(A) shBAF180 cells (see Chapter 4) were more sensitive to siRNA knockdown of 

BAP1 in triplicate experiments. Statistical significance is represented by * for 

p<0.05, as analysed by Student t-test. (B) Western Blot Analysis of siRNA treated 

shU20S cells. Whole cell extracts were prepared and separated by 8% SDS-PAGE 

gels, transferred to nitrocellulose and probed with antibodies raised against BAP1. 
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Figure 3.6 BAP1 and BAF180 are synthetic lethal in a ccRCC model (A) Promega 

Cell Titre Glo Viability Assay in RCC’s. siRNA against human BAP1 as well as 

scrambled or ‘control’ siRNA was transfected in to the BAF180 lacking A704 renal 

cancer cell line and likewise, BAF180 siRNA was transfected in to the BAP1 mutated 

renal cell line 769-P, using Lipofectamine RNAiMAX transfection reagent. 72hrs 

after primary transfection the cells were re-seeded in triplicate per condition to 96 

well plates. Viable cells were measured 24 hours later using cell titre glo reagent. 

Both the A704 and 769-P cell lines showed a sensitivity to siRNA knockdown of 

BAP1 and BAF180 respectively, suggesting a synthetic lethal interaction between 

the two genes. (B) Western blot analysis of siRNA treated renal cells. 
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3.8. Discussion 

 

In this chapter we demonstrated that multiple genes exhibit a synthetic lethal 

phenotype when knocked down in mammalian cells in combination with BAF180 

(PBRM1). Consistent with data from yeast high-throughput synthetic fitness 

screening (Cairns, Schlichter et al. 1999, Pan, Ye et al. 2006, Lin, Qi et al. 2008), 

we found that RNF4 and GCN5 (KAT2A) have a conserved synthetic lethal 

interaction with mammalian BAF180. While not statistically significant in the 

assays carried out in this study, we have illuminated a possible synthetic lethal 

interaction between BAF180 and ASF1B, HDAC4 and TIP60 that have potential to 

be validated with further testing.  

In corroboration with multiple studies that identify EZH2 as an essential gene in 

cancers that have lost subunits of the SWI/SNF complex (Wilson, Wang et al. 2010, 

Bitler, Aird et al. 2015, Fillmore, Xu et al. 2015, Kim, Kim et al. 2015), we were 

able to confirm a synthetic lethal relationship between BAF180 and EZH2 that 

can be applied to clinical therapy using drugs that target EZH2s 

methyltransferase activity, such as GSK126.  

We also identified BAP1 as a synthetic lethal interactor of BAF180, which could 

be exploited clinically with the use of BAP1 inhibitors.  

A summary of all synthetic lethal interactions studies in this chapter are shown 

in Table 3.2. 
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Table 3.2. Overview of interactions tested in hypothesis driven 

screen. *Note: While ASF1B and HDAC4 are noted as not synthetic lethal 

with BAF180 in this table, this conclusion is limited to this specific 

viability assay. For these genes the data looked promising, though not 

statistically significant. 
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3.8.1. Histone acetyltransferases and synthetic lethality with 

BAF180 

 

Two histone acetyltransferases (HAT) genes have been identified as being 

synthetic lethal with mammalian BAF180 from this data, TIP60 (KAT5) and GCN5 

(KAT2A).  

As mentioned, TIP60 is the catalytic subunit of the NuA4/TIP60 complex and has 

well established roles in the regulation of the DNA DSB response (Ikura, Ogryzko 

et al. 2000, Sun, Jiang et al. 2005). TIP60 has also been linked to regulating faithful 

mitotic chromosome segregation via the acetylation of Aurora B, with TIP60 

working to stabilize Aurora B’s activity during the transition from metaphase to 

anaphase (Mo, Zhuang et al. 2016). Work in our lab has shown that BAF180 also 

regulates mitotic stability, but unlike TIP60, BAF180 promotes the correct 

establishment of centromere cohesion, subsequently preventing genome 

instability and aneuploidy (Brownlee, Chambers et al. 2014). One possibility is 

that a combined defect in both mechanisms could be the contributing cause of the 

synthetic lethal effect we see (Figure 3.1) (Hopkins, McGregor et al. 2016). 

The second and more convincing evidence of synthetic lethality between BAF180 

and HAT genes was seen with GCN5 (Figure 3.3). GCN5 was found to be synthetic 

lethal with BAF180’s yeast homologs Rsc1 and Rsc2 (Cairns, Schlichter et al. 

1999).  

Bromodomains are found in many proteins and are important for the regulation 

of transcription and chromatin structure and can be found in proteins with HAT 

activity, like GCN5 as well as in members of the SWI/SNF family, including 

BAF180 (Jeanmougin, Wurtz et al. 1997, Winston and Allis 1999). Bromodomains 

bind to the amino-terminal tails of histones H3 and H4 (Ornaghi, Ballario et al. 

1999) and function as acetyl-lysine binding motifs (Dhalluin, Carlson et al. 1999). 

In GCN5 the bromodomains are not thought to play an important role (Candau, 

Zhou et al. 1997), however genetic cooperativity has been found between the 

bromodomains of Rsc4, another homologue of BAF180, and GCN5. Lys14 of 

histone H3 is the preferred site of acetylation by GCN5 and is also a critical 

residue for Rsc4 bromodomain function. It could be speculated that loss of this 
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interaction between both bromodomain containing complexes, including loss of 

acetylation at Lys14 of histone H3, could be the underlying reason for the 

synthetic lethality found in this study. 

 

 

3.8.2.  Possible mechanisms for synthetic lethality between 

BAF180 and RNF4 

 

As previously mentioned, RNF4 is an E3 ubiquitin-protein ligase that is one of the 

most characterised SUMO targeted ubiquitin ligase (STUbL) in mammalian cells. 

Ubiquitylation and SUMOylation can simply be described as the covalent 

attachment of ubiquitin and/or SUMO polypeptides to target proteins, thus 

providing a mechanism to regulate cellular functions, which is important for the 

maintenance of genome stability (Jackson and Durocher 2013). These post-

translational modifications are important for the coordination of multiple 

pathways, including the DNA damage recognition pathway, the cell signalling 

pathway and DNA repair (Jackson and Durocher 2013). Work in our lab has 

shown BA180 to have an important role in the repriming of replication 

downstream from replication forks that have been blocked at sites of DNA 

damage (Niimi, Chambers et al. 2012). Depletion of BAF180 after DNA-damage 

with UV-irradiation, resulted in a reduction of PCNA ubiquitination as well as 

unmodified chromatin-associated PCNA and the STUbL E3 ligase that 

ubiquitinates PCNA, Rad18. Interestingly, we found that the BAH domains of 

BAF180 are specifically required for the ubiquitination of PCNA (Niimi, Hopkins 

et al. 2015). The cooperation between BAF180 and ubiquitylating ligases could 

explain the mechanism behind the synthetic lethality observed after double 

depletion of BAF180 and RNF4. In vitro, the ubiquitylation targets of STUbLs are 

relatively unspecific (Sun, Leverson et al. 2007), so it is possible that RNF4 acts 

to compensate for the decrease in Rad18 after BAF180 depletion and when this 

compensatory pathway is removed, could result in replication fork collapse and 

subsequently the cell death we observe in Figure 3.2.  
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Alternatively, I found that depletion of BAF180 results in a defect in HR (Chapter 

6). Inactivation of RNF4 in both mammalian and chicken cells results in the 

defective repair of DNA DSBs by both HR and NHEJ (Galanty, Belotserkovskaya et 

al. 2012, Luo, Zhang et al. 2012, Yin, Seifert et al. 2012). Therefore, it is plausible 

to assume that loss of two pathways that are responsible for the repair of 

damaged DNA via HR and NHEJ could be sufficient to trigger apoptosis in these 

cells. 

Although RNF4 is potentially targetable by drugs, there are currently no known 

inhibitors, making the transition from bench to clinic more difficult than with 

other genes we have found to be synthetic lethal with BAF180 in this study.  

 

3.8.3. Synthetic lethality by targeting EZH2 methyltransferase 

activity in BAF180-mutated cancers 
 

EZH2 is an epigenetic regulator that silences the expression of its target genes 

(Bitler, Aird et al. 2016). EZH2 is upregulated in a variety of cancers including 

breast, prostate and lymphomas and can often be associated with advance 

staging of tumour progression and poor prognosis, suggesting it has an important 

role in oncogenic transformation (Varambally, Dhanasekaran et al. 2002, Bracken, 

Pasini et al. 2003, Simon and Lange 2008, Wilson, Wang et al. 2010). It is already 

known that there is a genetic dependence on EZH2 in cancers that lack the SNF5 

subunit of SWI/SNF and that the complexes they belong to are antagonistic with 

each other (Wilson, Wang et al. 2010). EZH2 catalyses the methylation of lysine 

27 on histone H3, which is associated with transcriptionally repressed 

heterochromatin. Whereas the catalytic activity exhibited by SWI/SNF complexes 

is associated with euchromatin, an open, relaxed state of chromatin that is 

transcriptionally active. It is thought that the chromatin remodelling activities 

mediated by SWI/SNF complexes can be counteracted by polycomb proteins, 

such as EZH2. 

In this study, congruent to the findings between EZH2 and SNF5 (Wilson, Wang 

et al. 2010), we observe an increase in EZH2 protein expression after BAF180 loss, 

suggesting there may be a functional relationship between BAF180 and EZH2 in 
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oncogenic transformation. And in agreement with Kim et al(Kim, Kim et al. 2015), 

we found that treatment with GSK126 in BAF180 (PBRM1) mutant cell lines 

results in impaired colony formation. These data suggest that like SNF5, BAF180 

deficiency also leads to upregulated EZH2 expression and that survival of our 

BAF180-deficient cancer cells is directly dependent on this upregulated EZH2. 

This is a phenotype that can be exploited therapeutically using inhibitors against 

EZH2 in cancers that are deficient in BAF180. 

It has been shown that the ARID1A subunit of SWI/SNF and EZH2 have 

antagonistic roles and regulate many genes that overlap (Bitler, Aird et al. 2016). 

In ARID1A mutated ovarian clear cell carcinoma (OCCC), PIK3IP1 was found to 

contribute to the observed synthetic lethality seen after these ARID1A –deficient 

cancers were treated with EZH2 inhibitors. PIK3IP1 is a target gene that was 

reactivated after EZH2 inhibition in ARID1A mutated OCCC, subsequently 

responsible for triggering apoptosis, leading to cell specific killing of the ARID1A-

mutated cancer cells but not wild type cells. They suggest using EZH2 inhibitors 

in combination with an inhibitor of the PI3K/AKT pathway to achieve a greater 

clinical benefit in OCCC. This is something to consider with the synthetic lethality 

observed in our case with BAF180 and EZH2. Further investigation in to target 

genes that are potentially upregulated after EZH2 inhibition in BAF180-deficient 

cancers could generate a new approach to therapeutic treatment of ccRCC. The 

discovery of another target that could be inhibited in combination with EZH2 

inhibitors would result in a much greater clinical benefit for cancers that lack 

BAF180, like ccRCC. 

 

3.8.4. Therapeutic exploitation of the mutually exclusive BAF180 

and BAP1 mutations for treatment of ccRCC 
 

Meta-analysis (Pena-Llopis, Christie et al. 2013) and independent validation 

(Hakimi, Ostrovnaya et al. 2013) have determined that mutations in BAP1 and 

BAF180 (PBRM1) tend to be mutually exclusive in ccRCC (Pena-Llopis, Vega-

Rubin-de-Celis et al. 2012, Kapur, Christie et al. 2014). 
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As previously mentioned, mutation exclusivity often suggests that two genes 

function in the same pathway, which could itself result in synthetic lethality. 

