

A University of Sussex PhD thesis

This thesis is protected by copyright which belongs to the author

It cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author

The content must not be changed in any way or sold commercially in any

format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given

Please visit Figshare for more information and further details

https://sussex.figshare.com/Theses

https://sussex.figshare.com/Theses

University of Sussex

In-Vehicle Network Monitoring with

Network Tomography

A thesis submitted in fulfillment of the requirements

for the degree of Doctor of Philosophy

in the

School of Engineering and Informatics

Author:

Amani Ibraheem

Supervisor:

Dr. Zhengguo Sheng

July, 2023

i

Declaration
I hereby declare that this thesis has not been and will not be, submitted in whole or in part to

another University for the award of any other degree.

Amani Ibraheem

ii

Acknowledgements
First and foremost, I would like to express my deepest appreciation to my supervisor Dr.

Zhengguo Sheng for his dedicated support and guidance. Your feedback allowed me to deepen

and refine my research, and the results presented in my thesis would be impossible without

your invaluable supervision. I have been extremely lucky to have a supervisor who cared so

much about my work, and who responded to my questions and queries so promptly. I would

also like to extend my deepest gratitude to my second supervisor, Prof. George Parisis for his

insightful comments and kind support. Our meetings and conversations were vital in inspiring

me to think outside the box. I am also grateful for the opportunity given to me during my

secondment at Nanyang Technological University, Singapore. I cannot forget the generosity and

kind hospitality of Prof. Guan Yong Liang and the COSMO lab team. This gratitude extends

to SEEDS, an EU-funded project which enabled such an opportunity and opened doors for

great collaborations.

A special thanks go to my small and big family. Especially my husband, Abdulwahab. No

words can express my gratitude to you. Your unwavering support and sacrifices have over-

whelmed me, and I cannot thank you enough. To my lovely sons, Mohammad and Mohannad,

you fill my heart with joy and laughter, you are the light in my life. Thanks for being by my

side all these years!

To my amazing parents, thanks for your patience, love and support. My dad, Mohammad,

you always inspire me to be the best version of myself, I aspire to be like you one day. My mum,

Aishah, I have always been astonished by your strength and kind soul. It is because of you

that I am able to weather any storm. To my sister and brothers, I cannot thank you enough

for your continuous support and kind words. Maher, thanks for the time you spent with me,

you have been a great loving brother and companion. My aunt, Asma, I am very grateful for

your continuous caring and support.

Finally, I would like to thank all my friends in Brighton, your friendship is a treasure I will

always cherish.

iii

In loving memory of my brother "Mohannad", I miss you so much,

you are always in my heart . . .

To the memory of my loving grandparents, "Ali" and "Sharifah", I
will always remember our great times together . . .

iv

“Anyone who stops learning is old, whether at twenty or eighty. Anyone who keeps learning

stays young. The greatest thing in life is to keep your mind young.”

Henry Ford

v

Abstract
With the advances in Connected and Autonomous Vehicles (CAVs), the in-vehicle network

becomes more complex and harder to manage. In addition, as the vehicle becomes part of

Internet-of-Vehicles (IoVs), it is now more exposed to the outside world than ever. Current

in-vehicle networks are vulnerable to cyber-security threats, including IP-based attacks. Moni-

toring the in-vehicle network is thus one of the crucial tasks that deserves careful consideration.

However, the closed-in system of the in-vehicle network entails difficulty in accessing the inter-

nal elements of the network. This hinders the monitoring process from obtaining insights about

the internal performance of the network. As a result, monitoring every part of the network

becomes intractable. Our focus in this thesis is to investigate monitoring solutions that do

not require contribution from the internal components of the network. To this end, our first

contribution is that we propose, for the first time in literature, to use network tomography as

a monitoring approach for in-vehicle networks. An attractive feature of network tomography is

that it exploits the end-to-end measurements to infer the performance of an internal network

without the need to access any internal component. This feature is well-suited for closed-in

systems such as in-vehicle networks. One challenge in applying network tomography in an in-

vehicle network, however, is that the in-vehicle network must be fully identifiable. The second

contribution of this thesis is to address this challenge by leveraging the advances in deep learn-

ing and proposing to complement network tomography with deep learning-based tomography.

Furthermore, to facilitate the monitoring and management process, the third contribution is

to propose a new in-vehicle network topology that is fully identifiable, redundant and enabled

with Software-Defined Networking (SDN) functionalities. Such topology is aligned with the

next-generation Electronic and Electrical (E/E) architecture that is shifting towards centrali-

sation. The proposed monitoring approach can be applied to such topology to infer the overall

performance of the network. In addition, with the SDN paradigm and redundancy support, the

network can intelligently cope with failures by locating the failed component and re-routing the

traffic to the redundant alternative. Hence, achieving self-healing in-vehicle network without

external intervention.