However, in the case of BAP1 and BAF180, it is more likely that the two genes 

function in two different pathways. As mentioned before BAF180 and BAP1 

mutations give rise to markedly different clinical outcomes, they have non-

overlapping gene expression signatures and BAP1 mutations are associated with 

high Fuhrman grade (a widely used grading system for renal cell carcinoma, on a 

scale of I-IV, where grade I is associated with best prognosis and grade IV the 

worst)  and mTORC1 activation while PBRM1 mutations are associated with low 

Fuhrman grade and a lack of mTORC1 activation, supporting the argument that 

BAP1 and BAF180 must act in two distinct pathways (Brugarolas 2013). Work in 

our lab has speculated a role for BAF180 in HR and it is known that loss of BAP1 

results in impaired recruitment of HR factors like BRCA1 and RAD51 (Ismail, 

Davidson et al. 2014). Therefore, combined loss of two pathways that contribute 

to HR, together with other impaired pathways and factors due to loss of either 

gene, is most likely to be the underlying reason why these two genes exhibit a 

synthetic lethal relationship. To exploit this interaction clinically, it would be 

useful to test this synthetic lethality with inhibitors against BAP1. 
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4. Cell line generation 

 

4.1. Introduction 

 

The manipulation of cell lines in scientific research is important for the functional 

study of specific genes, to observe what effect the loss or gain of these genes has 

on the cells. There are multiple ways of carrying out gene manipulation in human 

cell lines in culture, but the two I will focus on in this chapter are the formation 

of stable cell lines through shRNA knockdowns and the production of gene 

knockout cells using CRISPR technology. 

 

4.1.1. RNA Interference (RNAi) 

 

RNA interference (RNAi), also known as co-suppression, post-transcriptional 

gene silencing (PTGS) and quelling, has proved itself a valuable tool for the study 

of gene function in mammalian cells in recent years. The mechanism was first 

discovered in the nematode Caenorhabditis elegans after double-stranded RNA 

(dsRNA) delivered by injection resulted in the sequence specific silencing of 

genes (Fire, Xu et al. 1998). It is believed that the natural endogenous function of 

RNAi works to protect the genome against invasion from dynamic genetic 

elements that form aberrant RNA or dsRNA in a host cell when they are activated, 

such as transposons and viruses (Elbashir, Lendeckel et al. 2001). 

The principle of RNAi works by specifically degrading the sequence of the host 

mRNA after double-stranded RNA (dsRNA) that is homologous to the target 

sequence is delivered through the cytoplasm (Fire, Xu et al. 1998). An 

endogenous complex called RISC (RNA-induced silencing complex) is involved in 

the enzymatic pathway used to degrade target gene expression. RISC, with 

assistance from the proteins Argonaute (Ago) and dsRNA binding proteins, 

allows for the loading of the guide siRNA strand to the complex, which is then able 

to localise the guide to the complementary sequence of mRNA. This mRNA is 

cleaved by the protein Ago and subsequently degraded by other endogenous 
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nucleases (Elbashir, Lendeckel et al. 2001, Moore, Guthrie et al. 2010). The 

mechanism of RNAi is served by several methods, the simplest being the 

transfection of chemically synthesized short interfering RNA oligonucleotides 

(siRNAs) in to the cytosol and the method that I will focus on here, which involves 

the use of short hairpin RNAs (shRNAs) (Moore, Guthrie et al. 2010). shRNAs can 

be introduced to cells via transfection within plasmid vectors, where the shRNAs 

are encoded within and transcribed from these vectors by RNA pol III or modified 

pol II promoters (Moore, Guthrie et al. 2010). Delivery of shRNAs to cells can also 

be achieved by the infection of the cell using virally produced vectors (Moore, 

Guthrie et al. 2010). The benefit of using shRNA rather than siRNA is that due to 

cytosolic delivery, siRNA gene knockdowns are transient, whereas shRNAs allow 

for the production of a stable gene knockdown within a cell line (Moore, Guthrie 

et al. 2010). shRNAs are typically formed of two complementary sequences that 

are between 19-22 base pairs in length, these are linked by a short loop of 4-11 

nucleotides, which is reminiscent of the naturally occurring microRNA (miRNA) 

hairpin.  After transcription, the endogenous enzyme Dicer detects the shRNA 

sequence in the cytosol. Dicer enables the processing of dsRNA and pre-

microRNAs to synthesize functional intermediates such as siRNA duplexes and 

miRNAs, that can subsequently bind to the target mRNA and are incorporated in 

to the RISC complex for sequence-specific gene degradation (Vermeulen, Behlen 

et al. 2005, Moore, Guthrie et al. 2010).  

The shRNA plasmids used in this study were expressed as unique human 

microRNA-30 (miR-30) primary transcripts and were designed to add a Drosha 

processing site to the hairpin construct, which is thought to increase gene-

silencing efficiency (Boden, Pusch et al. 2004). Drosha is a nuclease that mediates 

initial miRNA processing in the nucleus from pri-miRNA to pre-miRNA, which is 

further processed by Dicer in to mature miRNAs (Lee, Ahn et al. 2003).  

Using a cell line with stable depletion of a protein has several experimental 

advantages over transient depletion. For example, it would not be possible to 

create a long-term cell line using siRNA gene knockdowns when taking in to 

consideration that the oligonucleotide concentration is diluted over time during 

normal cells division and constant transfection with siRNA can become extremely 
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expensive over time. We therefore created multiple shRNA-expressing cell lines. 

I will discuss exactly how these cell lines were generated in detail in section 4.3. 

 

4.1.2. CRISPR/Cas9 targeted genome editing 

 

Clustered, regularly interspaced, short, palindromic repeats (CRISPR) technology 

is rapidly becoming the gold standard method used to introduce precise and 

targeted changes in the genome of living cells. Endogenous CRISPR, together with 

CRISPR-associated (Cas) genes, are essential in adaptive immunity in both 

bacteria and archaea, providing a defence mechanism that eradicates invading 

genetic material (Barrangou, Fremaux et al. 2007). CRISPR is defined as genetic 

code that incorporates short repetitions of base sequences followed by spacer 

DNA segments. It is a bacterial system that normally functions in adaptive 

immunity. This mechanism observed in bacteria has been subsequently exploited 

and adapted in to a form of genome editing that is essential in mainstream 

research today. The CRISPR/Cas9 technology that has developed from this 

knowledge of bacteria uses the endonuclease activity of Cas9 along with a 

synthetic guide RNA, that can be tailored to your specific gene, to introduce a 

double strand break at that specific location within the genome. When these 

breaks are recognised within the cell, DNA repair pathways are stimulated to 

repair these breaks, either by NHEJ or HR (Ran, Hsu et al. 2013). NHEJ will most 

typically be used to repair double strand breaks that are introduced in this 

manner, this pathway choice is error prone and introduces insertions and 

deletions, resulting in frameshift mutations in the genes coding sequence (Figure 

4.1).  

HR can also be used to repair DNA DSBs induced by CRISPR/Cas9. This can be 

exploited by providing a donor sequence with modifications at a target site (Ran, 

Hsu et al. 2013). 
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Figure 4.1. Cells will repair DNA DSBs by NHEJ or HDR after 
CRISPR treatment. Taken from Horizon Discovery. 
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4.2. Aims 
 

The aim of the work described in this chapter was to create multiple cell lines 

with reduced/null BAF180 protein expression by shRNA depletion as well as 

CRISPR knockout for use in the experiments discussed in this thesis as well as to 

understand the biological impact of BAF180 in cells.  

 

4.3. Establishing stably depleted BAF180 cell lines using 

GIPZ lentiviral shRNA 

 

To establish cell lines that have stably reduced BAF180 expression, we chose to 

use BAF180 and non-silencing control (NSC) GIPZ lentiviral shRNA vectors. Six 

different BAF180 shRNA constructs were acquired from Thermo Scientific, 

each targeting different regions of mammalian BAF180. Four of the BAF180 

shRNA constructs targeted BAF180s bromodomains, in either bromodomains 

2, 3, 4 or 6 (Figure 4.2a). The remaining two constructs targeted sequences 

either in the second BAH domain or the C-terminal region (Figure 4.2a). 

Important features of the mammalian expression plasmid include TurboGFP for 

monitoring transgene expression, a puromycin resistance gene for selection of 

successfully transfected cells and, of course, the short hairpin RNA (Figure 4.2b). 

The TurboGFP and shRNA are part of a bicistronic transcript, driven by the 

human cytomegalovirus (hCMV) promoter. 

After transfection of the constructs, GFP expression was monitored over a 

period of 10-15 days in the presence of puromycin selection (Figure 4.2.c). 

Puromycin resistant colonies were isolated, and Western blot analysis was 

carried out on whole cell extracts, revealing that all of the constructs apart from 

one (targeting bromodomain 4 of BAF180), resulted in good depletion of 

BAF180 protein levels (Figure 4.2d). Cells expressing construct 1 seemed to 

consistently show good levels of BAF180 reduction and so were chosen to be 

taken into future experiments.  
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Figure 4.2. Establishing six BAF180 shRNA stable U20S cell lines using 
GIPZ lentiviral shRNA. (A) Illustration showing the domains of BAF180 and 

where each BAF180 shRNA sequence targets. (B) Features of the GIPZ 
lentiviral shRNA plasmid. Purchased from Thermo Scientific. (C) 

Representative images of GFP expressed 24 hours after transfection of each 
shRNA construct and 11 days after being under Puromycin selection. (D) 

Western blot showing knockdown efficiency of each shRNA construct. 
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For the purpose of the high-throughput siRNA screen (HTS), which I will talk 

about in chapter 5, it was necessary to have cell lines that were visually 

distinguishable when mixed together. To this end we then went about 

establishing sets of cell lines that expressed different fluorescent proteins. 

Using the shRNA constructs purchased from Thermo Scientific (shBAF180 – 

construct 1/V3LHS_318943 and shControl) we set about exchanging the 

TurboGFP for either GFP or mCherry with a nuclear localisation signal (Figure 

4.3a), resulting in the following constructs, shNSC+mCherry/NLS, 

shNSC+GFP/NLS, shBAF180+mCherry/NLS and shBAF180+GFP/NLS.  

To build a set of cell lines that were able to be used in the HTS as well as cell 

lines that were useful for other ongoing projects in the lab, we chose to express 

these modified plasmids in the osteosarcoma cell line U2OS, the lung cancer cell 

line A549, the breast cancer cell line T47D and the renal cell line 786-0, which 

is the most clinically relevant. Sixteen stable cell lines were established from 

these transfections and a representative image of one set of the U2OS cell lines 

created can be seen in Figure 4.3b. Whole cell extracts were gathered from all 

cell lines and BAF180 protein expression levels were analysed by western blot. 

A representative BAF180 blot is shown in Figure 4.3c, showing reduced levels 

of BAF180 in U2OS cells expressing the modified shBAF180+GFP/NLS, in 

comparison with the corresponding shNSC+mCherry/NLS control. 
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Figure 4.3. Substitution of TurboGFP for either GFP or mCherry with a 
nuclear localisation signal. (A) Illustration of the exchange of flurophores 

in shControl and shBAF180 GIPZ constructs (described in text). (B) 
Representative images of one of the sets of cell lines established from 

manipulated shRNA constructs. (C) Western blot showing BAF180 expression 
after transfection with either shControl or shBAF180 constructs. 
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4.4. Establishing BAF180 CRISPR Knockout cell lines 

 

Genome engineering techniques are constantly evolving and CRISPR gene 

manipulations are becoming the gold standard. Five CRISPR guide RNAs were 

tested (Figure 4.4a) and these guides, like our shRNA constructs, targeted 

different areas of mammalian BAF180. We chose to create BAF180 CRISPR 

knockouts in the cell lines U2OS as well as the renal cells 786-0. A renal carcinoma 

cell line was chosen for clinical relevance, as we know that BAF180 is frequently 

mutated in ccRCC. 786-0 cells have a 3n copy number for BAF180 (PBRM1) and 

U2OS are well known to be aneuploid, making the full knockout of each copy of 

the gene would be slightly more difficult in these cell lines, than a cell line with 

normal ploidy. The guides from Horizon were integrated as part of an ‘all in one’ 

plasmid, that contained the Cas9 enzyme needed to introduce the break, 

DasherGFP to act as a transient marker of successful transfection, and the target 

guide sequence (Figure 4.4b - left). Transfection of the U2OS and 786-0 cells with 

each of our five CRISPR guides was originally not successful. Instead we 

harnessed the principle of co-transfection with the empty vector pcDNA4-GFP-

IRES-Puro (kindly given to us by the Caldecott Lab – University of Sussex) to 

introduce a puromycin selection marker and a nuclear GFP signal, in contrast to 

the CRISPR constructs that express a cytosolic DasherGFP. Co-transfection with 

both plasmids allowed us to place the cells under antibiotic selection long enough 

to ensure the resultant population would only be cells that had successfully taken 

up both plasmids. A representative image of the two forms of GFP expressed by 

U2OS cells after transfection with both the CRISPR plasmid and the pcDNA4-GFP-

IRES-Puro plasmid is seen in Figure 4.4c. Figure 4.5 provides an overview of the 

CRISPR process, showing a step-by-step break down of the multiple steps carried 

out from initial transfection with these two plasmids to confirming the final 

knockout clones.  
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Figure 4.4. Establishment of a BAF180 CRISPR Knockout cell line. (A) 
Table showing target sequences of five BAF180 CRISPR guide RNAs. (donated 

from Horizon Discovery as part of their free CRISPR guide initiative. (B) 
Representative image of both types of GFP expression created by co-

transfection of plasmids in U20S cells. 
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After ensuring that we were getting successful transfection in our cells we then 

wanted to identify which CRISPR guide was working the most efficiently in a 

pooled population. U2OS and 786-0 cells were transfected with each CRISPR 

gRNA along with the pcDNA4 plasmid and were allowed to expand enough to 

harvest genomic DNA and continue to culture the samples. Genomic DNA was 

prepared and analysed by PCR using primers in Table 2.2 from test samples and 

in non-transfected control cells. CRISPR guides 1-4 were all in a region small 

enough to be serviced by one set of primers and CRISPR guide 5 targeted a region 

further away, requiring its own set of primers. Test and control PCR products 

were hybridized together and subsequently digested using the SURVEYOR 

mutation detection assay and visualised by gel electrophoresis. Homoduplexes 

appear on gels as a single DNA band, whereas heteroduplexes are cleaved by the 

SURVEYOR nuclease enzyme and will appear as fragmented DNA. Therefore, 

products that are digested by the nuclease in to multiple fragments suggest there 

is a mixed population of DNA, suggesting that genetic alterations have been 

introduced in the test samples.  Pooled populations of U2OS cells transfected with 

all CRISPR constructs resulted in digested products when analysed by gel 

electrophoresis (Figure 4.6a). Control gDNA that was amplified with the PCR 

primers for constructs 1-4 and construct 5 treated with the SURVEYOR nuclease, 

as expected showed a homogeneous population, represented by a single band 

when analysed by electrophoresis (Figure 4.6a/b). If the pooled population of 

transfected cells had all been efficiently targeted by the CRISPR gRNA then you 

would expect to see a homogeneous population and a single band when analysed 

alone and a heteroduplex when mixed with the control gDNA. We observed a 

heteroduplex in all U2OS test samples when digested by themselves as well as 

when digested with the control, suggesting not all cells in our pooled population 

were successfully transfected and would require single cell clonal expansion to 

determine which cells had been successfully targeted (Figure 4.6a). The CRISPR 

guide efficiency appeared to be significantly lower in pooled populations of 786-

0 cells, with only one guide, construct 2, appearing as a heteroduplex (Figure 

4.6b).  
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Figure 4.6. Identification of most efficient BAF180 CRISPR construct. 
Cells were initially transfected with each CRISPR guide to assess which guide 

would be most likely to establish a BAF180 KO cell line. Genomic DNA was 
harvested from treated and untreated cells and were hybridized together 

before treatment with the surveyor nucleases. Cleavage by surveyor 
nucleases indicates a heterogeneous population in the hybridization mixture. 

(A) Surveyor nuclease assay carried out using PCR amplified gDNA from 
U20S cells transfected with CRISPR guide RNAs. (B) Surveyor nuclease assay 

carried out using PCR amplified gDNA from 786-0 cells transfected with 
CRISPR guide RNAs. 
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To establish full knockout cell lines, we next had to isolate clonal populations 

from single cells. For this we chose to dilute the U2OS cells that had been 

transfected with both constructs 2 and 3 and the 786-0 cells that had been 

transfected with construct 2. Genomic DNA was harvested from the 96 well plates 

as described in 2.2.14, PCR amplified and digested with SURVEYOR nuclease as 

before. Multiple clones were analysed per cell line and representative analyses 

are shown in Figure 4.7a, Figure 4.8a and Figure 4.9a.  

Twelve U2OS-based clones generated from CRISPR guide 2 were chosen for 

further analysis. Many appeared to have a reduced level of BAF180 protein 

expression, but two in particular, clones 26 and 39 had little or no BAF180 

expression (Figure 4.7b). Stocks from all clones were frozen and have been stored 

in liquid nitrogen for future use.  

Four 786-0 based clones were further investigated and all appeared to have lost 

BAF180 expression (Figure 4.8b). However, upon sequencing these clones, wild 

type BAF180 sequences were detected, raising the possibility that we did not 

have a full knockout cell line. Again all clones were frozen and stored in liquid 

nitrogen for future use.  

Of the U2OS cells transfected with CRISPR guide 3, we chose five clones for 

further analysis, of which three appeared to have lost all or most BAF180 protein 

expression (Figure 4.9b). Sequencing analysis confirmed a deletion in the DNA 

sequence targeted by CRISPR construct 3 in clone 15 (Appendix Figure 1) and 

this clone chosen for use in further experiments. Although sequencing and 

western blot analysis (Figure 4.9b) was consistent with BAF180 knockout in our 

U2OS CRISPR-C3-Clone 15 cells, we noticed that there were still proteins detected 

by the BAF180 antibody, albeit at lower molecular weight and lower abundance 

than the normal BAF180 protein signal. To work out if these remaining bands 

were related to BAF180, we treated U2OS and our BAF180 knockout cells with 

either control siRNA or BAF180 siRNA. Using two different BAF180 antibodies, 

we found that the extra bands did in fact decrease in intensity after BAF180 siRNA 

treatment, suggesting that some form of BAF180 remains within these knockouts 

(Figure 4.10). These data may suggest that there is a truncated version of the 
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protein present in these cells as it runs at a molecular weight below the 

observable full length BAF180 band.  

Importantly, however the cell line exhibits phenotypes that are in accord with 

BAF180 knockdown, such as an increased nucleus size and increased micronuclei 

(C. Meisenberg – unpublished data), suggesting that these putative truncated 

forms of BAF180 may not be functional, at least for these activities. 
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Figure 4.8. Identification of successful BAF180 Knockout clones in 786-
0 using CRISPR guide 2. Cells transfected with the BAF180 CRISPR guide 2 

were diluted to leave a single cell and allowed to form individual clones. 
Genomic DNA was extracted from various clones and was PCR amplified 

using specific primers that lie either side of the DNA sequence targeted by 
the CRISPR guide RNA (A) Surveyor nuclease assay. Agarose gel 

electrophoresis showing digestion products of multiple 786-0 clones that 
appear to have a heterogeneous population after cleavage by surveyor 

nuclease enzymes. (B) Western blot showing BAF180 protein expression 
corresponding to the 786-0 BAF180 CRISPR clones analysed in (A), using our 

shControl and shBAF180 786-0 cell lines as reference. 
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Figure 4.9. Identification of successful BAF180 Knockout clones in U20S 
using CRISPR guide 3. Cells transfected with the BAF180 CRISPR guide 3 

were single cell diluted and allowed to form individual clones. Genomic DNA 
was extracted from various clones and was PCR amplified using specific 
primers that lie either side of the DNA sequence targeted by the CRISPR 

guide RNA (A) Surveyor nuclease assay. Agarose gel electrophoresis showing 
digestion products of multiple U20S clones that appear to have a 

heterogeneous population after cleavage by surveyor nuclease enzymes. (B) 
Western blot showing BAF180 protein expression corresponding to the U20S 

BAF180 CRISPR clones analysed in (A). Clone 15 was chosen as the most 
likely to have a full BAF180 knockout. 
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Figure 4.10. A truncated version of BAF180 may still exist in our 
U20S BAF180 CRISPR Knockout cells. Western blot showing 
BAF180 expression after BAF180 siRNA treatment in U20S and 

BAF180 CRISPR KO cells. 
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4.5. Discussion 

 

Here we established multiple BAF180 depleted cell lines. Four U2OS cell lines 

were created expressing shControl+mCherry/NLS, shControl+GFP/NLS, 

shBAF180+mCherry/NLS and shBAF180+GFP/NLS. Four 786-0 cell lines were 

created expressing shControl+mCherry/NLS, shControl+GFP/NLS, 

shBAF180+mCherry/NLS and shBAF180+GFP/NLS. Four T47D cell lines were 

created expressing shControl+mCherry/NLS, shControl+GFP/NLS, 

shBAF180+mCherry/NLS and shBAF180+GFP/NLS. Four A549 cell lines were 

created expressing shControl+mCherry/NLS, shControl+GFP/NLS, 

shBAF180+mCherry/NLS and shBAF180+GFP/NLS. Six U2OS cell lines were 

established to express the various shBAF180+TurboGFP constructs and one with 

the corresponding shControl+TurboGFP.  

U2OS shControl and shBAF180 cells with the original TurboGFP-expressing 

plasmids were used by Brownlee et al in experiments identifying that BAF180 

promotes cohesion and prevents genome instability and aneuploidy (Brownlee, 

Chambers et al. 2014). shBAF180 and shControl plasmids were also used by Niimi 

et al to create MRC5V1 cell lines, identifying that the BAH domain of BAF180 is 

required for PCNA ubiquitination (Niimi, Hopkins et al. 2015). U2OS cells 

expressing shControl+mCherry/NLS and shBAF180+GFP/NLS were used by 

myself in collaboration with V. Savic in the identification of TIP60-dependent 

radiation sensitivity in the absence of BAF180 (Hopkins, McGregor et al. 2016). 

We have also shown the creation of multiple CRISPR BAF180 knockout cell lines 

in U2OS and 786-0, with one line being used by other lab members for 

characterisation experiments.  

 

4.5.1. The advantages and limitations of genetic engineering 

using shRNA 

 

Short hairpin RNA (shRNA) is a widely used approach for the creation of stable 

gene knockdowns and can be achieved using viral or non-viral DNA vectors.  
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Both siRNA and shRNA exploit the same cellular mechanism (RISC), but choosing 

between the use of siRNA or shRNA to achieve your target gene knockdown 

depends on multiple factors, such as cell type, time demands and the need for 

transient versus stable integration (Moore, Guthrie et al. 2010). An increasing 

concern with siRNA is the probability of experiencing off-target effects due to the 

high concentration of cytoplasmic siRNA. Also as the cells divide, the siRNA 

concentration becomes more dilute and therefore creation of a long-term cell line 

with your target gene knockdown is unfeasible. The generation of long-term 

stable cell lines using shRNA, on the other hand, completely eliminates the need 

for multiple rounds of transfection and therefore increases the reproducibility of 

results (Moore, Guthrie et al. 2010). 

The generation of stable knockdown cell lines using shRNA silencing of a specific 

target gene can be greatly beneficial, however there are limitations and this 

approach can be time-consuming. The benefit here though is that you can carry 

out long-term experiments, such as clonogenic survival assays, without having to 

perform multiple siRNA transfections. The benefit of establishing stable cell lines 

is also that you can carry out experiments on a much larger scale than if you had 

to use siRNA. 

A limitation that we have observed with our stable shRNA cells is that BAF180 

knockdown correlates with GFP intensity, rather than being standard throughout 

the cell population (Hopkins, McGregor et al. 2016). In collaboration with the 

Savic lab (University of Sussex), we observed that cells that expressed high levels 

of GFP appeared to have the greatest level of BAF180 knockdown (Hopkins, 

McGregor et al. 2016). This is not a problem when you are able to ‘bin’ your data 

based on the specific cells you want to see using microscopy (discussed in 

Chapter 5). But becomes a slight problem, when you are carrying out an 

experiment where you cannot exclude the cells that have low GFP expression and 

therefore higher BAF180 expression, for experiments such as clonogenic survival 

assays that rely on data from a relatively small number of cells. 