vi

Contents

Declaration i

Acknowledgements ii

Abstract v

Contents vi

List of Tables xi

List of Figures xiv

List of Abbreviations xviii

List of Notations xxiii

Publications xxviii

1 Introduction 1

1.1 Overview . 1

1.2 Challenges and Motivation . 3

1.3 Research Questions and Objectives . 4

1.3.1 Research Questions . 4

1.3.2 Research Objectives . 4

1.4 Contributions . 5

1.5 Roadmap . 7

2 Background 9

2.1 Vehicular Communications . 9

2.1.1 External Communication . 9

vii

2.1.2 Internal Communications . 10

2.2 In-Vehicle Networking Architectures . 24

2.2.1 Fieldbus Architecture . 24

2.2.2 Central-Gateway Architecture . 25

2.2.3 Domain-based Architecture . 26

2.2.4 Zonal-based Architecture . 27

2.3 Security and Monitoring Challenges in In-Vehicle Networks 29

2.3.1 Attack Surfaces . 29

2.3.2 Attack Types . 31

2.3.3 In-Vehicle Network Monitoring . 33

2.3.4 Existing Solutions for Monitoring In-Vehicle Networks 34

2.4 Network Tomography . 40

2.4.1 Background . 40

2.4.2 Categories . 42

2.4.3 Measurement Types . 44

2.4.4 Metrics . 46

2.4.5 Solution Approaches for Network Tomography Problem 47

2.4.6 Applications . 48

2.5 Deep Neural Networks (DNNs) . 48

2.5.1 Feedforward . 49

2.5.2 Backpropagation . 50

2.6 Graph Theory Preliminaries . 51

2.7 Tools Used for Implementation and Analysis . 52

2.7.1 OMNeT++ . 53

2.7.2 Mininet . 53

2.7.3 Ryu SDN Controller . 54

2.7.4 MATLAB . 54

2.7.5 Pandas . 54

2.7.6 TensorFlow and Keras . 55

2.8 Summary . 55

3 In-Vehicle Network Tomography 57

3.1 Overview . 57

viii

3.2 Motivation . 58

3.3 System Model and Problem Formulation . 59

3.3.1 In-Vehicle Network Model . 59

3.3.2 Problem Statement . 62

3.4 Network Tomography for In-Vehicle Networks . 63

3.4.1 Network Tomography Problem Formulation 63

3.4.2 Network Identifiability . 64

3.5 Evaluating Network Tomography in In-Vehicle Networks 71

3.5.1 Simulation . 71

3.5.2 Results . 74

3.6 Summary . 78

4 DNN-based Partial Tomography 80

4.1 Overview . 80

4.2 Introduction . 81

4.3 Partial Network Tomography . 87

4.4 Delay Estimation with Deep Neural Network (DNN) 90

4.4.1 DNN-based Algebraic Tomography . 90

4.4.2 DNN-based Tomography . 92

4.5 Performance Evaluation . 92

4.5.1 Experiment Setup . 93

4.5.2 Results . 97

4.6 Summary . 106

5 Anomaly Detection and Localisation using Network Tomography 107

5.1 Overview . 107

5.2 Anomaly Detection and Localisation Problem . 107

5.3 Network Tomography and DNN-based Anomaly Detection and Localisation . . . 111

5.3.1 Delay Network Tomography (DNT) . 112

5.3.2 Binary Network Tomography (BNT) . 112

5.3.3 Deep Neural Network (DNN)-based Tomography 113

5.3.4 Discussion . 114

5.4 Performance Evaluation . 114

ix

5.4.1 Experiment Setup . 115

5.4.2 Results . 117

5.4.3 Discussion . 122

5.5 Summary . 122

6 A New SDN-enabled In-Vehicle Network Topology 124

6.1 Overview . 124

6.2 Introduction and Motivation . 125

6.3 Centralised In-Vehicle Networking Architectures 127

6.4 Redundancy in In-Vehicle Networks . 127

6.5 Software-Defined Network (SDN) . 127

6.6 Problem Statement and Assumptions . 129

6.6.1 Problem Statement . 129

6.6.2 Assumptions . 132

6.7 Identifiable Topology . 133

6.7.1 Topological Conditions . 133

6.7.2 Transformation into Identifiable Topology 135

6.8 Redundant Topology . 148

6.8.1 Topological Conditions . 149

6.8.2 Transformation into Redundant Topology 150

6.8.3 Revisiting Identifiability for Redundant Topology 153

6.9 SDN-enabled Topology . 157

6.9.1 Proposed In-Vehicle Network Topology . 157

6.9.2 Proposed Monitoring Framework . 158

6.10 Performance Evaluation . 160

6.10.1 Transformation Algorithms . 160

6.10.2 SDN and Network Tomography Integration 164

6.11 Summary . 169

7 Conclusion 170

7.1 Research Summary . 170

7.2 Future Work . 172

7.2.1 Network Tomography for Vehicular Communications 172

x

7.2.2 Software-Defined Networks (SDNs) for Vehicular Communications 174

A Appendix: Traffic Characteristics for Applying Network Tomography in In-

Vehicle Networks 177

A.1 Traffic Characteristics in Single CAN Architecture 177

A.2 Traffic Characteristics in Central-Gateway Architecture 178

A.3 Traffic Characteristics in Ethernet-based Architecture 179

A.3.1 Cross-traffic between different CANs . 180

A.3.2 Cross-traffic between different gateways 180

B Appendix: Evaluation of DNN-based Partial Tomography 182

B.1 When 50% of the network is measured . 182

B.2 When 60% of the network is measured . 182

B.3 When 70% of the network is measured . 183

C Appendix: Procedures and Code Snippets 184

C.1 Constructing independent paths in network G . 184

C.2 Finding bridges in network G . 185

C.3 Removing cycles in generated random graph G 186

C.4 Connecting graph G of multiple components . 186

D Appendix: Simulation Parameters for SDN-enabled In-Vehicle Network 188

D.1 Delay Tomography Parameters . 188

D.1.1 When the worst-case delay is 10ms . 188

D.1.2 When the worst-case delay is 100ms . 189

D.1.3 When the worst-case delay is 1000ms . 189

D.2 Loss Tomography Parameters . 190

D.2.1 When the worst-case loss rate is 5% . 190

D.2.2 When the worst-case loss rate is 10% . 191

D.2.3 When the worst-case loss rate is 55% . 192

Bibliography 193

xi

List of Tables

2.1 Functional domains and their network requirements in the in-vehicle network. . . 11

2.2 Summary of communication protocols used in the in-vehicle network. 12

2.2 Summary of communication protocols used in the in-vehicle network. 13

2.3 Security threats and their severity on the in-vehicle network. 32

2.3 Security threats and their severity on the in-vehicle network. 33

2.4 Summary of existing monitoring approaches. AL stands for Anomaly Localisation

and AM stands for Anomaly Mitigation. 39

2.4 Summary of existing monitoring approaches. AL stands for Anomaly Localisation

and AM stands for Anomaly Mitigation. 40

2.5 Chapter 2 notations and their descriptions. 41

2.5 Chapter 2 notations and their descriptions. 42

3.1 Chapter 3 notations and their descriptions. 60

3.1 Chapter 3 notations and their descriptions. 61

3.2 Network parameters used in each simulated scenario for applying network to-

mography in in-vehicle networks. 72

3.2 Network parameters used in each simulated scenario for applying network to-

mography in in-vehicle networks. 73

3.3 Network parameters used in each simulated scenario for applying OTIDS in in-

vehicle networks. 73

3.3 Network parameters used in each simulated scenario for applying OTIDS in in-

vehicle networks. 74

4.1 Chapter 4 notations and their descriptions. 85

4.1 Chapter 4 notations and their descriptions. 86

xii

4.2 Network parameters used in simulated scenarios for evaluating partial and DNN-

based network tomography in in-vehicle networks. 94

4.3 Paths and traffic types used in simulating in-vehicle network with TSN traffic. . 94

4.3 Paths and traffic types used in simulating in-vehicle network with TSN traffic. . 95

4.4 Parameters used for the DNN model. 96

4.5 Mean Absolute Percentage Error (MAPE) values for test results in TSN scenario. 99

4.6 MAPE values for test results in non-TSN scenario. 99

4.6 MAPE values for test results in non-TSN scenario. 100

4.7 MAPE values using the neural network tomography approach proposed in [165]. 103

5.1 Chapter 5 notations and their descriptions. 108

5.1 Chapter 5 notations and their descriptions. 109

5.2 Normal traffic details used for network shown in Figure 5.1. t0 is the start time. 115

5.3 Monitoring traffic details. t0 is the start time. 116

5.4 Results of detecting and locating anomalies in centralised in-vehicle networks -

Precision (%). 118

5.4 Results of detecting and locating anomalies in centralised in-vehicle networks -

Precision (%). 119

5.5 Results of detecting and locating anomalies in centralised in-vehicle networks -

Recall (%). 119

5.6 Results of detecting and locating anomalies in centralised in-vehicle networks -

F1-measure (%). 119

5.7 Results of detecting and locating anomalies in centralised in-vehicle networks -

Accuracy (%). 120

5.8 Comparison results of network tomography-based monitoring approach with CANTrans-

fer [96] and OTIDS [79]. 121

6.1 Chapter 6 notations and their descriptions. 130

6.1 Chapter 6 notations and their descriptions. 131

6.1 Chapter 6 notations and their descriptions. 132

6.2 Network parameters for the simulated in-vehicle network shown in Figure 6.14. . 165

6.3 Measurement paths used for the simulated topology shown in Figure 6.14. 165

6.3 Measurement paths used for the simulated topology shown in Figure 6.14. 166

xiii

A.1 Traffic characteristics for single CAN. 178

A.2 Cross-traffic between different CANs in central-gateway network. 179

A.3 Cross-traffic between different CANs in Ethernet-based network. 180

A.4 Cross-traffic between different gateways in Ethernet-based network. 180

A.4 Cross-traffic between different gateways in Ethernet-based network. 181

B.1 DNN results when 50% of the network is measured. 182

B.2 DNN results when 60% of the network is measured. 182

B.2 DNN results when 60% of the network is measured. 183

B.3 DNN results when 70% of the network is measured. 183

D.1 Link parameters when the worst-case delay is 10ms. 188

D.1 Link parameters when the worst-case delay is 10ms. 189

D.2 Link parameters when the worst-case delay is 100ms. 189

D.3 Link parameters when the worst-case delay is 1000ms. 190

D.4 Link parameters when the worst-case loss rate is 5%. 190

D.4 Link parameters when the worst-case loss rate is 5%. 191

D.5 Link parameters when the worst-case loss rate is 10%. 191

D.5 Link parameters when the worst-case loss rate is 10%. 192

D.6 Link parameters when the worst-case loss rate is 55%. 192

xiv

List of Figures

2.1 Overview of vehicular communications . 10

2.2 CAN bus network. 13

2.3 Fields of CAN message frame. 14

2.4 Example of an arbitration process in Controller Area Network (CAN). 16

2.5 Fields of Ethernet message frame. 19

2.6 Fieldbus architecture. 25

2.7 Central-gateway architecture. 26

2.8 Domain-based architecture. 27

2.9 Zonal-based architecture . 28

2.10 Attack surfaces on vehicle systems. 30

2.11 Example of origin-destination traffic intensity inference. 43

2.12 Example of link-level inference. 43

2.13 Example of logical topology inference. 44

2.14 Deep neural network structure. 49

3.1 Three main Electrical/Electronic (E/E) architectures investigated for network

tomography application. GW stands for gateway. 58

3.2 Example of an in-vehicle network model. 62

3.3 In-vehicle network topologies forming full-rank vs rank-deficient measurement

matrices. 65

3.4 Extended graphs for the topology examples shown in Figure 3.3. 67

3.5 Simulated in-vehicle networks to evaluate network tomography as a monitoring

approach. GW stands for gateway. 72

3.6 Average bandwidth of CAN buses where monitoring traffic exists. NM : No Mon-

itoring, and NT : with Network Tomography monitoring traffic. 75

xv

3.7 Average latency of network traffic where monitoring traffic exists. NM : No Mon-

itoring, and NT : with Network Tomography monitoring traffic. 75

3.8 Identifiability ratio of CAN, central-gateway, and Ethernet-based in-vehicle net-

works. 77

3.9 Absolute error of inferred link-level delay in central-gateway architecture. Max-

imum error is 41µs. 77

3.10 Absolute error of inferred link-level delay in Ethernet-based architecture. Maxi-

mum error is 174µs. 78

4.1 Example of simple in-vehicle network topology with six nodes - based on Ethernet-

based architecture. 82

4.2 Example of simple in-vehicle network topology with five nodes - based on Ethernet-

based architecture. 83

4.3 Example of simple in-vehicle network topology with six nodes - based on central-

gateway architecture. 84

4.4 DNN structure in NNDE. The input to the DNN is a set of end-to-end measure-

ments y available from the edge nodes E(G) in the in-vehicle network G. The out-

put is the set of estimated measurements ŷ for unmonitored paths P(G)\Pm(G).