We also observed that BAF180 protein expression levels tend to drift over time, 

even under constant puromycin selection (Figure 4.11) (Hopkins, McGregor et al. 

2016). The puromycin selection marker, the fluorescent protein and the shRNA 
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are all under the control of the same mammalian CMV promoter, with the shRNA 

being the furthest from the promoter. It is possible that the efficiency of this 

promoter to drive the constitutive expression of all three elements over time may 

drift.  

We may have seen longer silencing of BAF80 by the shRNA used in this study if 

we had implemented a lentiviral system for infection of the cells during stable cell 

production. Lentiviral systems have higher transfection efficiencies than non-

viral systems, this is due to the host genome being able to stably integrate the 

lentiviruses, thus establishing long-term stable expression of the integrated DNA 

sequence. However, this process is much more involved than simple transfection 

and also carries drawbacks, such as nuclear accumulation cellular toxicity 

(Davidson and McCray 2011). 
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Figure 4.11. Endogenous BAF180 expression re-appears in shBAF180 
U20S after continuous culture. Western blot showing BAF180 expression in 
shControl and shBAF180 U20S cells, 25 and 50 days after being in puromycin 

selection media. 
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4.5.2. The pros and cons of CRISPR/Cas9 gene editing 
 

As previously mentioned, the CRISPR/ Cas systems are an RNA-based bacterial 

defence mechanism designed to recognise and eliminate foreign DNA from 

invading bacteriophage and plasmids, using the Cas endonuclease to introduce a 

cleavage site that is directed to a target sequence by a specific guide RNA (gRNA). 

The development of this advancing technology has revolutionised molecular 

genetics, allowing for the introduction of permanent changes to specific genes. 

Although the system is a relatively new technology it is rapidly becoming the gold 

standard choice for gene editing. This is due to the fact that CRISPR can make 

changes to the genetic code of a cell, resulting in a gene knockout, rather than a 

gene knockdown, like those achieved by siRNA and shRNA. Design of target guide 

RNAs is relatively simple because the target specificity relies on ribonucleotide 

complex formation and not protein/DNA recognition, therefore guides can be 

designed quickly and cheaply for any given gene sequence in the genome. 

However, there are limitations to the CRSIPR/Cas 9 system. The first being that 

establishing a CRISPR gene knock out is labour intensive and requires clonal 

isolation, whereas shRNA transfection and antibiotic selection is relatively quick 

in comparison. Screening for successful CRISPR clones can be time consuming.  

The CRISPR/Cas 9 system can also produce unwanted off-target effects by 

introducing a mutation at a non-specific locus that has similar, but not identical, 

sequence homology to the target sites. These off-target sites are hard to identify 

as you would have to sequence and scan the entire host genome to identify 

whether there are in fact mutations at sites with sequence similarity to the guide 

RNA. Sequencing the whole genome of cell lines is becoming less expensive than 

in previous years, but it is still extremely costly.  

Although there are advantages and disadvantages to the CRISPR/Cas 9 system as 

well as it still being a developing technology, it remains a powerful tool for 

manipulating the genomes of cell lines, mice and even somatic and embryonic 

stem cells from mice and humans. It can be exploited as such to create 

sophisticated and precise models for the study of gene and cellular function and 

can provide deeper insights into the underlying mechanisms of human disease 
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(Chiang, le Sage et al. 2016). Establishment of our BAF180 CRISPR knock out cell 

lines provides a system where we can observe BAF180 loss in a more genetically 

relevant way, as opposed to relying on gene knockdowns. 
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5. Mammalian high-throughput synthetic lethal RNAi 

screen 

 

5.1. Introduction 

 

RNAi interference (RNAi) is an effective tool for genome-scale high-throughput 

analysis of gene function. The use of high-throughput screens can be exploited in 

many ways, for example to isolate multiple members of a functional pathway as 

well as implicate new genes in a given biological function, process, complex or 

behaviour. 

When the normal function of a gene is required for a given function, RNAi 

knockdown may lead to a phenotype detectable in an assay that tests that 

function either directly or indirectly. In our case we are using shRNA knockdown 

cell lines treated with a library of 446 siRNAs, purchased from Dharmacon, to 

identify novel genes whose normal function is essential in BAF180-deficient cell 

lines. 

Typically, before high-throughput screening can take place, it is generally 

necessary to incorporate bioinformatics analysis at a genome scale to identify a 

subset of candidate genes followed by experimental testing. As described in 

Chapter 3, we described a subset of hypothesis driven candidate genes that test 

our hypothesis as well as our chosen cell lines. From this data, we are able to 

progress to more inclusive high-throughput testing to identify synthetic lethal 

genes with BAF180-deficient cells. Data resulting from high-throughput 

screening must be further analysed to identify positive result ‘hits’. 

 

5.2. Aims 

 

The aim of this work was to use a novel method of high-throughput RNAi 

screening to identify genes that are synthetic lethal when depleted in 

combination with BAF180. 



162 
 

 

5.3. siRNA screen 
 

To identify novel genes whose expression is essential in BAF180-deficient cells, 

we designed a high-throughput RNA interference (RNAi) synthetic lethality 

screen. For this screen we selected the osteosarcoma cell line, U2OS. U2OS cells 

are known to be readily transfectable and amenable to high-content imaging. 

Two U2OS cell lines were established, as described in detail in section 4.3, by 

transfection with pGIPZ plasmids expressing shControl+mCherry/NLS or 

shBAF180+GFP/NLS Figure 5.1a. The expression of two unique fluorescent tags 

allows for the co-culturing of cell lines, enabling us to treat both control and 

BAF180-deficient cells with exactly the same conditions and measure cell 

response via fluorescent readout. Optimisation of screen conditions resulted in 

the choice to mix our red-control and green-BAF180 cell lines in a 1:1 ratio 

(Figure 5.1a), seeding a total of 8000 cells per well. Cells were transfected with a 

human siRNA library encompassing 446 human protein-coding genes, with one 

gene per well of a 96-well plate and each gene being targeted by a pool of 4 

siRNAs (Figure 5.1a). More than 10,000 cells per well were imaged using the 

Olympus ScanR microscope (Figure 5.1a). Previous work with our shControl and 

shBAF180 U2OS cell lines identified a relationship between the level of 

fluorescence and shRNA construct expression (Hopkins, McGregor et al. 2016). 

As described in Chapter 4, our shRNA is part of a bicistronic construct, that 

expresses its fluorescent marker and the specific shRNA under the same CMV 

promoter and therefore allows us to exploit the overall GFP level as a readout for 

the average shRNA expression. Figure 5.1b shows representative BAF180 

immunofluorescence images, identifying low expressing GFP cells that correlate 

with a higher BAF180 antibody signal. To eliminate cells that may still be 

expressing BAF180, we chose to specifically analyse shBAF180 cells with high 

levels of GFP. Olympus ScanR analysis software was used to analyse the images 

taken by the ScanR microscope. Each cell in the screen was given an arbitrary 

value corresponding to ‘mean fluorescence’. We created gates to count cells in 

each and shBAF180 with the highest mean fluorescence were normalised to 
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control wells that were treated with control siRNA only. Using this, a ratio was 

established between our high-GFP expressing BAF180-deficient cells and total 

mCherry expressing shControl cells. We did not restrict our analysis of the 

mCherry control cells by fluorescence, as level of shRNA expression in these cells 

was not required to be high. Each screen was repeated in triplicate and average 

z-scores were calculated. Using the ratio established between high expressing 

GFP shBAF180 cells and total mCherry cells, each well was given a value. Each of 

these ratios were averaged for each plate and the standard deviation for the 

whole plate was calculated. To determine z-scores we used the calculation:  

(GFP:mCherry ratio in specific well – Plate average)/Plate STDEV = gene Z-score 

These z-scores were averaged between the three screens and plotted as a 

waterfall graph (Figure 5.1d). Genes with negative z-scores indicate there may be 

a synthetic lethal interaction specifically with our BAF180-depleted cells and 

those with positive z-scores stimulate BAF180-depleted cell growth more than 

the control. Top gene ‘hits’ were considered in the z-score range -2.039 to -1.07 

(Figure 5.2).  
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Screen Controls 

Before a synthetic lethal screen could be carried out a number of optimisation 

experiments had to be performed to ensure all aspects were working sufficiently. 

As mentioned above, cell seeding density and ratio were established in 

optimisation experiments (data not shown). Transfection efficiency was 

optimised using immunofluorescence analysis with an antibody against 53BP1. 

Using this, we identified conditions for optimal transfection, Figure 5.3a shows 

representative. 

In addition to optimisation of all conditions before running our HTS, we also 

added internal controls to each plate treated to confirm conditions were 

regulated across the screen. Due to the large number of siRNAs in our library, 

each screen was spread across six plates and in triplicate resulting in eighteen 

plates to analyse, thus these internal controls were extremely important. Each 

plate had multiple control wells to ensure conditions were standard throughout 

the screens. Wells treated with control siRNA only, as well as those treated with 

just transfection reagent were included to show that the seeding density was 

uniform from well to well and that both cell lines were viable in culture with this 

treatment (Figure 5.3b). siRNA against TIP60 was included as a control as in 

previous work we saw a reliable difference in viability between the shControl and 

shBAF180 U2OS cells, with shBAF180 being more sensitive to knockdown of 

TIP60 (Hopkins, McGregor et al. 2016). As an additional control that gave visual 

confirmation of successful transfection, we included control wells where the 

shControl and shBAF180 cells were treated with siRNA against GFP (Figure 5.3b-

c). We visually assessed successful knockdown of GFP in each plate in the screen, 

shown by representative images in Figure 5.3c, giving us confidence in the 

knockdown efficiency exhibited by each screen plate. 
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5.4. Hit selection and validation 

 

The objective of the screen was to determine a defined hit (or hits) whose 

silencing in combination with BAF180 depletion resulted in synthetic lethality. 

From the 446 siRNAs tested in the screen, we chose 33 genes from the top 10%, 

as ranked by Z-score, as potential synthetic lethal interactors (Figure 5.4). The 

library of siRNAs included a commercially available library of genes involved in 

the DNA damage response (DDR), combined with a ‘custom’ library that was 

chosen by Genome Centre researchers. Many genes involved in the DDR came out 

as synthetic lethal hits with our BAF180-depleted cells, including the excision 

repair proteins ERCC6 (top hit), ERCC1 and ERCC3 to name a few. Interestingly, 

genes involved in cell cycle regulation, like cyclin D1 (CCND1), cyclin C (CCNC) 

and cyclin B1 (CCNB1) were also found to be synthetic lethal with BAF180. TIP60 

(KAT5) was included as a gene in the library as well as being one of our internal 

screen controls. Interestingly, the siRNA targeting TIP60 from the screen library 

resulted in synthetic lethality with BAF180 and ranked 28th in the top hits, 

corroborating the interaction that we had seen previously. Another gene that was 

included in our hypothesis driven mini-screen (see Chapter 3), KAT2A (GCN5), 

was also identified as a top hit in our HTS, again the interaction being validated 

by different SMARTpool siRNAs. The other genes tested in our hypothesis driven 

mini-screen were not included in our HTS siRNA library, but the appearance of 

the two that were included, in our top hit list, not only validates these interactions, 

but also gives us confidence in the other results of the screen. 

To choose genes identified in our HTS for further analysis, we first determined 

(in collaboration with Frances Pearl – University of Sussex) which were 

potentially targetable by drugs and which already had commercially available 

inhibitors. Of the 33 hits, five had inhibitors (at the time of study), which were 

DNTT, CCND1, PARP3, TP53 and CCNB1 and so were taken as a subset of hits to 

further validate using small inhibitors. Of the candidate gene hits that did not 

have an inhibitor, we chose six genes to further validate using siRNA knockdown 

based experiments and these were, ERCC6, PLRG1, due to their high ranking in 
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the HTS, as well as H2AZ, NCAPG, SMARCC1 and GCN5, due to their known 

interactions with chromatin.  
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Of the six genes we chose to validate using different siRNAs the most notable and 

convincingly reproducible synthetic lethal interaction was H2AZ. Clonogenic 

survival assays were carried out after siRNA knockdown of H2AZ in shControl 

and shBAF180 U2OS cells. shBAF180 cells were significantly more sensitive to 

siH2AZ knockdown (Figure 5.5a). Gene knockdown of H2AZ was confirmed by 

western blot analysis (Figure 5.5b). Because there was still significant protein 

detected after siRNA depletion, it is possible that a full reduction of H2AZ protein 

expression could result in a more severe synthetic lethal phenotype.   

GCN5, which was independently validated in section 3.5, was identified as a hit in 

high-throughput screening analysis. Although this interaction had already been 

studied in our hypothesis driven mini-screen using cell viability as a readout 

(Figure 3.3), we wanted to further validate this interaction in a different way. 

shBAF180 U2OS cells treated with siRNA against GCN5 had a lower colony 

forming potential compared to the control (Figure 5.5c), providing additional 

evidence of a synthetic lethal interaction seen between these two genes. 

In clonogenic survival assays, the siRNAs targeting ERCC6, PLRG1, NCAPG and 

SMARCC1 did not selectively target either the shControl or shBAF180 U2OS cell 

lines (Figure 5.5d), suggesting these genes are not synthetic lethal with BAF180. 

Many RNAi screens produce false positive results, these can be contributed to by 

experimental noise that is inherent in large-scale studies, bias that can be 

inherent in the screen assay, off-target effects and even incomplete or incorrect 

gene models. While these genes may be false positives, further investigation is 

required to determine this with confidence.  
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In addition to testing synthetic lethal interactions with different siRNAs, we also 

wanted to investigate the conditional viability reduction in our shBAF180 U2OS 

cells seen in the HTS using small molecule inhibitors. As mentioned above we 

chose five targets with inhibitors, DNTT, CCND1, PARP3, TP53 and CCNB1 

(Figure 5.6a). As a first, we used viability assays to determine if each drug had 

potential to selectively kill our shBAF180 U2OS before taking on to further assays.  

A small difference in viability between shBAF180 and the control was seen after 

treatment with Genistin, a small molecule inhibitor targeting DNTT (Figure 5.6b). 

However, the drug seemed to aid cell growth at low concentrations with both cell 

lines doing better at these low concentrations compared to the 0μM control. The 

difference in viability between these cell lines was only seen at these low doses 

when both cell lines had more improved viability. Higher doses of Genistin 

resulted in loss of viability in an equal manner for both cell lines.  

Interestingly, two drugs targeting the PARP proteins, ME0328, a PARP3 specific 

inhibitor and Olaparib a pan inhibitor of PARP genes, selectively reduced viability 

in the shBAF180 U2OS cell line compared to the control (Figure 5.6c-d). We chose 

two small inhibitors to validate the synthetic lethal interaction between TP53 and 

BAF180, Cyclic Pifithrin-α-hydrobromide and Pifithrin-μ, both of which resulted 

in no observable difference in cell viability or colony forming potential after 

treatment in shControl and shBAF180 U2OS cells (Figure 5.7b-c and 5.8b-c). 

The drug Palbociclib (aka PD0332991) showed a slight difference in cell viability 

at the 7.5μM dose between the shBAF180 and shControl cells (Figure 5.9b), 

however no difference was apparent when investigated further in clonogenic 

survival assays (Figure 5.9c). It should be noted however, that the cells were 

more sensitive to the inhibitor in clonogenic survival assays. Thus, there is scope 

here to develop this assay and cannot be entirely ruled out of any further testing.  
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Figure 5.6. Small molecule inhibitor validation of HTS hits. (A) Inhibitors 
against HTS gene hits. (B) Cell viability in shControl and shBAF180 U20S after 
treatment with Genistin. (C-D) Cell viability in shControl and shBAF180 U20S 
after treatment with the PARP inhibitors ME0328 and Olaparib respectively. 

shBAF180 cells were slightly more sensitive to PARP inhibition that the 
control. 
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Figure 5.7. Small molecule inhibition of TP53 does not confirm HTS 
synthetic lethal interaction with BAF180. (A) Inhibitors against HTS gene 
hits. (B) Cell viability curve of shControl and shBAF180 U20S after exposure 

to Cyclic Pifithrin-α-hydrobromide. (C) shBAF180 U20S were no more 
sensitive to treatment with Cyclic Pifithrin-α-hydrobromide than the control 

in clonogenic survival. 
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Figure 5.8. Small molecule inhibition of TP53 does not confirm HTS 
synthetic lethal interaction with BAF180. (A) Inhibitors against HTS gene 
hits. (B) Cell viability curve of shControl and shBAF180 U20S after exposure 
to Pifithrin-μ (C) shBAF180 U20S were no more sensitive to treatment with 

Pifithrin-μ than the control in clonogenic survival. 
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Figure 5.9. Small molecule inhibition of Cyclin D1 (CDK4/6) does not 
confirm HTS synthetic lethal interaction with BAF180. (A) Inhibitors 
against HTS gene hits. (B) Cell viability curve of shControl and shBAF180 

U20S after exposure to Palbociclib(C) shBAF180 U20S were no more 
sensitive to treatment with Palbociclib than the control in clonogenic 

survival. 
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Heptelidic Acid, which also targets DNTT was analysed to further develop the 

potential synthetic relationship with BAF180. An unusual cell viability curve was 

seen after treatment with Heptelidic acid, possibly due to the drug precipitating 

in the media. Nevertheless, we did see a small difference in viability between the 

shBAF180 cells and the control at 2.5μM in duplicate experiments (Figure 5.10b). 

We therefore further tested this drug in clonogenic survival assays. We observed 

a consistent difference in colony forming potential between the two cell lines, 

with the shBAF180 cells being more sensitive to treatment with Heptelidic Acid 

(Figure 5.10c). While there was a consistent trend, the differences were not 

significant (Figure 5.10c). 

The drug RO-3306, targeting CCNB1, modestly targeted BAF180-depleted cells 

more than the control cell line in both cell viability assays and clonogenic survival 

assays (Figure 5.11b-c). This difference was enhanced by the addition of IR to low 

dose treatment of RO-3306 in clonogenic survival assays (Figure 5.11d). As 

chemotherapeutic drugs are often given in combination with radiation therapy, 

it is important to see whether there is an increase in selective effects on viability 

after irradiation.  
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Figure 5.10. Small molecule inhibition of DNTT consistently shows a 
trend of synthetic lethality in shBAF180 U2OS. (A) Inhibitors against HTS 

gene hits. (B) Cell viability curve of shControl and shBAF180 U20S after 
exposure to Heptelidic Acid (n=2). shBAF180 appear marginally more 

sensitive to the control after treatment 2.5𝜇M. (C) shBAF180 U20S were more 
sensitive to treatment with Heptelidic Acid than the control in clonogenic 

survival, but was not statistically significant by student t-test (n=3). 
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Figure 5.11. Small molecule inhibition of Cyclin B1 (CDK1) validates HTS 
synthetic lethal interaction with BAF180. (A) Inhibitors against HTS gene 
hits. (B) Cell viability curve of shControl and shBAF180 U20S after exposure 

to RO-3306 (n=2). shBAF180 appear marginally more sensitive to the control 
after treatment. (C) shBAF180 U20S were more sensitive to treatment with 

RO-3306 than the control in clonogenic survival, but was not statistically 
significant (n=3). (D) shBAF180 U20S are more sensitive to low dose 

treatment with RO-3306 than the control after irradiation. (n=3) Statistical 
significance is represented by * for P<0.05, as analysed by student t-test. 
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5.5. Discussion 

 

The objective of our high-throughput screen was to determine a hit, or multiple 

hits, whose depletion in combination with BAF180 resulted in synthetic lethality. 

Moreover, we wanted to improve on current RNAi screening methods by 

developing a novel system with improved sensitivity and reproducibility. We 

created shBAF180 and shControl isogenic cell lines that we were able to identify 

when co-cultured, enabling us to observe specific cell differences within the same 

well microenvironment, reducing the amount of experimental variation and 

increase screen sensitivity and therefore giving us a better chance at potential hit 

validation. From a library consisting of 446 genes, we identified 33 genes as 

synthetic lethal gene candidates with shBAF180 U2OS cells. The RNAi library 

used in the screen was designed to deliberately target genes involved in the DNA 

damage response (DDR). We know that the DDR is essential for maintaining the 

genomic integrity of the cell and its disruption is one of the hallmarks of cancer. 

We also know that synthetic lethality can either occur due to the loss of two genes 

in one essential pathway, the loss of two genes in independent survival pathways 

or the loss of two genes in independent pathways where an essential product is 

normally formed.  

Recent work in our lab has shown that phosphorylation of BAF180 by ATM is 

required for early DNA repair activity in that lack of transcriptional repression of 

genes flanking DNA DSBs impedes repair (Kakarougkas, Ismail et al. 2014). It is 

possible that loss of two genes involved in the DDR, whether they be on the same 

or parallel pathways, could result in synthetic lethality. It is known that defects 

in the DNA damage response and repair pathways lead to genomic instability in 

tumour cells and this instability can cause sensitivity to DNA damaging drugs 

more than normal cells. For example, treatment with PARP inhibitors in BRCA-

negative cancers cause synthetic lethality by the combination of impairment of 

both single- and double-stranded DNA break repair respectively. As previously 

mentioned, BRCA1 and BRCA2 are important for the repair of DNA DSBs by 

homologous recombination (HR) and mutations here are commonly associated 

with breast and ovarian cancer (Hall, Friedman et al. 1992, Casey, Plummer et al. 
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1993, Wooster, Neuhausen et al. 1994, Parikh and Advani 1996). PARP recruits 

DNA repair proteins to sites of single-strand DNA breaks and if this is inhibited, 

stalled replication forks arise, which are typically repaired by HR (Petermann, 

Keil et al. 2005). In BRCA-negative cancers, treated with PARP inhibitors, PARP1 

is trapped on DNA, blocking replication fork progression, which usually requires 

homologous recombination repair (HRR). Due to the HRR defect observed in 

BRCA-negative cancers, treatment with PARP inhibitors results in cell specific 

synthetic lethality. 

We could speculate that BAF180-depleted cells are more sensitive to knockdown 

of other DDR genes because of impairments in two repair processes, like BRCA 

and PARP. However, the underlying mechanism for synthetic lethality between 

BAF180 and each gene identified in the HTS, must be reasoned individually.  

 

PARP3, a gene that is implicated in the DDR, was identified as a candidate gene 

hit with BAF180 in the HTS and was validated by the PARP inhibitors ME3028 

and Olaparib in this chapter, however the mechanism of this synthetic lethality 

and the further development of this interaction will be discussed in detail in 

Chapter 6. 

 

5.5.1. H2A.Z is synthetic lethal when knocked down in 

combination with BAF180. 

 

We identified H2AZ as a candidate gene hit in our synthetic lethal HTS with 

BAF180, and this interaction was validated using siRNAs non-overlapping with 

those used in the HTS. H2A.Z is a well-characterised variant of the canonical H2A 

histone and acetylation of H2A.Z is important for the regulation of gene 

expression. Acetylation of H2A.Z is typically associated with highly transcribed 

genes and a more open chromatin structure, whereas unacetylated H2A.Z is 

found in silent genes (Josling, Selvarajah et al. 2012) and is therefore linked to 

both the activation and repression of transcription. H2A.Z is also present at 

centromeres and is thought to have an important role in the organization of 
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pericentric heterochromatin centromere structure and function (Greaves, 

Rangasamy et al. 2007). BAF180 has well-characterised roles in transcriptional 

regulation, however recent work in our lab has also implicated BAF180 in sister 

chromatid cohesion, specifically at centromeres in mammalian cells (Brownlee, 

Chambers et al. 2014). The rationale behind why H2AZ and BAF180 might be 

synthetic lethal could therefore be explained by one of two mechanisms. Firstly, 

that the loss of two genes that are important for transcriptional regulation could 

be enough to cause synthetic lethality or secondly, that to the loss of two genes 

that have important functional roles at centromeres may be the cause of the 

observed synthetic lethality.  