Note that ρ := κG + 1. 91

4.5 DNN structure in NNDT. The input to the DNN is a set of end-to-end mea-

surements y available from the edge nodes E(G) in the in-vehicle network G, in

addition to the set of inferred link-level metrics x obtained from partial network

tomography. The output is the set of estimated measurements ŷ for unmonitored

paths P(G)\Pm(G). Note that ρ := κG + 1. 91

4.6 DNN structure in DNN-based tomography. The input to the DNN is a set of

available end-to-end measurements y provided by edge nodes E(G) in an in-

vehicle network G. The output is a set of estimated link-level performance x̂. . . 92

4.7 Ethernet-backbone in-vehicle network topology used in the simulation to evaluate

DNN-based partial tomography. 93

4.8 Training performance with cross-validation in TSN scenario. T: training, V:

validation. The y-axis represents the MSE (used as a loss function for training). 98

4.9 Training performance with cross-validation in non-TSN scenario. T: training, V:

validation. The y-axis represents the MSE (used as a loss function for training). 98

xvi

4.10 Probability Density Function (PDF) of NNDT in case 40% of the network is

measured. 100

4.11 PDF of NNDT in case of 70% of the network is measured. 101

4.12 MAPE values on test set for NNDE when only 10% of the network is measured

(i.e., κG = 1). 102

4.13 Neural network structure used in [165]. 102

4.14 Absolute error value averaged over 50 data points for DNN-based algebraic to-

mography approach. Scenario with TSN traffic. Here xi represents |xi − x̂i| for

link ei ∈ E(G). 104

4.15 Absolute error value averaged over 50 data points for DNN-based algebraic to-

mography approach. Scenario with non-TSN traffic. Here xi represents |xi− x̂i|

for link ei ∈ E(G). 105

4.16 Absolute error value averaged over 50 data points for DNN-based tomography

approach. 105

5.1 Example of in-vehicle network with four domains, based on central-gateway ar-

chitecture. 110

5.2 Receiver Operating Characteristic (ROC) curve results for each link-level status

xj ∈ x. 121

6.1 Overall view of the main contributions in this chapter. 125

6.2 SDN layered architecture. 128

6.3 Unidentifiable Ethernet-based topology. 134

6.4 Topology examples of case 1 and case 2 topologies. 136

6.5 Difference between PRLs and FRLs. 138

6.6 Identifiable topology versions of Ethernet-based topology shown in Figure 6.3.

Red link and nodes represent added nodes and links, blue link represents a re-

structured link. 145

6.7 A flowchart illustrating the transformation algorithm of unidentifiable topology

G into identifiable topology Gi. 147

6.8 Redundant and identifiable topologies. Blue represents restructured link while

red represent added links and nodes. 156

xvii

6.9 An example of the proposed SDN-enabled topology that is also identifiable and

redundant. 158

6.10 Proposed monitoring framework with SDN and network tomography. NT: Net-

work Tomography. 159

6.11 Identifiability results (G −→ Gi). 161

6.12 Redundancy results (G −→ Gr). 162

6.13 Results of transforming topology into identifiable and redundant (G −→ Gir). . . 163

6.14 Simulated identifiable, redundant and SDN-enabled in-vehicle network topology. 164

6.15 Delay tomography results for the proposed in-vehicle network topology when

the worst-case delay is: (a) 10ms, (b) 100ms, and (c) 1000ms. 167

6.16 Loss tomography results for the proposed SDN-enabled in-vehicle network topol-

ogy when the worst-case loss rate is: (a) 5%, (b) 10%, and (c) 55%. 168

A.1 Simulated single CAN network. 177

A.2 Simulated central-gateway network. 179

A.3 Ethernet-based in-vehicle network . 180

xviii

List of Abbreviations

ABS Anti-lock Braking System

ACK Acknowledgement

ADAS Advanced Driver Assistance System

AE Automotive Ethernet

AFDX Avionics Full Duplex Switched Ethernet

ASC Automatic Stability Control

ATS Asynchronous Traffic Shaper

AVB Audio Video Bridging

AVTP Audio-Video Transport Protocol

BE Best-Effort

BGD Batch Gradient Descent

BNT Binary Network Tomography

C-V2X Cellular Vehicle-to-Everything

CAN Controller Area Network

CAV Connected and Autonomous Vehicle

CBS Credit Based Shaper

CDCU Cross-Domain Control Unit

CDT Control Data Traffic

CNC Central Network Controller

CNN Convolutional Neural Network

COIDS Clock Offset based Intrusion Detection System

CPS Cyber-Physical System

xix

CQF Cyclic Queuing and Forwarding

CRC Cyclic Redundancy Check

CSMA/CD Carrier-Sense Multiple Access with Collision Detection

CSMA/CD+AMP Carrier-Sense Multiple Access with Collision Detection and

Arbitration on Message Priority

CUC Centralised User Configuration

DCU Domain Control Unit

DetNet Deterministic Networking

DNN Deep Neural Network

DNT Delay Network Tomography

DoIP Diagnostics over Internet Protocol

DoS Denial-of-Service

E/E Electrical/Electronic

ECU Electronic Control Unit

EM Expectation Maximization

EMC Electromagnetic Compatibility

EOF End of Frame

ESP Electronic Stability Program

EV Electric Vehicle

FCS Frame Check Sequence

FRL Fully Restructurable Link

FQTSS Forwarding and Queuing Enhancements for Time-Sensitive

Streams

GAN Generative Adversarial Network

gPTP generalized Precision Time Protocol

HMI Human Machine Interface

HPCP High-Performance Computing Platform

IDS Intrusion Detection System

xx

IFS Interframe Space

IoT Internet-of-Thing

IoV Internet-of-Vehicle

IP Internet Protocol

IPV Internal Priority Value

IRT Identifiability then Redundancy Transformation

LAN Local Area Network

LIN Local Interconnect Network

LSTM Long Short-Term Memory

LVDS Low-Voltage Differential Signalling

MAC Media Access Control

MAPE Mean Absolute Percentage Error

MBGD Mini-Batch Gradient Descent

MitM Man-in-the-Middle

MOST Media Oriented Systems Transport

MSE Mean-Squared Error

NBI Northbound Interface

NNDE Neural Network Delay Estimation

NNDT Neural Network Delay Tomography

OBU On-board Unit

OEM Original Equipment Manufacturer

OTIDS Offset ratio and Time interval based Intrusion Detection

System

PDF Probability Density Function

POF Plastic Optical Fiber

PTP Precision Time Protocol

PRL Partially Restructurable Link

xxi

PS Peristaltic Shaper

QoS Quality-of-Service

RBD Ring Break Diagnosis

RC Rate-Constraint

ReLU Rectified Linear Unit

RIT Redundancy then Identifiability Transformation

ROC Receiver Operating Characteristic

RQA Recurrence Quantification Analysis

RSU Road Side Unit

RTR Remote Transmission Request

SAE Society of Automotive Engineers

SBI Southbound Interface

SDN Software-Defined Network

SD-WAN Software-Defined Wide Area Network

SDV Software-Defined Vehicle

SGD Stochastic Gradient Descent

SOF Start of Frame

SR Stream Reservation

SRP Stream Reservation Protocol

SVM Support Vector Machine

TAS Traffic Aware Shaper

TDMA Time Division Multiple Access

TSN Time-Sensitive Networking

TT Time-Triggered

TTEthernet Time-Triggered Ethernet

UTP Unshielded Twisted Pair

V2I Vehicle-to-Infrastructure

xxii

V2P Vehicle-to-Pedestrian

V2V Vehicle-to-Vehicle

V2X Vehicle-to-Everything

VANET Vehicular Ad hoc Network

VLAN Virtual Local Area Network

ZCU Zone Control Unit

xxiii

List of Notations

Network and Graph Theory

G = (V ,E) In-vehicle network as a graph G containing pair of two sets:

vertices V (G) and edges E(G)

Gi Identifiable network topology

Gr Redundant network topology

Gir Identifiable and redundant network topology

G+ {vivj} Network G when link between two vertices vi, vj ∈ V (G) is

added

G− {vivj} Network G when link between two vertices vi, vj ∈ V (G) is

deleted

V (G) Set of vertices (nodes) in network G

E(G) Set of edges (links) in network G

E(G) ⊂ V (G) Set of edge nodes in G

Em(G) ⊆ E(G) Set of monitoring edge nodes in G

R(G) ⊂ V (G) Set of intermediate nodes in G

R3+ ⊆ R(G) Set of internal nodes having node degree larger than three

R3− ⊆ R(G) Set of internal nodes having node degree less than three

P(G) Set of all possible paths in network G

Pm(G) ⊆ P(G) Set of measured paths in network G

S ⊂ G Partial network of G

D(G) Set of domains in an in-vehicle network G

C(G) Set of graph components in G

xxiv

B(G) Set of bridges in G

I(G) ⊂ E(G) Set of internal links in G

T (G) ⊆ E(G) Set of external links in G

W(G) Set of internal nodes in G having node degree larger than

three and are neighbours to more than one internal node

N (vi) Set of neighbours directly connected to node vi ∈ V (G)

NR(vi) ⊆ N (vi) Set of internal neighbours in R directly connected to node

vi ∈ V (G)