 

5.5.2. Possible mechanisms for BAF180 and SMARCC1 synthetic 

lethality  

 

Although we were not able to validate the interaction found in our high-

throughput screen between BAF180 and SMARCC1 with the use of non-

overlapping siRNAs, it does not necessarily suggest that this ‘hit’ was a false 

positive. It is interesting to think about SMARCC1 as a candidate synthetic lethal 

interactor with BAF180. As discussed previously, in clear cell renal cell carcinoma 

VHL, PBRM1 (BAF180), BAP1 and SETD2 are frequently mutated, they also all 

reside on the short arm of chromosome 3p. SMARCC1 is a subunit of both 

SWI/SNF chromatin remodelling complexes, BAF and PBAF. Like BAF180, the 

gene encoding SMARCC1 is found on chromosome 3p21.31 between BAF180 and 

VHL. It has been determined, that given its location, ~90% of ccRCC would be 

expected to lose at least one SMARCC1 allele, with the second being susceptible 

to loss. It was also determined that statistically, by chance alone, SMARCC1 would 

be expected to be mutated at around 70% of the frequency of BAF180, however, 

its mutation rate in ccRCC are actually extremely low (Brugarolas 2013). It has 

been suggested that SMARCC1 may be broadly essential for survival and that 

mutations here may be detrimental for ccRCC. We identified SMARCC1 as the 17th 

out of 446 genes that are likely to be synthetic lethal with BAF180 in high-

throughput siRNA screening. It is possible that if SMARCC1 is indeed required for 



184 
 

ccRCC cell survival, then loss of this gene could result in the synthetic lethality 

seen here with BAF180-depleted cells. The exploitation of SWI/SNF subunit 

inhibition for cancer therapy is intriguing and could provide a novel approach to 

the treatment of cancers that currently have poor treatment options, like ccRCC. 

 

5.5.3. Possible mechanisms for BAF180 and Cyclin B1 synthetic lethality 
 

As mentioned in section 1.5, in bladder cancer, PBRM1 is thought to regulate the 

expression of cyclin B1. Overexpression of PBRM1 is thought to reduce mRNA 

levels of cyclin B1 and loss of PBRM1 is thought to increase mRNA levels of cyclin 

B1 (Huang, Peng et al. 2015). The cell cycle is controlled by cyclins and cyclin-

dependent kinases (Sherr 1996). Cyclin B1 is a key molecule for G2/M phase 

transition of the cell cycle and is needed for initiation of mitosis. Cyclin B1 

overexpression has been linked to disease recurrence in cancers such as 

colorectal, prostate, breast and lung cancer to name just a few (Mashal, Lester et 

al. 1996, Kawamoto, Koizumi et al. 1997, Wang, Yoshimi et al. 1997, Malumbres 

and Barbacid 2005, Kim, Ackerson et al. 2006).  

Defects in cell cycle control are essential to carcinogenesis. It has been suggested 

that PBRM1 reduction can induce cell cycle arrest and subsequently promotes 

cell proliferation (Huang, Peng et al. 2015). We have identified a synthetic lethal 

relationship between PBRM1 (BAF180) and cyclin B1 (CCNB1). Previous studies 

have shown the increase in cyclin B1 upon BAF180 depletion. It is possible that 

this upregulation of cyclin B1 is necessary for cancer cell survival and that the 

combined loss of this gene together with BAF180 may result in the inability to 

maintain chromatin in a transcriptionally permissive state and may be the 

underlying cause for the synthetic lethality seen in this study. To study this 

interaction further, it would be interesting to analyse our set of BAF180-depleted 

cell lines by western blot to see if cyclin B1 is upregulated after BAF180 loss via 

shRNA, CRISPR knockout or in our naturally occurring BAF180-negative cancer 

cell lines, A704.  
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In conclusion, we have presented a novel synthetic lethal high-throughput RNAi 

screening method that is capable of assaying synthetic lethal interactions in a cell 

specific manner. Multiple candidate genes were identified as synthetic lethal hits 

with BAF180-depleted shU2OS cells, some of which we were able to validate at a 

further level, however further work is required before translating this data in to 

something clinically relevant. PARP3 was in the top 1% of genes tested for 

synthetic lethality with shBAF180 cells in our screen. Due to the presence of PARP 

inhibitors already being used in a synthetic lethal manner in clinical studies for 

BRCA-deficient cancers, the translational aspect of validating this gene swiftly 

became extremely interesting to us. This synthetic lethal interaction and further 

validation of this gene will be discussed in the next chapter.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



186 
 

6. PARP inhibition is synthetically lethal with BAF180 

loss 

 

6.1. Introduction 

 

Poly (ADP-ribose) Polymerase (PARP), as described in section 1.7, has a well 

characterised role in the repair of DNA damage. Small molecule inhibitors of 

PARP were originally developed to sensitize patients to chemotherapy during 

cancer treatment. However, more recently, PARP inhibitors have been 

demonstrated as a potential therapy for targeting cancers with a deficiency in the 

homologous recombination (HR) pathway. 

PARP inhibition in BRCA mutated cancers is one of the first clinically 

implemented examples of harnessing the principle of synthetic lethality for 

cancer therapy (Lord and Ashworth 2008). BRCA1 and BRCA2 are essential for 

the repair of DNA double strand breaks (DSBs) and collapsed replication forks 

using the HR pathway. Loss of wild type BRCA1 or BRCA2, results in the complete 

absence of HR and the increase in the cells usage of non-conservative 

mechanisms to repair DSBs/replication forks (Lord and Ashworth 2008). It has 

been well established that the HR defect in BRCA-deficient cells is the primary 

cause of PARP inhibitor sensitivity (Lord and Ashworth 2008). It has been shown 

that deficiencies in other HR proteins can also lead to sensitivity to PARP 

inhibitors (McCabe, Turner et al. 2006). 

Previous work in our lab has identified the SWI/SNF complex PBAF as important 

for mediating sister chromatid cohesion. Specifically, this activity is dependent 

on the BAF180 subunit of PBAF (Brownlee, Chambers et al. 2014). As described 

in section 1.1.3.2, the process of HR utilizes an intact sister chromatid as a repair 

template for the repair of damaged DNA in the S/G2 phase of the mammalian cell 

cycle (Kong, Ball et al. 2014).  It is known that efficient homologous 

recombination is promoted by the recruitment of sister chromatid cohesion to 

DNA DSBs (Kong, Ball et al. 2014, Gelot, Guirouilh-Barbat et al. 2016). We found 

that cells with deficient BAF180 demonstrate phenotypes that are consistent 
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with a defect in cohesin-mediated DNA repair (Brownlee, Chambers et al. 2014). 

Therefore, it is possible that the PBAF complex may also promote HR. 

We identified multiple PARP genes, as being synthetic lethal with BAF180 in the 

RNAi screen presented in Chapter 5. In this chapter we sought to address whether 

a defect in HR in BAF180-deficient cells was the underlying cause for this 

synthetic lethal phenotype. 

 

6.2. Aims 

 

The aims of the work described in this chapter were firstly to validate the 

synthetic lethal interaction found between BAF180 and the PARP genes identified 

by our high-throughput screen (Chapter 5), using siRNA and drug based in vitro 

experiments. Secondly, to confirm that the biological interactions observed could 

be reproduced in multiple cell lines, using multiple PARP inhibitors. And finally, 

to explore a potential HR defect in BAF180 deficient cells, to uncover a 

mechanism of why BAF180 and PARP genes have a synthetic lethal relationship. 

 

6.3. BAF180 and PARP genes are synthetic lethal 

 

High-throughput screening techniques, as described in Chapter 5, identified a 

potential synthetic lethal interaction between BAF180 and PARP3.  

To validate this interaction, it was necessary to reproduce the synthetic lethal 

observation, using a different pool of siRNAs, to confirm that the ‘hit’ wasn’t 

simply due to off target effects. In addition, when not performing high-

throughput analyses, a more rigorous analysis of cell viability can be used. 

Therefore, using siRNA sequences targeting different regions of the gene, 

clonogenic survival assays were performed. This revealed a large decrease in 

survival after treatment with siPARP3 in shBAF180 cells (Figure 6.1a), 

consolidating our findings from our high-throughput screen. The fact that the 

interaction could be reproduced in a different assay, with a different siRNA 
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sequence, suggests that this interaction is robust, but would still need to be 

explored further.   

Notably, we also identified PARP1, PARP2 and PARP4 in the screen (Figure 6.1b). 

Although these PARP genes did not make it to the top ‘hit’ list as described in 

Chapter 5, the BAF180 depleted shU2OS cells were still classed as more sensitive 

to these gene knockdowns when compared to the control. To test whether these 

other PARPs are genuinely synthetic lethal with loss of BAF180, we tested colony 

survival potential as we did for PARP3 (Figure 6.1.a), with different siRNAs to 

those included in the screen for PARPs 1 and 2. A striking decrease in colony 

formation potential was seen after depletion of PARP1 in our shBAF180 cells, 

whereas depletion of PARP2 resulted in no difference in survival between 

shBAF180 and shControl cell lines (Figure 6.1c).  

Interestingly, co-depletion of PARP1, PARP2 and PARP3, reduced survival of the 

shBAF180 to a percentage that was lower than PARP2 siRNA alone, but 

marginally higher than both PARP1 and PARP3 siRNA depletions alone (Figure 

6.1c). This could suggest either that the removal of PARP2 alongside PARP1 and 

PARP3, could slightly rescue the synthetic lethal phenotype, or that the siRNA 

depletions were not as effective in combination. 

Western blot analysis of whole cell extracts was used to determine knockdown 

efficiency in these siPARP treated cells (Figure 6.1d). PARP1, which runs at 116-

kDa, was significantly reduced, as expected in the cells treated with siPARP1 as 

well as the cells treated with siPARP1, 2 and 3. PARP3, which runs at 60-kDa, was 

reduced in cells treated with siPARP3 as well as cells treated with siPARP1,2 and 

3.  
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6.4. Multiple cell lines with depleted BAF180 are 

sensitive to treatment with the PARP inhibitor drug Olaparib 

 

In parallel with the confirmation that the same synthetic lethality can be seen 

with various siRNA sequences against our PARP targets (Figure 6.1a-d), we 

wanted to replicate the conditional viability reduction in a more therapeutically 

relevant way, with small molecule inhibitors that are commercially available. The 

rationale behind validation using small molecule inhibitors as well as siRNA was 

multifaceted. Firstly, we can speculate that gene targeting by RNAi may not 

completely downregulate the targets, perhaps due to incomplete depletion of the 

gene. As no genes in the screen showed 100% shBAF180 specific synthetic 

lethality we postulated that residual gene product activity may have prevented a 

strong conditional response. Secondly, often loss of a protein by siRNA depletion 

does not always produce the same biological effects as drug inhibition. Finally, 

small molecule inhibitors of PARP are currently in clinical trials and are already 

treating cancers by exploiting the principle of synthetic lethality.  

Olaparib, otherwise known as Lynparza, is known to be a potent inhibitor of 

PARP1 and PARP2 with some activity also against tankyrase-1 

and is currently tested for the treatment of BRCA deficient cancers. 

Colony survival assays were carried out using shBAF180 and shControl U2OS 

cells after treatment with Olaparib. BAF180 depleted cells were significantly 

more sensitive to treatment with Olaparib compared to the control (Figure 6.2a). 

This sensitivity was conserved when moving in to a different cell line (Figure 

6.2b), the more clinically relevant renal cell line, 786-0. As previously described 

(Chapter 4), 786-0 cells were made to stably express shRNA against both BAF180 

with a GFP/NLS, as well as separately a control shRNA with mCherry/NLS. The 

renal cells lacking BAF180 were significantly more sensitive to treatment with 

Olaparib, compared to the control.  
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Figure 6.2. Two cell lines with depleted BAF180 are sensitive to 
treatment with the PARP inhibitor drug Olaparib. (A) shBAF180 U20S 

cells were more sensitive to treatment with Olaparib compared to the control 
in clonogenic survival assay. (n=3). (B) shBAF180 786-0 cells were more 

sensitive to treatment with Olaparib compared to the control in clonogenic 
survival assay. (n=3).  

 Statistical significance is represented by * for p<0.05 and ** for p<0.01, as 
analysed by Student t-test. 
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6.5. Sensitivity to Olaparib is not due to off target shRNA 

effects 
 

When synthesising our cell lines, as described in Chapter 4, we generated stable 

shBAF180 cell lines with several different shRNA sequences. This provided us 

with an opportunity to determine whether the synthetic lethal relationship with 

PARP activity is a consequence of off target effects from the shRNA sequence used. 

We therefore performed colony survival assays with the panel of stable 

shBAF180 cells. Figure 6.3a shows the varying degree of sensitivity of each 

BAF180 shRNA construct in comparison to a U2OS only control. The construct 

that we chose to take forward for further modification, V3LHS_318943, which 

target sequence is located in the sixth of BAF180’s bromodomains (Figure 6.3c), 

came out as one of the most sensitive to Olaparib treatment and was statistically 

significant at 0.5µM (p<0.05* - not shown in figure) (Figure 6.3a). This result was 

as expected, due to its modified counterpart shBAF180+GFP/NLS (U20S) being 

found to be sensitive to Olaparib treatment previously (Figure 6.2). 

Constructs V2LHS_174969 and V2LHS_200596, which target sequences located 

in the third and fourth bromodomain respectively (Figure 6.3c), both show the 

strongest sensitivity of the constructs to PARP inhibitor treatment with 

statistically significant p values at each concentration (p<0.05* - not shown in 

figure). While constructs V2LHS_174972, located in the C-terminal domain and 

V3LHS_318948, located in the second BAH domain (Figure 6.3c), appear to be the 

least sensitive of the five (Figure 6.3a).  

Western blot analysis (Figure 6.3b) demonstrates suppression of BAF180 protein 

expression in each of the shRNA constructs stable cell lines, when compared to 

relative BAF180 expression in control U2OS cells. Importantly, depletion of 

BAF180 by any of the given constructs, which target very different regions of the 

protein, all ultimately confer a sensitivity to the PARP inhibitor Olaparib. 

Together, these data suggest that the synthetic lethality between BAF180 loss and 

PARP inhibition is not a consequence of off target or indirect effects.  
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Figure 6.3 Sensitivity to Olaparib is not due to off target shRNA effects. 
(A) Five different shBAF180 construct expressing U20S cell lines were more 
sensitive to treatment with Olaparib compared to the control in clonogenic 

survival assays (n=3). (B) Western blot analysis of BAF180 protein 
expression in shBAF180 construct expressing U20S cell lines. (C) Illustration 

of the domains of BAF180 and where each shBAF180 construct targets. 
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6.6. Multiple cancer cell lines with depleted BAF180 are 

sensitive to the PARP inhibitor Rucaparib 

 

To further investigate the relationship between BAF180 loss and the inhibition 

of PARP activity, we repeated the assays using different PARP inhibitor drugs.  

There are currently multiple commercially available PARP inhibitors that are in 

various stages of clinical trials.  

Rucaparib has binding affinity with nine PARP proteins (PARP1, 2, 3, 4, 10. 15. 16. 

TNKS1 and TNKS2), but is thought to be a potent inhibitor specifically of PARP1, 

compared to Olaparib which is a potent PARP1/2 inhibitor. We chose to test 

Rucaparib in addition to Olaparib as we hypothesised that we may see a more 

dramatic synthetic lethal effect with a drug with binding affinity for both PARP1 

and PARP3.  

Colony survival assays were carried out in both the U2OS as well as the 786-0 

stable shControl and shBAF180 cell lines, under constant exposure from the 

PARP inhibitor Rucaparib. Statistically significant differences in survival were 

observed in shBAF180 U2OS treated with Rucaparib at a subset of doses tested. 

Although survival differences were not significant at all doses, a reduction in 

colony formation ability was consistently apparent. There was a tendency for the 

shBAF180 renal cells to be slightly more sensitive to Rucaparib compared to 

shControl at the doses studied. While this was less dramatic than the differences 

observed in the U2OS-based cell lines, we could speculate that this may be due to 

the parent 786-0 cells potentially having a higher base-line level resistance to 

Rucaparib. 
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Figure 6.4 Multiple cancer cell lines with depleted BAF180 are sensitive 
to the PARP inhibitor Rucaparib. (A) shBAF180 U20S cells were more 

sensitive to treatment with Rucaparib compared to the control in clonogenic 
survival assay. (n=3). (B) shBAF180 786-0 cells were more sensitive to 

treatment with Rucaparib compared to the control in clonogenic survival 
assay. (n=3).  

 Statistical significance is represented by * for p<0.05 and ** for p<0.01, as 
analysed by Student t-test. 
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6.7. Sensitivity to Olaparib in BAF180 shU2OS is 

exacerbated by treatment with Ionising Radiation 

 

We chose to combine PARP inhibition with ionising radiation (IR), to see if there 

was potential for amplifying problems repairing breaks in our cells with already 

impaired pathways.  

To test how BAF180 depleted cells treated with olaparib, responded to the 

addition of IR, we chose a dose of olaparib that gave a small difference between 

cell lines and examine if we could exacerbate the difference with gamma 

irradiation. 

shU2OS cells were irradiated in the presence of olaparib (Figure 6.5). Survival 

assays revealed a significant decrease in survival after the addition of Olaparib in 

the shBAF180 cells compared to the control at 2, 3 and 4Gy (Figure 6.5). The 

sensitivity to ionizing radiation after BAF180 knockdown and treatment with 

Olaparib, suggests that BAF180-depleted cells may have a defect in the HR 

pathway. 

 

6.8. siBAF180 depleted U2OS cells exhibit a mild defect in 

HR 

 

Cells that are sensitive to treatment to PARP inhibitors have a defect in HR 

(McCabe, Turner et al. 2006). Here we wanted to identify if the loss of BAF180 

corresponded with a defect in HR. RAD51 foci formation is a readout of 

homologous recombination (Tarsounas, Davies et al. 2003).  

Cells with a defect in HR will not be able to repair irradiation induced damage as 

readily and therefore will have fewer RAD51 foci. CENPF staining was used to 

visualise cells in the G2 stage of the cell cycle and antibodies against human 

RAD51 were used to visualise RAD51 foci formation, DNA content was stained 

using DAPI.  
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Here we see BAF180 depleted cells forming statistically significantly less foci per 

cell compared to the control, which is indicative of a partial HR defect (Figure 

6.6a). Representative images illustrate the presence of RAD51 foci (Figure 6.6b).  
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Figure 6.5 Sensitivity to Olaparib in BAF180 shU20S cells is exacerbated 
by treatment with IR. shBAF180 U20S cells were more sensitive to 

treatment with Olaparib compared to the control in clonogenic survival assay. 
This sensitivity was increased upon addition of IR. (n=3).  

 Statistical significance is represented by * for p<0.05, as analysed by Student 
t-test. 
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A 

Figure 6.6 BAF180 depleted U20S cells exhibit a mild defect in HR. IR 
induced RAD51 focus formation in U20S cells treated with siControl or 

siBAF180. (A) Mean number of foci scored after 0Gy and 2 hours after 3Gy 
irradiation. Statistical significance is represented by * for p<0.05, as analysed 

by Student t-test. (B) Representative images of RAD51 focus formation. 
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6.9. Exposure of camptothecin in BAF180 shU2OS cells 

results in a sub G1 pile up and an increase of apoptotic cells 

 

Camptothecin (CPT) is a Topoisomerase I inhibitor, that forms a tight complex 

with TOP1-DNA adducts. The stabilisation of TOP1-DNA adducts by CPT activates 

an ATR-dependent pathway to promote the repair of DNA damage by 

homologous recombination after encountering replication stress (O'Connell, 

Adamson et al. 2010). Consequently, cells with defects in the HR pathway display 

sensitivity to treatment with CPT. 

 

6.9.1. BAF180 depleted shU2OS cells treated with camptothecin 

accumulate in sub G1 

 

To further investigate the defect in HR in BAF180 deficient cells, we used the drug 

camptothecin and analysed the data by flow cytometry. U2OS stable shControl 

and shBAF180 cells were treated with camptothecin and analysed by FACS to 

monitor apoptotic responses and cell cycle progression. 

FACS profiles showed an increase in the sub G1 population, in shBAF180 cells 

after treatment with camptothecin (Figure 6.7a, Figure 6.7b). Addition of 

camptothecin had an effect on cell viability in both cell lines, however, strikingly 

there was a more rapid accumulation in the sub G1 population in the shBAF180 

cells compared to the control. In both the shControl and shBAF180 cells exposure 

to camptothecin was severely toxic after 96 hours and therefore, sub G1 

population levels plateaued here (Figure 6.7a, Figure 6.7b). 
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6.9.2. BAF180 depleted shU2OS cells treated with camptothecin 

are positive for the apoptotic indicator, Caspase 3 

 

In order to determine whether the sub-G1 population was due to apoptosis in 

response to CPT treatment, we monitored this response directly using antibodies 

raised against Caspase 3. Caspase 3 is part of the Caspase family of endoproteases, 

that play a key role in cell regulatory networks that control inflammation and cell 

death. Multiple caspases are sequentially activated during cellular apoptosis, or 

programmed cell death. The presence of caspase 3 in cells can be used as a 

readout of activation of the apoptotic pathway. Both FACS analysis (Figure 6.8a), 

as well as Western blot (Figure 6.8c) demonstrated that apoptosis has been 

stimulated in both cell lines after the treatment with camptothecin. The caspase 

positive fraction of cells was quantitated by gating in the FACs assays, and this 

suggested that the proportion of cells undergoing apoptosis was significantly 

higher for the shBAF180 cells (Figure 6.8a, Figure 6.8b). Another readout of 

apoptosis is PARP cleavage (Yang, Zhao et al. 2004). Western blot analysis 

showed the formation of cleaved PARP after treatment with camptothecin at 

early time points (Figure 6.8c), suggesting that the drug did indeed stimulate 

apoptosis in both cell lines.  
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Figure 6.7. BAF180 depleted shU20S cells treated with camptothecin 
accumulate in sub G1. FACS analysis of shControl and shBAF180 U20S 

treated with camptothecin or the vehicle control DMSO at 0, 24, 48, 72 and 96 
hour time points. (A) Representative cell cycle profiles after treatment with 

camptothecin (n=2) (B) Histogram representation of sub G1 population after 
camptothecin treatment. 
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Figure 6.8. BAF180 depleted shU20S cells treated with camptothecin 
have more caspase 3 positive cells compared to the control. FACS analysis 

of shControl and shBAF180 U20S treated with camptothecin or the vehicle 
control DMSO at 0, 24, 48, 72 and 96 hour time points. (A) Representative 
caspase 3 levels after treatment with camptothecin (n=2) (B) Histogram 

representation of caspase 3 in gated population after camptothecin 
treatment. (C) Western blot of apoptosis. Analysis of PARP and cleaved PARP 

expression after treatment with camptothecin in shControl and shBAF180 
U20S cells. 
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6.10. Exposure of Olaparib in BAF180 shU2OS cells results 

in a sub G1 accumulation and an increase of apoptotic cells 
 

We wished to understand how our shU2OS cells were dying after treatment with 

the PARP inhibitor Olaparib. Our hypothesis was that the cells were being made 

to enter the apoptotic pathway, rather than cell death by necrosis. 

 

6.10.1. BAF180 depleted shU2OS cells treated with Olaparib 

accumulate in sub G1 

 

In order to test whether the shBAF180 cells were dying by apoptosis after PARP 

inhibitor treatment, U2OS stable shControl and shBAF180 cells were analysed 

after olaparib treatment by FACS. Addition of Olaparib to the stable U2OS cell 

lines shControl and shBAF180 resulted in a slight increase in the sub G1 

population of both cell lines at high doses and late time points (Figure 6.9). At 

high doses over long periods of exposure to any drug would stimulate some level 

of cell death or apoptosis because the cells can no longer tolerate the treatment, 

but it is interesting to see that this level of apoptosis is increased significantly in 

the cells lacking BAF180.  