B(G) Set of CAN buses in G

pi ∈ P(G) Single path between two edge nodes in G

pvi,vj ∈ P(G) Path connecting two non-adjacent nodes vi, vj ∈ E(G)

ei = vivj Link ei ∈ E(G) connecting two adjacent nodes

vi, vj ∈ V (G)

d(vi) Degree of node vi ∈ V (G)

d(vi)g Degree of node vi ∈ V (g)

pi(vi, vj) ∈ P(G) ith path connecting edge nodes vi, vj ∈ E(G)

svi,vj Segment connecting two non-adjacent nodes vi, vj ∈ V (G)

with vi ∨ vj ∈ R(G)

bi ∈ B(G) Single CAN bus

d(vi, vj) Distance between nodes vi, vj ∈ V (G)

Cn A cycle with n nodes where n ≥ 3

vh(ei) Endpoint (head) of link ei ∈ E(G)

vt(ei) Endpoint (tail) of link ei ∈ E(G)

gB ⊂ g Subgraph of g that only contains bridges of g, B(g)

ci ∈ Z+ Priority level of CAN node vi ∈ E(G)

Numbers and Cardinalities

ηG :=
∣∣∣V (G)

∣∣∣ Total number of nodes in network G

xxv

λG :=
∣∣∣R(G)∣∣∣ Total number of intermediate nodes in network G

γG :=
∣∣∣E(G)∣∣∣ Total number of links in network G

κG :=
∣∣∣Pm(G)∣∣∣ Total number of measured paths for network G

σ :=
∣∣∣R3−

∣∣∣ Total number of internal nodes having node degree less

than three

ζvi :=
∣∣∣NR(vi)

∣∣∣ Total number of internal nodes that are neighbours to

vi ∈ R3+

ψ :=
∣∣∣R3+

∣∣∣ Number of internal nodes with node degree larger than

three

ω :=
∣∣∣W∣∣∣ Total number of internal nodes having node degree larger

than three and are neighbours to more than one internal

node

ϑ Total number of partial networks

lG Number of uniquely identifiable links in G

φvi := d(vi)− 3 Number of remaining links incident to node vi ∈ V (G) after

disconnecting it from three links

Nvi,vj Total number of internally disjoint paths between

vi, vj ∈ E(G)

χη Number of added nodes in the transformed topology

χγ Number of added links in the transformed topology

Network Tomography

A Measurement matrix

y Vector of end-to-end measurements

x Vector of link-level measurements

yvi,vj End-to-end (path-level) measurement between node vi and

vj

yi ∈ y End-to-end (path-level) measurement of path pi ∈ Pm(G)

xi ∈ x Link-level metric of link ei ∈ E(G)

xxvi

ȳi Actual end-to-end performance of path pi ∈ Pm(G)

x̄i Actual link-level performance of link ei ∈ E(G)

r(A) Rank of measurement matrix A

Hpi :=
∣∣∣ȳi − yi∣∣∣ Difference between measured and actual performance of ith

path pi ∈ Pm(G)

Hei :=
∣∣∣x̄i − xi∣∣∣ Difference between measured and actual performance of ith

link ei ∈ E(G)

δpi Predefined threshold value for ith path pi ∈ Pm(G)

δei Predefined threshold value for ith link ei ∈ E(G)

S(G) ∈ {0, 1} Status of network G, 0 is normal and 1 is anomalous

Sd(G) ∈ {false, true} Identifiability status of network G, false means

unidentifiable and true means identifiable

Sr(G) ∈ {false, true} Redundancy status of network G, false means

non-redundant and true means redundant

S(pi) ∈ {0, 1} Status of ith path pi ∈ P(G)

S(ej) ∈ {0, 1} Status of jth link ej ∈ E(G)

aij ∈ {0, 1} The element of the measurement matrix A at the ith row

(for pi ∈ Pm(G)) and jth column (for ej ∈ E(G))

aej Minimum link-level delay of jth link ej ∈ E(G)

bej Maximum link-level delay of jth link ej ∈ E(G)

api Minimum path-level delay of ith path pi ∈ P(G)

bpi Maximum path-level delay of ith path pi ∈ P(G)

ttrans Transmission time

trecv Reception time

Deep Learning

θ Input vector to the DNN

W Matrix of weights used in DNN

β Bias vector used in DNN

xxvii

hi Output of the ith hidden layer of a DNN

f(z) Activation function at the hidden layers of DNN

fo(z) Activation function at the output layer of DNN

L Loss function of estimated and actual value

α Learning rate

Units

m Meter

s Second

ms Millisecond

µs Microsecond

bps Bits per second

Kbps Kilo bits per second

Mbps Mega bits per second

xxviii

Publications

1. A. Ibraheem, "Cross Network Slicing in Vehicular Networks". In Intelligent Technologies

for Internet of Vehicles. Cham: Springer International Publishing, pp. 151-189, 2021.

2. A. Ibraheem, Z. Sheng, G. Parisis, and D. Tian, "Neural Network based Partial Tomogra-

phy for In-Vehicle Network Monitoring", In proceeding of IEEE International Conference

on Communications Workshops (ICC Workshops) pp. 1-6, 2021, Canada.

3. A. Ibraheem, Z. Sheng, G. Parisis, and D. Tian, "In-Vehicle Network Delay Tomogra-

phy", In proceeding of IEEE Global Communications Conference (GLOBECOM), pp.

5528-5533, 2022, Brazil.

4. A. Ibraheem, Z. Sheng, G. Parisis, J. Zhou, and D. Tian, "Internal Network Monitoring

with DNN and Network Tomography for In-Vehicle Networks", In proceeding of IEEE

International Conference on Unmanned Systems (ICUS), pp. 928-933, 2022, China.

5. A. Ibraheem, Z. Sheng, G. Parisis, and D. Tian, "Network Tomography-based Anomaly

Detection and Localisation in Centralised In-Vehicle Network", In proceeding of IEEE

International Conference on Omni Layer Intelligent Systems (COINS) 2023, Germany.

6. A. Ibraheem, Z. Sheng, and G. Parisis, "New Identifiable and Redundant SDN-based Mea-

surement for In-Vehicle Networks", IEEE Transactions on Vehicular Technology (submit-

ted).

1

1 Introduction

"Until I began to learn to draw, I was

never much interested in looking at art."

Richard P. Feynman

1.1 Overview

Nowadays, with the advances of communications and Internet-of-Things (IoTs), the vehicle

becomes part of this connected system by forming another branch of IoTs, i.e., Internet-of-

Vehicles (IoVs) [1]. In this system, the vehicle can communicate with different objects from the

outside world. Despite the benefits of connecting the vehicle either to other vehicles or to the

infrastructure, this comes at the cost of exposing the vehicle to cyber-security threats.

Generally, vehicle connectivity can be broadly categorised into inter-vehicle [2] and intra-

vehicle [3] communications. Inter-vehicle communications connect the vehicle with other vehi-

cles on the road while intra-vehicle communications connect the components inside the vehicle

itself, this is generally what is referred to as an in-vehicle network. Ultimately, security threats

target the intra-vehicle communication, i.e., in-vehicle network, to cause failure in some, or

all, of the in-vehicle network. For example, adversaries can gain access to the vehicle either

remotely [4] (e.g., through the radio interface) or physically [5] (e.g., by physically connecting

to the On-board Unit (OBU)) with the intention of tampering with one or more of the vehicle’s

systems/components. Such components are parts of a larger communication system that forms

the in-vehicle network.

The conventional design of in-vehicle networks does not consider the security aspect of

the vehicle [6]. This is because traditional vehicles were not as open to the outside world as

today’s vehicles. Hence, securing the vehicle’s network was not as necessary as it is today. For

over thirty years now, Controller Area Network (CAN) has been the dominant communication

protocol used by the automotive industry for in-vehicle networks [7]. For today’s in-vehicle

Chapter 1. Introduction 2

networks, CAN (with a maximum bandwidth of only 1 Mbps [8], [9]) cannot cope with the

increasing bandwidth demand imposed by Advanced Driver Assistance System (ADAS) and

infotainment systems [10]. In addition, it suffers a lack of authentication and authorisation

mechanisms [11]. Automotive Ethernet (AE) has been recently used to compensate for the

limited bandwidth in CAN.

To keep up with the rapidly advancing pace of vehicular communications, the research com-

munity is working hard to provide solutions to secure vehicle connectivity. This starts with

monitoring solutions that provide an overall insight into the vehicle’s operation. Unlike tradi-

tional vehicles, next-generation vehicles will consist of heterogeneous communication protocols

such as CAN, Local Interconnect Network (LIN), Media Oriented Systems Transport (MOST),

FlexRay, and AE. These different protocols need to coexist and therefore require coordination

and monitoring of all the involved components to ensure appropriate functioning of the net-

work. Additionally, for critical systems such as in-vehicle networks, it is imperative to ensure

service continuity. For this, a fail-operational mechanism should be introduced to the in-vehicle

system, so that, in case of any failure, in one or more of the system components, the operation

is not disturbed, especially for the critical systems of the vehicle. Note that fail-operational

behaviour is different from fail-safe behaviour. A fail-safe system ensures a safe shutdown of

the system in case of any failure, while a fail-operational system ensures that safety-critical

operations are functioning properly during any failure [12].