 

6.10.2. BAF180 depleted shU2OS cells treated with Olaparib 

are positive for the apoptotic indicator, Caspase 3 

 

Consistent with the data shown in Figure 6.9, a shift in the total cells apoptotic 

population can be seen in both cell lines at the 10 and 20uM dose of Olaparib at 

late time points when looking at Caspase 3 expression (Figure 6.10). Caspase 3 

levels show us a clearer indication that the shBAF180 cells are more prone to 

enter apoptosis after Olaparib treatment, than looking at the sub G1 population 

alone. shBAF180 cells have an increase in Caspase-3 positive cells at all time 

points after treatment with 10 and 20µM Olaparib compared to the control. 



205 
 

These data demonstrate that loss of BAF180 results in a modest, but clear, defect 

in the HR pathway, which provides a potential mechanistic explanation for the 

sensitivity to treatment with PARP inhibitors. 
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Figure 6.11. shBAF180 U20S appear to die through apoptosis after 
treatment with Olaparib.  

FACS analysis of shControl and shBAF180 U20S treated with Olaparib or the 
vehicle control DMSO at 0, 24, 48, 72 and 96 hour time points. (A) Histogram 

representation of sub G1 population after camptothecin treatment (B) Histogram 
representation of caspase 3 in gated population after Olaparib treatment. (C) 

Western blot of apoptosis. Analysis of PARP and cleaved PARP expression 
after treatment with Olaparib in shControl and shBAF180 U20S cells.  
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6.11. Discussion 

  

In this section we validated the siPARP:shBAF180 interaction observed in our 

high-throughput synthetic lethal siRNA screen, described in Chapter 5. We found 

that the interaction seen between PARP1 and PARP3 with shBAF180 U2OS cells 

was not due to off-target effects, confirming the interaction with different siRNAs 

and small molecule inhibitors of PARP in two different BAF180-deficient cell lines. 

We confirmed that multiple shBAF180 constructs expressing in U2OS cells confer 

sensitivity to the PARP inhibitor Olaparib, demonstrating that the synthetic 

lethality observed was not shRNA construct specific. We saw that sensitivity to 

Olaparib in shBAF180 U2OS cells was exacerbated upon addition of IR, suggesting 

that there may be a HR defect in BAF180-deficient cell lines. We confirmed that 

there is a modest defect in the HR pathway in BAF180-deficient cells by observing 

RAD51 foci formation and camptothecin sensitivity. And finally we demonstrated 

that BAF180-deficient U2OS cells treated with Olaparib show increased levels of 

cells in apoptosis. 

 

6.11.1. Is there a more important role for PARP3 than the 

other PARP genes in regards to BAF180 synthetic lethality? 
 

Our high-throughput screen, as discussed in Chapter 5, identified PARP3 as 

having the 4th highest synthetic lethal interaction with shBAF180 U2OS out of 446 

siRNAs. The other PARP genes followed the same trend and were also identified 

as having a modest synthetic lethality with BAF180. But it is interesting to think 

about why this might be.  

Technical errors, for example errors in pipetting on a large scale, may be 

responsible for why PARP3 came higher in our screen than the other PARP genes. 

Due to the high-throughput nature of a screen, there is more potential for 

variability here on such a large scale, compared with manual/individual 

validation. Because we further validated PARP1’s synthetic lethal interaction 

with BAF180 at levels comparable to PARP3 (Figure 6.1a and 6.1c), it is likely that 
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technical errors in the HTS resulted in the more favourable killing of shBAF180 

U2OS by loss of PARP3, however it is interesting to speculate why PARP3, in a 

PARP1-independent way, is synthetic lethal with BAF180. 

PARP1 was the first gene discovered in the PARP family, is well characterised and 

has clear roles in the DNA damage response. However, increasing evidence 

demonstrates that PARP3 is too an important player in the cellular response to 

DNA double strand breaks (Beck, Boehler et al. 2014). It has been shown that 

PARP3 interacts with and PARylates Ku70/Ku80 and specifically it works 

together with Ku80 to limit DNA end resection and helps to make the choice 

between HR and NHEJ pathways (Beck, Boehler et al. 2014). PARP3 has also been 

found to interact with the chromatin-associated Polycomb Group (PcG) 

components EZH2, Suz12 and YY1 (Rouleau, McDonald et al. 2007). It has been 

suggested that PARP3 cooperates with EZH2 to regulate the expression and/or 

binding of BRCA1 at sites of DNA damage (Beck, Boehler et al. 2014).  

Recent work in our lab, as previously described, has linked the EZH2 containing 

PRC2 complex with the BAF180 containing PBAF complex. The data suggested 

that PBAF remodels chromatin surrounding DSBs in order to facilitate PRC2 

activity and found that loss of EZH2 mirrored phenotypes exhibited by BAF180-

deficent cells, for example the reduced formation of H2AK119ub foci after 

irradiation and the delay in the repair of a subset of DSBs at early time points 

following IR, suggesting that the failure to repress transcription around DSBs 

affects efficient repair. (Kakarougkas, Ismail et al. 2014). We could speculate that 

loss of two pathways responsible for interaction with EZH2 at DNA damage sites, 

together with the other pathways and factors affected by loss of either PARP3 or 

BAF180, could be the underlying reason for the synthetic lethality demonstrated 

here. 

The most likely underlying reason for BAF180/PARP synthetic lethality is due to 

BAF180 contributing to the HR pathway (discussed in more detail below). 

However, there are other possible explanations for this observed phenotype. For 

example, as mentioned previously, the gene encoding BAF180, PBRM1, is located 

on chromosome 3p21 (Brugarolas 2013). Like BAF180, PARP3 is also found on 

chromosome 3p21 (Johansson 1999). In Chapter 5, we introduced the possibility 
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that SMARCC1 was found as a top hit from our high-throughput synthetic lethal 

screen with BAF180 because it also resides on chromosome 3p21. Given its 

location on a short chromosome arm that has multiple ccRCC genes mutated, it 

would be expected to be mutated by chance alone at 70% of the frequency of 

BAF180 (Brugarolas 2013). However, mutation of SMARCC1 in ccRCC are very 

rare, suggesting that the gene may be required for ccRCC survival (Brugarolas 

2013). Out of 1777 kidney cancer samples tested for PARP3 mutation, just 0.11% 

(2 samples) harboured a mutation (Forbes, Beare et al. 2015). It is possible to 

speculate that after loss of VHL and BAF180 tumour suppressors, PARP3 gene 

expression may be essential for cell growth and may account for the synthetic 

lethality we observe in this study. Of course, this theory does not account for the 

synthetic lethality seen between BAF180 and other PARP family members such 

as PARP1, 2 and 4 as they are found on chromosome 1, 14 and 13 respectively.  

 

6.11.2. BAF180-deficient cells have a defect in homologous 

recombination 

 

Deficiency in the homologous recombination pathway causes cellular sensitivity 

to PARP inhibitors, therefore PARP inhibitor sensitivity may indicate a defect in 

HR directed repair. We identified a sensitivity to both Olaparib and Rucaparib in 

two of our BAF180-deficient cell lines (U2OS and 786-0), suggesting that there 

may be an underlying defect in HR in our BAF180-depleted cells causing the PARP 

inhibitor sensitivity.  

Recent work in our lab has identified PBAF, and specifically the BAF180 subunit, 

as being important for mediating correct sister chromatid cohesion (Brownlee, 

Chambers et al. 2014). Cohesin is thought to be involved in sister chromatid HR 

but not NHEJ in human cells (Potts, Porteus et al. 2006). Cohesin is recruited to 

sites of DNA damage and facilitates sister chromatid HR by mediating local 

cohesion between a damaged chromatid and its intact sister template (Kim, 

Krasieva et al. 2002).  
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It is known that cohesin complex related genes, with defects in the HR pathway, 

are sensitive to PARP inhibition. For example, PDS5B (APRIN) is a cohesion-

associated protein, that interacts with BRCA2. BRCA2 is known to interact with a 

number of proteins that control HR including PALB2 (Xia, Sheng et al. 2006), 

FANCG (Hussain, Witt et al. 2003), FANCD2 (Hussain, Wilson et al. 2004), BRCA1 

(Chen, Silver et al. 1998) and DSS1 (Marston, Richards et al. 1999). Like BRCA2-

deficient cells, mutations in BRCA2-binding proteins can also result in 

compromised HR efficiency and sensitisation to DNA damage. It was determined 

that PDS5B expression is required for the normal response to DNA-damaging 

agents, the nuclear localisation of RAD51 and BRCA2 and efficient homologous 

recombination (Brough, Bajrami et al. 2012). Silencing of PDS5B results in a 

sensitisation to the PARP inhibitor Olaparib (Brough, Bajrami et al. 2012).  

A number of other cohesion-associated genes, for example, RAD21, ESCO1, 

ESCO2 and SMC3, when silenced, have also been found to be sensitive to PARP 

inhibition (Bajrami, Frankum et al. 2014). This highlights the importance for 

factors involved in correct sister chromatid cohesion in the DNA damage 

response. 

The yeast homologues of BAF180, Rsc1 and Rsc2 are already known to have 

defects in HR-dependent DNA repair (Chai, Huang et al. 2005, Oum, Seong et al. 

2011). The defective sister chromatid HR at double strand break sites, in Rsc2 

mutant cells specifically, is thought to be due to impaired accumulation of DSB-

induced cohesin at the break (Oum, Seong et al. 2011). It is possible that 

mammalian BAF180, like its yeast homologues, cooperates with cohesion factors 

to facilitate cohesin-dependent HR. Therefore, silencing of BAF180 gives rise to 

defective HR and sensitivity to PARP inhibitors as seen in this study. 

 

6.11.3. Future work 

 

Consistent with data from the Lord lab (C. Lord – The Institute of Cancer Research 

– personal communication), we find that BAF180-depleted cells are sensitive to 

treatment with PARP inhibitors. They observe sensitivity to Olaparib, Rucaparib 
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and Talazoparib in siPBRM1 depleted mouse embryonic stem cells in clonogenic 

survival assays (C. Lord – unpublished data).  

To test whether the human renal cell line, 786-0, expressing shBAF180 has a 

conserved synthetic lethal interaction with PARP inhibitors in a different model 

to those tested here, we chose to perform mouse xenografts in collaboration with 

Prof. Sue Eccles (The Institute of Cancer Research). Immunodeficient mice were 

injected with shControl and shBAF180 cells and tumours were allowed to form 

for twelve days before treatment was given. No significant difference in tumour 

volume was seen between shControl and shBAF180 after treatment with 

15mg/kg Olaparib for five consecutive weeks (data not shown). In BRCA1-/- 

mouse xenografts, the Lord lab have previously observed a non-significant 

difference in tumour cell growth between the BRCA1-depleted and control cells 

treated with PARP inhibitor. However, upon Hematoxylin and Eosin (HE) staining 

of tumours, they find a higher level of necrosis in the BRCA1-depleted cells after 

PARP inhibitor treatment (C. Lord – unpublished data). 

Ongoing work is currently being performed to determine whether, consistent 

with the Lord lab data, upon HE staining we will also see a higher level of necrosis 

in the shBAF180 cells. Failing this, we can also pursue repeating the xenograft 

study with a higher dose of PARP inhibitor, as retrospectively we learned that 

15mg/kg is a relatively low dose treatment and standard PARP inhibitor 

xenograft studies use ~50mg/kg doses.  

Observing the response of a human tumour to therapy is important for the 

progression of new drug treatments for cancer. Performing mouse xenografts 

with transplanted human cells is a good preliminary model for the examination 

of response to therapy. Our aim is to confirm that shBAF180 depleted cells are 

more sensitive to PARP inhibitor treatment in this model, either in decreased 

tumour volume or increased levels of necrosis, with an overall view to utilizing 

PARP inhibitors for the treatment of BAF180-null ccRCC. 
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