A monitoring solution based on network tomography [13], [14] is one of the appropriate

solutions that this thesis proposes for in-vehicle networks. One of the attractive features of

network tomography, that makes it the best fit for in-vehicle networks, is that there is no

need to access all elements of the network. By only monitoring a subset of the network, the

performance of the other subset can then be inferred using network tomography. For in-vehicle

networks with limited capabilities, such a monitoring approach is efficient as it does not require

heavy monitoring of all elements in the network. In addition, due to the proprietary nature of

the in-vehicle ecosystem, it is difficult to access the internal elements in the in-vehicle networks.

Therefore, network tomography allows monitoring of the overall network without worrying

about accessing or modifying the internal components of the in-vehicle network.

Chapter 1. Introduction 3

1.2 Challenges and Motivation

Vehicles are one of the critical Cyber-Physical Systems (CPSs) [15] that need to be monitored

to detect issues related to both performance failures and cyber-security threats [16]. However,

monitoring the internal network is not always possible. This is because the internal elements

of the in-vehicle network are difficult to access due to proprietary closed-in devices provided

by Original Equipment Manufacturers (OEMs) [17], [18]. In addition, monitoring every part

of the network can overburden it and may perturb the existing traffic where such disturbance

can result in serious consequences, especially for safety- and latency-critical applications. For

instance, as the monitoring traffic has to co-exist with the normal traffic in the in-vehicle

network, this additional traffic can affect the performance of the existing operational traffic;

the resource consumption and delivery time can increase due to this additional traffic and its

prioritisation level.

For these reasons, alternative monitoring solutions that do not require contribution from

internal elements should be investigated. Network tomography [13], [14] provides an efficient

solution to monitor in-vehicle networks due to its advantages of requiring limited probes that

can only be sent between end nodes, thus eliminating the need to involve internal elements

of the network during the monitoring process, in addition to reducing the monitoring over-

head. In particular, with network tomography, only the end-to-end network performance can

be measured while the remaining (internal network performance) can be inferred from such

measurements (provided by the accessible end devices).

Even though network tomography is a powerful monitoring mechanism, there are certain

constraints that need to be addressed when applying this approach to in-vehicle networks.

For instance, the constraint related to the in-vehicle network scenario that internal network

devices cannot be accessed leads to a limited number of nodes that can act as monitors, where

such nodes can only exist at the edge. Therefore, the application of network tomography

needs to be investigated under the condition that only a limited number of (edge) nodes are

accessible. Other constraints are related to the in-vehicle network topology, and the availability

of adequate and independent end-to-end measurements [19], [20]. Such constraints affect the

full identifiability of the network1, which means that if, for instance, the measurements are
1Network identifiability is a concept in network tomography for which the performance of all links can be

uniquely determined only if the network is fully identifiable (see Chapter 3 for more details).

Chapter 1. Introduction 4

not enough or the topology is not identifiable, then network tomography cannot provide fine-

grained insights about the overall network performance. Hence, it is important to carefully

consider these constraints when applying network tomography to in-vehicle networks so that

the benefits of network tomography can be thoroughly exploited.

Another challenge in in-vehicle networks is the lack of fail-operational behaviour in in-

vehicle networks [21]. The main reason for this is that current in-vehicle networks do not utilise

any redundancy measures. For this, a new topology needs to be developed to support fail-

operational behaviour with redundant networks [22], [23]. Software-Defined Network (SDN)

[24] is a suitable paradigm that can further facilitate the process of achieving a fail-operational

network [10]. It can significantly help in the management process of different components of

the in-vehicle network, including the redundant part that can be activated once a failure is

detected in the network.

1.3 Research Questions and Objectives

In the following subsections, we list the research questions and objectives this thesis is aiming

to address.

1.3.1 Research Questions

This thesis aims to answer the following questions:

1. Can network tomography be applied in in-vehicle network scenarios?

2. If network tomography is not applicable to in-vehicle network scenarios, then what are

the constraints that hinder this application?

3. How to overcome the constraints imposed by network tomography measurement matrix2?

4. How to design an overall monitoring system that can detect anomalies, including failures

and security threats, and minimise their effect on the functional behaviour of the network?

1.3.2 Research Objectives

The main objectives of seeking answers to the research questions mentioned above are as

follows:
2A measurement matrix in network tomography is a matrix with rows representing the end-to-end measure-

ment paths and columns corresponding to the links that are traversed by such paths.

Chapter 1. Introduction 5

• The first objective is to investigate network tomography capabilities in monitoring the

application of in-vehicle networks by studying the specific characteristics of in-vehicle

networks.

• The second objective is to implement and test network tomography as a monitoring

mechanism for different in-vehicle network architectures.

• The third objective is to understand if there is any limitation that may hinder the appli-

cation of network tomography into the in-vehicle network domain, and look for possible

solutions to tackle these issues.

• The fourth objective is to devise a solution to achieve a fail-operational in-vehicle network

so that its critical functional operation is not affected by failures. For this SDN can help

in maintaining and managing the network without external intervention.

• Finally, the ultimate goal is to come up with a complete and robust monitoring solution

that benefits from the proposed approaches, based on network tomography, to efficiently

and accurately detect any anomalies, in addition to mitigating their effect on the overall

network performance.

In this thesis, we investigate monitoring solutions for modern in-vehicle networks, with a

focus on applying network tomography as a new monitoring approach that can provide infor-

mation about the overall network performance. In addition, we explore solutions to achieve

fail-operational behaviour using network tomography and SDN. In particular, this thesis’s fo-

cus is to study the application of network tomography in in-vehicle network scenarios, including

different topologies based on Electrical/Electronic (E/E) architectures. In addition, this thesis

considers the integration of SDN as a means to control the overall network and facilitate the

entire monitoring process.

1.4 Contributions

This thesis presents a novel monitoring approach for in-vehicle networks leveraging network

tomography-based mechanisms. Our main contributions presented in this thesis are listed

below:

• Chapter 3: The first contribution of this thesis is to investigate the application of net-

work tomography in in-vehicle networks. Different topologies based on different E/E

Chapter 1. Introduction 6

architectures are considered in this chapter. In addition, ground theoretical analysis of

identifiability and monitor conditions are studied, where topological and monitoring con-

ditions required to fully utilise network tomography solutions have been derived. This

chapter has further investigated the usability of network tomography in an in-vehicle net-

work scenario, where the performance of the in-vehicle network under the existence of

tomographic-based monitoring traffic is evaluated and compared the results with one of

the state-of-the-art monitoring solutions.

• Chapter 4: Based on the findings of our first study described in the first contribution,

we conclude that not all in-vehicle network topologies are identifiable, this chapter thus

proposes new solutions to tackle this problem. In particular, a partial network tomogra-

phy algorithm has been proposed. In addition, deep learning-based solutions have been

considered to help improve the measurement matrix used in network tomography. A deep

neural network is used for this purpose, where the available measurements are used to

estimate the performances of other unmeasured parts of the network. The estimated per-

formances are then added to the available measurements to form a full-rank measurement

matrix that can be used to fully utilise network tomography to infer the performance of

the remaining, internal, network.

• Chapter 5: Applying the proposed monitoring approaches to detect and locate anomalies

within the vehicle network is examined in this chapter. This chapter presented three

types of monitoring approaches: Binary Network Tomography (BNT), Delay Network

Tomography (DNT), and Deep Neural Network (DNN)-based tomography. The first two

approaches are based on algebraic tomography, whereas the last is based on deep learning.

Evaluation results show that all approaches can detect anomalies resulting from Denial-

of-Service (DoS) attack, with BNT outperforming other approaches in accurately locating

the anomaly with no false positive or false negative.

• Chapter 6: The promising results of BNT presented in Chapter 5 enable the proposal of a

novel in-vehicle network topology in this chapter. Because BNT is an algebraic approach,

it requires having a full-rank measurement matrix, such matrix can be guaranteed if the

topology is identifiable. Therefore, this chapter proposed a topology that has three main

properties. First, the proposed topology is identifiable so that the measurement matrix is

full-rank. Second, it is redundant. This property enables the fail-operational behaviour

Chapter 1. Introduction 7

where the redundant paths can be used in case the original paths are compromised. The

third property is that the topology is SDN-enabled. Such property can substantially help

in network management, including the mitigation of anomalous behaviour to ensure a

fail-operational network. Moreover, a number of transformation algorithms are devised

in this chapter. The goal of such algorithms is to help in the transition process towards a

topology that satisfies both identifiability and redundancy, without the need to build the

network from scratch. Evaluation of the proposed algorithms shows that the transformed

topologies achieved a minimum number of added weights.

1.5 Roadmap

The remainder of this thesis is structured as follows. The following chapter (i.e., Chapter 2)

discusses the technical background of vehicular communications, with a detailed description

of in-vehicle networks and the advances in E/E architectures. The monitoring challenges of

in-vehicle networks are discussed in this chapter as well. In addition, this chapter reviews the

existing monitoring solutions for in-vehicle networks. Moreover, network tomography and its

different features and variants are introduced in this chapter.

The applicability of network tomography in in-vehicle networks is studied in detail in Chap-

ter 3. Different in-vehicle networking topologies have been investigated in this chapter. The-

oretical and technical analyses pertaining to network identifiability for in-vehicle networks are

presented, where they establish the foundation of the subsequent chapters.

Chapter 4 presents partial network tomography and deep learning-based solutions to tackle

the issue of having a measurement matrix that is deficient in rank. In addition, it evaluates the

proposed approaches in inferring the path-level as well as link-level performance.

Chapter 5 studies how network tomography can be used as an anomaly detection and

localisation approach for in-vehicle networks. Three proposed approaches (BNT, DNT, and

DNN-based tomography) are described and evaluated in this chapter.

Chapter 6 proposes a new in-vehicle network topology that is identifiable, redundant and

SDN-enabled. Furthermore, different transformation algorithms are derived based on extensive

theoretical analysis. Additionally, a complete monitoring framework for the in-vehicle network

is proposed in this chapter.

Chapter 1. Introduction 8

Lastly, Chapter 7 concludes this thesis and gives a summary of the presented research work.

In addition, it highlights some of the interesting research directions drawn from the findings of

the research carried on in this thesis.

9

2 Background

"The greatest enemy of knowledge is not

ignorance, it is the illusion of knowledge."

Stephen Hawking

2.1 Vehicular Communications

Broadly speaking, vehicular communications are categorised into two ways of communica-

tion. First is external communications where the vehicle can connect to other external objects

outside the vehicle such as other vehicles, Road Side Units (RSUs), etc. The second is internal

communications that happen inside the vehicle itself. The focus of this thesis is on internal

communications that form the overall in-vehicle network. Figure 2.1 shows an overview of ve-

hicular communications. Details regarding external and internal communications are discussed

next.

2.1.1 External Communication

In external communications, vehicles are part of a large, external communication system

where the vehicle can be connected to anything, Vehicle-to-Everything (V2X). This can fur-

ther be classified into three types of communications: Vehicle-to-Vehicle (V2V), Vehicle-to-

Infrastructure (V2I), and Vehicle-to-Pedestrian (V2P) communications. In V2V communi-

cations, the vehicle can connect to other vehicles on the road, forming what is known as

Vehicular Ad hoc Network (VANET) [25]. On the other hand, V2I communications allow

the vehicle to communicate with the surrounding infrastructure such as RSUs (V2R), Net-

works (V2N) and Grids (V2G). In V2P, the vehicle can connect to a pedestrian smartphone to

exchange safety messages [26]. In V2V, the connection between vehicles is based on wireless

Chapter 2. Background 10

Vehicular com-
munications

External com-
munications

V2X

Vehicle-
to-Vehicle

(V2V)

Vehicle-to-
Infrastructure

(V2I)
Vehicle-to-
Pedestrian

(V2P)

Internal com-
munications

Infotainment
Powertrain

Body and
cabin

Vehicle
motion

and safety

Figure 2.1: Overview of vehicular communications

communications such as Dedicated Short-Range Communication (DSRC). A Cellular Vehicle-

to-Everything (C-V2X) is another recent 3GPP protocol that can be used for V2X.

2.1.2 Internal Communications

Internal communications encompass all the communications that take place inside the vehicle

to connect different Electronic Control Units (ECUs). As seen in Figure 2.1, this type includes

the communications in four main domains of the vehicle: infotainment, powertrain, body and

cabin, and vehicle motion and safety [27], [28]. In the following, we briefly describe each of these

domains. In addition, Table 2.1 shows a summary of network requirements for each domain in

the in-vehicle network [29].

2.1.2.1 Vehicle’s Domains

Infotainment domain is also referred to as telematics domain. This domain includes

several functions related to multimedia and Human Machine Interface (HMI) such as rear seat

entertainment, navigation system and remote diagnostics [28]. Connecting the vehicle to the

Chapter 2. Background 11

outside world also happens in this domain. Infotainment systems require high bandwidth, low

latency and jitter.

Control of the engine and power transmission are the main two functions of the powertrain

domain. It includes several automobile components such as the engine, transmission, shaft,

and wheel [29]. The Powertrain domain requires frequent communication with other domains

[28]. Network requirements for powertrain systems are more stringent, especially for latency

and jitter.

Body and cabin domain (can be referred to by simply body domain) is composed of

comfort-controlling components such as doors opening/closing, windows rolling, seat adjust-

ment, mirrors adjustment, dashboards control, lights setting, etc. [28], [29].

On the contrary to other domains, network requirements in the body domain are more

relaxed. Vehicle motion and safety corresponds to the chassis components (e.g., Anti-

lock Braking System (ABS), Electronic Stability Program (ESP), Automatic Stability Control

(ASC)) and other components related to safety such as ADAS. As in the powertrain domain,

network requirements in the vehicle motion and safety domain are strict.

Table 2.1: Functional domains and their network requirements in the in-vehicle
network.

Requirement Infotainment Powertrain Body and cabin Vehicle motion and safety

Bandwidth High Low Low Low

Latency Low Low Low Low

Reliability Medium High Medium High

There are several communication protocols used in in-vehicle networks. The well-known ones

are: CAN, LIN, FlexRay, MOST, and AE. Table 2.2 shows a summary of all communication

protocols used in the in-vehicle network [23], [30]. In the following, we describe each of these

protocols with a more focus on CAN and AE.

Chapter 2. Background 12

Table 2.2: Summary of communication protocols used in the in-vehicle net-
work.

CAN LIN FlexRay MOST AE

Bandwidth 1Mbps 0.02Mbps 20Mbps 150Mbps 100Mbps per

link

Number of

nodes

30 16 22 64 Limited by

number of

switch ports

Network length 40m 40m 24m 1280m 15m per link

Messaging Cyclic-

frames

Cyclic-

frames

Cyclic-

frames

Cyclic-

frames/

streams

Frames

Payload 8Bytes 8Bytes 256Bytes 384Bytes 1500Bytes

MAC Non-

destructive

arbitration

Polling TDMA Time-

triggered

Full-duplex,

contention-

less

Cost Low Very low High High High

Topology Bus Bus Bus, star,

hybrid

Ring, star Star, tree

Security threat High Low Medium Medium to

high

High

Availability Many Many Few One Multiple

vendors and

growing

Cabling UTP 1-wire UTP Optical,

UTP

UTP

Error detection Strong Weak Strong Strong Strong

Error correction Re-transmit None None Relies on

higher layer

protocols

Relies on

higher layer

protocols

Chapter 2. Background 13

Table 2.2: Summary of communication protocols used in the in-vehicle net-
work.

CAN LIN FlexRay MOST AE

Applications General bus Switches,

doors, seats

Safety-

critical

x-by-wire

Infotainment Infotainment,

diagnostics,

backbone

and safety

Reference to

OSI model

Layer 1 and

2

Layer 1 and

2

Layer 1 and

2

All layers All layers

2.1.2.2 Controller Area Network (CAN)

Due to its robustness and low cost, Controller Area Network (CAN) has been the most

widely used protocol for automotive networks for over a decade [8]. CAN follows a bus-based

topology as shown in Figure 2.2 and it is designed using Unshielded Twisted Pair (UTP) cabling.

According to ISO 11898 standard, the maximum allowed length of CAN is 40m with a maximum

number of 30 nodes that can transmit and receive messages as cyclic frames. Referring to the

OSI model, CAN only uses three layers: physical layer, data link layer, and application layer.

The maximum bandwidth of CAN bus is 1 Mbps with up to 8 bytes of maximum payload.

Although Bosch was the first to design CAN, CAN is available today from many vendors.

CAN Bus

ECU1 ECU2 ECU3

ECU4 ECU5

te
rm

in
at

or

te
rm

in
at

or

Figure 2.2: CAN bus network.

CAN supports four types of message frames: data frame, remote frame, error frame, and

overload frame [9].

Chapter 2. Background 14

SO
F

Arbitration Control Data CRC

A
C

K

EOF IF
S

Figure 2.3: Fields of CAN message frame.

• Data frame: This is the frame transmitted by the sending ECU and consumed by one

or more of the receiving ECUs. Data frames have higher priority than remote frames.

• Remote frame: This frame can be transmitted by a requesting ECU that wishes to

request a certain message from the source providing such message. This frame is followed

by a data frame containing the requested message.

• Error frame: It is a frame signalled by any ECU at any time during data or remote

frame transmission to indicate an error condition.

• Overload frame: This frame adds a delay between two data or remote frames. The

default distance between any consecutive frames is 3 bit times.

Figure 2.3 shows the fields of a CAN message frame. Note that there are two message

frames: standard with 11-bits identifier (CAN 2.0A) and extended with 29-bits identifier (CAN

2.0B). The standard CAN supports 2048 messages (211), while extended CAN supports 536+

a million messages (229).

As shown in Figure 2.3, CAN frame has eight main fields:

1. Start of Frame (SOF): Marks the start of data or remote frame. It is a 1-bit field.

2. Arbitration: It is 12-bits field in standard CAN and 32-bits field in extended CAN,

and consists of two main components. First is the message identifier (ID), which is used

in the arbitration process and is 11-bits size in the standard frame and 29-bits size in

the extended frame. Second is Remote Transmission Request (RTR) which is used to

distinguish between data frame and remote frame. The RTR is 1-bit size and in the case

of a remote frame its value is 1 (recessive), otherwise, it is 0 (dominant).

3. Control: The control field determines the size of data and length of message ID1. The

size of this field is 6-bits.

4. Data: This field involves the actual data the message carries. The maximum payload in

CAN message is 8 bytes, so this field is 64-bits. The field size is 0 in the case of a remote

frame, as it does not contain any data.
1Occasionally, we say CAN ID to refer to CAN message ID.

Chapter 2. Background 15

5. Cyclic Redundancy Check (CRC): This is the checksum field and it is 16-bits size.

6. Acknowledgement (ACK): It is the acknowledgement of the checksum check. It is a

2-bits field.

7. End of Frame (EOF): This marks the end of data or remote frame, and it is 7-bits

size, all are recessive bits.

8. Interframe Space (IFS): It is a 3-bits field and represents the minimum intermission

time between any two frames. During this time, no node is allowed to transmit either

data or a remote frame. Transmission of an overload frame, on the other hand, is allowed

during this period.

Media Access Control and Arbitration Process CAN follows a Carrier-Sense Multiple

Access with Collision Detection (CSMA/CD) scheme for its Media Access Control (MAC)

to control its bus access when different nodes try to transmit simultaneously. In particular,

CAN is a Carrier-Sense Multiple Access with Collision Detection and Arbitration on Message

Priority (CSMA/CD+AMP) [8]. This means that CAN uses the arbitration field for this task,

specifically the CAN ID. The lower the value of CAN ID, the higher its priority level. In the

arbitration process, when more than one node is transmitting at the same time, the ID value is

checked to permit the node with the highest priority to access the bus and start transmitting.

An example of this process is shown in Figure 2.4. Suppose there are two ECUs: ECU1

and ECU2 with identifiers IDECU1 = 113 and IDECU2 = 112 which translated into binaries

00001110001 and 00001110000, respectively. The beginning bits in these two identifiers are the

same until the last bit at index 10 which differs by one. Because 0 in this index for ECU2 is

dominant bit, and in fact 112 < 113, then ECU2 wins the arbitration process (as shown in

Figure 2.4 where bits appear on the CAN bus) and transmits its message, while ECU1 backs

off until ECU2 finishes transmitting, then ECU1 can start transmitting its message. This way

the arbitration in CAN is called non-destructive arbitration because frames are not destroyed

in case of a collision, instead they will be re-transmitted.

In terms of error handling, CAN has a strong error detection mechanism using CRC where

each receiving node compares the calculated CRC with the one transmitted and if an error is

detected, an error message will be sent, and the frame will be re-transmitted [9], [30].

Chapter 2. Background 16

0 1 2 3 4 5 6 7 8 9 10

0 0 0 0 1 1 1 0 0 0 1ECU1

{
0 1 2 3 4 5 6 7 8 9 10

0 0 0 0 1 1 1 0 0 0 0ECU2

{

0 0 0 0 1 1 1 0 0 0 0CAN bus
{

Figure 2.4: Example of an arbitration process in CAN.

From a security point of view, one of the major limitations in CAN is that it does not

support any authentication or authorisation mechanisms (e.g., addressing in CAN is based on

message ID with no information about the sender or receiver of the message [31]), which puts

it at risk of cyber-security threats.

2.1.2.3 Local Interconnect Network (LIN)

Some functionalities inside the vehicle do not require fast networks. For example, doors

lock/unlock, windows roll up/down, seat controls, etc. For these functionalities, a simple net-

work is sufficient. Local Interconnect Network (LIN) was designed for this purpose. It is much

slower than CAN (maximum rate of LIN is 20 Kbps), yet much cheaper and simpler. LIN uses

a bus-based topology with master-slave architecture and uses a single wire of 40m maximum

length with one master node and up to 15 slaves [23]. Like CAN, it supports a maximum

payload of 8 bytes. However, LIN can have only up to 16 nodes capable of transmitting and

receiving cyclic frames. In LIN, frames are transmitted in a polling fashion where the master

node selects the node to transmit based on a schedule hosted by the master node. The master

node first transmits the message header with ID value, the payload is then transmitted by the

source node of the specified ID, so there are no collisions in LIN as nodes do not compete to

access the bus like the case with CAN. One of the disadvantages in LIN is that it does not

support strong error detection methods [30]. Similar to CAN, it uses physical, data link and

application layers of the OSI model, and is available from several vendors. Unlike CAN, the

security threat of LIN is lower. This is due to the difficulty of performing attacks on LIN. In

order to succeed in the attack, two things should be done: first, injecting a false response with

fake data into the LIN bus and second, such injection should happen at a specific time after

the header part is transmitted by the master node. In this case, it is difficult to inject the

false response because it might be met with the correct one. Moreover, it is not possible to

Chapter 2. Background 17

manipulate the schedule at the master node, as this requires physical access to the master node

[32].

2.1.2.4 FlexRay

FlexRay was designed to satisfy needs imposed by x-by-wire applications such as drive-by-

wire, steer-by-wire, brake-by-wire, and shift-by-wire [30]. FlexRay is ten times faster than CAN

with up to 10 Mbps bandwidth per channel. In addition, it allows up to 256 bytes of maximum

payload [30]. As for the topology, FlexRay is more flexible than CAN and LIN in which it can

support point-to-point, linear bus, and active as well as passive star topologies [30]. Like CAN,

the cabling used in FlexRay is UTP with maximum length of 24m and up to 22 nodes in a bus

topology. FlexRay supports two channels, in which the second one acts as a backup in case

the first channel fails [23]. FlexRay uses Time Division Multiple Access (TDMA) for its MAC

[23] and messages in FlexRay are cyclic-frames [30]. Errors in FlexRay frames can be detected

using CRC and there is no way that the faulty frame can be re-transmitted. For FlexRay to

operate, it needs the three layers of the OSI model just like CAN and LIN. Compared with

other protocols, the cost of the FlexRay network is high [23] with only a few vendors’ support.

Cyber-security threats against FlexRay are possible, though not as easily as with CAN [23].

2.1.2.5 Media Oriented Systems Transport (MOST)

As the name suggests, MOST was designed specifically for infotainment systems. It has

built-in capability for audio and video streaming. Unlike other protocols, MOST uses all layers

of the OSI model. It typically follows a ring-based topology, and it can also be structured as a

star topology. There are three types of MOST: MOST25, MOST50, and MOST150 supporting

bandwidth of 25 Mbps, 50 Mbps, and 150 Mbps, respectively. The maximum network length

of MOST is 1280m where it can run on UTP (such as in MOST50) [23] in addition to Plastic

Optical Fiber (POF) (such as in MOST150) which alleviates issues related to Electromagnetic

Compatibility (EMC) [30]. MOST supports bandwidth of up to 150 Mbps, which is much higher

than previous protocols. A single MOST ring can have up to 64 nodes, and it can transmit up

to 384 bytes [23], [33]. Like FlexRay, messaging in MOST is based on TDMA. MOST supports

strong error detection using Ring Break Diagnosis (RBD) [33] where higher layer protocols

handle the correction part [30]. Due to the fibre optic cabling used in MOST, it is considered

one of the most expensive protocols. At the moment, MOST is not widely available; there is

Chapter 2. Background 18

only one vendor, which is MOST cooperation2. Moreover, the level of security threats in MOST

is medium to high due to the fact that it is mostly used for infotainment applications which

normally have some sort of communication with the external world.

2.1.2.6 Automotive Ethernet (AE)

Due to the constantly increasing demands of high bandwidth and low latency required by

new applications in in-vehicle networks, such as ADAS applications, the conventional commu-

nication protocols mentioned above cannot meet such stringent requirements. Therefore, a new

communication protocol is needed to handle such strict requirements.

Ethernet is a well-known leading protocol for Local Area Network (LAN), and for a span

of over 40 years, it proved its ability to keep up with the market demands by continuously

developing new features, increasing data rates, and adding more and more flexible media options

[30]. Diagnostics over Internet Protocol (DoIP) was the first application to use Ethernet in the

automotive network. Nowadays, Ethernet can be found in infotainment applications as well as

in ADAS, and it is expected that future in-vehicle networking architectures will follow flat and

Ethernet-based topologies [34].

It is worth mentioning that there are two types of Ethernet: Shared Ethernet and Switched

Ethernet. In shared Ethernet, the topology is a linear bus and the bus is shared among all con-

nected devices, hence collisions are not rare in this type. On the other hand, switched Ethernet

uses more intelligent devices, i.e., switches, instead of bus/hubs and the topology is structured

in a star-like topology. In addition, switched Ethernet uses full-duplex transmission. There-

fore, unlike in shared Ethernet, switched Ethernet eliminates the concerns over the possibility

of collision occurrences [30]. For modern applications, including automotive networks, the type

of Ethernet used is switched Ethernet.

Ethernet uses all layers of the OSI model, and it supports up to 100 Mbps bandwidth per link

and number of connected nodes is only limited by the number of ports in the Ethernet switch.

One of Ethernet’s features is that the network can be structured in any topology including

star, star of stars, and tree topologies. The other attractive feature of Ethernet is that it uses

UTP cabling instead of the more expensive alternatives such as optical fibre, coaxial cables,

and Low-Voltage Differential Signalling (LVDS). The maximum length of automotive Ethernet
2https://www.mostcooperation.com/specifications/

https://www.mostcooperation.com/specifications/

Chapter 2. Background 19

Preamble

SO
F Destination

address
Source
address

802.1Q
(VLAN) T

yp
e

Data FC
S

Figure 2.5: Fields of Ethernet message frame.

links is 15m. There are multiple Ethernet vendors such as NXP3, Marvell4, and the list is still

growing. However, currently, no many manufacturers use Ethernet. This is mainly due to two

reasons. First, automotive Ethernet is relatively expensive compared with CAN. This results in

lower demand and many vendors. Second, adopting Ethernet requires adding more hardware

devices: Ethernet switches.

Figure 2.5 shows the format of the Ethernet frame. In the following, we briefly describe

each field [30]:

1. Preamble: It is a 7-bytes field of alternating 1s and 0s signalling that a frame is coming

and allowing for synchronisation between transmitter and receiver.

2. Start of Frame (SOF): It is a one byte field of 1s and 0s with the last two bits being

1 (i.e., 10101011). This indicates that the actual frame is coming.

3. Destination address: As the name indicates, this field determines the destination ad-

dress of the frame, and it is a 6-bytes field (3 bytes organisation number and 3 bytes

device number).

4. Source address: Similar to the destination address, except it indicates the address of

the frame’s transmitter.

5. 802.1Q (VLAN/Frame Priority) Tag: This field is 4-bytes long, and it is an optional

field. It can be used to instantiate a Virtual Local Area Network (VLAN) in addition to

specifying a frame priority level.

6. Type: This is 2-bytes field and is widely known as Ethertype. It is used to indicate the

type of data being transmitted in the payload.

7. Data: This is the field that carries the actual data to be transmitted, and it can be up

to 1500 bytes long and a minimum of 46 bytes.

8. Frame Check Sequence (FCS): this is a 4-bytes field with 32 bits of CRC calculated

by the sender. Once the receiver receives the frame, it calculates the CRC value using
3https://www.nxp.com/products/interfaces/ethernet-:MC_1436432488692
4https://www.marvell.com/products/automotive.html

https://www.nxp.com/products/interfaces/ethernet-:MC_1436432488692
https://www.marvell.com/products/automotive.html

Chapter 2. Background 20

the same formula the sender used. If there is any mismatch, then the frame is faulty and

will be discarded.

Standard Ethernet in its current form cannot be used in automotive networks, as it does not

provide adequate Quality-of-Service (QoS) required by automotive applications. Therefore, to

use Ethernet in the automotive domain, it first has to be adapted in order to be able to satisfy

the stringent requirements of automotive applications. For this reason, two main standards

are working to extend the standard Ethernet to be suitable for usage in in-vehicle network

applications. These standards are: Time-Triggered Ethernet (TTEthernet) and Time-Sensitive

Networking (TSN). Below, we describe each of these standards.

TTEthernet In 2011, Society of Automotive Engineers (SAE) standardised TTEthernet

(AS6802) [35], [36]. TTEthernet is known to be used in industrial and avionics applications

(instead of Avionics Full Duplex Switched Ethernet (AFDX)) [35], and it uses full-duplex links.

TTEthernet supports strict network requirements through the use of three main traffic types:

Time-Triggered (TT), Rate-Constraint (RC), and Best-Effort (BE) [35]–[37].

In TT, timing slots are assigned to each node in the network using offline scheduling. This

way (that TTEthernet uses TDMA in its MAC for TT traffic), TTEthernet enables a deter-

ministic behaviour of the network [36]. TT traffic has higher priority than the other two types

(RC and BE). Brake-by-wire and steer-by-wire are two system examples that can benefit from

using TT traffic. Unlike TT, RC and BE are event-triggered traffic [36]. The main goal of

RC traffic is to limit the transmission rate so that each application can guarantee a maximum

bandwidth [37]. RC can be used for applications with stringent bandwidth requirements and

less timing constraint, such as multimedia and safety-critical applications [37]. On the other

hand, BE traffic has the lowest priority level among all three types, and it uses the available,

remaining, bandwidth that is not used by TT and RC. BE traffic does not have guaranteed

performance, thus, it can be used by applications that do not necessitate QoS requirements, an

example of such applications is Internet Protocol (IP) traffic with no QoS demands.

The other type of adapted AE is TSN. TSN was originally derived from Audio Video

Bridging (AVB) [35], [38], [39]. Therefore, it is worth discussing AVB first, next will describe

TSN.

Chapter 2. Background 21

AVB AVB was developed by IEEE AVB Task Group5 and it was first developed to provide

synchronised audio/video streaming services, then it deemed useful in automotive networks for

transmitting latency-critical traffic [23]. AVB developed three main standards [37]:

1. Timing and Synchronisation for Time-Sensitive Applications (IEEE 802.1AS):

this standard uses generalized Precision Time Protocol (gPTP) protocol, which is based

on IEEE1588 Precision Time Protocol (PTP) [35], to achieve nodes’ synchronisation.

2. Stream Reservation Protocol (SRP) (IEEE 802.1Qat): when this standard is used,

network resources, buffers and queues, for instance, are reserved within network switches

along the path between source and destination [37], [40].

3. Forwarding and Queuing Enhancements for Time-Sensitive Streams (FQTSS)

(IEEE 802.1Qav): this standard is used for traffic shaping. It uses Credit Based

Shaper (CBS) [39] as it is essential for queuing algorithms [41]. The standard works

by isolating latency-critical traffic from non latency-critical ones, and categorises them

into two different classes [37].

In addition, AVB defines two QoS Stream Reservation (SR) classes [35], [37], [40]6:

• SR class A: this class guarantees maximum latency of 2ms over seven hops [37] with

default transmission period of 125µs [30].

• SR class B: it provides maximum latency of 50ms over seven hops [37] with default

transmission period of 250µs [30].

These classes are assigned two priority levels 3 and 2 for SR class A and SR class B,

respectively [30], with class A having a higher priority level than class B [40]. AVB also defines

BE traffic class that is non-SR traffic [35].

TSN TSN has evolved from AVB and it is developed by IEEE TSN Task Group7. The goal

of TSN is to meet hard real-time requirements, and thus they developed an additional traffic

class called Control Data Traffic (CDT). TSN improved AVB by upgrading synchronisation

standard IEEE 802.1AS into IEEE 802.1AS-Rev as well as adding new standards. The new

standards defined by TSN are as follows:
5https://grouper.ieee.org/groups/802/1/pages/avbridges.html
6Note that there are some works on extending these two classes into more customised class such as AVB_ST

[42] where new SR class is added on top of class A and class B in AVB network.
7https://1.ieee802.org/tsn/

https://grouper.ieee.org/groups/802/1/pages/avbridges.html
https://1.ieee802.org/tsn/

Chapter 2. Background 22

• Timing and Synchronisation for Time-Sensitive Applications - Revised (IEEE

802.1AS-Rev): enhanced version of synchronisation approach.

• Enhancement for Scheduled Traffic (IEEE 802.1Qbv): scheduling is provided by

this standard using Traffic Aware Shaper (TAS). The idea is that critical traffic uses

time-aware windows for scheduling, where a guard band is used to block lower-priority

traffic from interrupting the critical traffic [41].

• Frame Preemption (IEEE 802.1Qbu): the idea of this standard is to allow high-

priority traffic to interrupt lower-priority traffic in order to transmit critical traffic in

time [43].

• Frame Replication and Elimination for Reliability (IEEE 802.1CB): this stan-

dard aims to improve the reliability of TSN by numbering and replicating packets, then

identifying the redundant packets and evicting them at the destination [41].

• Path Control and Reservation (IEEE 802.1Qca): this allows for bridged networks

to follow other routing protocols than the shortest path routing [44].

• Stream Reservation Protocol (SRP) Enhancements and Performance Improve-

ments (IEEE 802.1Qcc): enhancement of stream reservation protocol.

• Cyclic Queuing and Forwarding (CQF) (IEEE 802.1Qch): uses Peristaltic Shaper

(PS) to synchronise the process queuing and dequeuing [44].

• Per-Stream Filtering and Policing (IEEE 802.1Qci): using this standard, streams

can be identified by their header fields and assigned an Internal Priority Value (IPV)

that determines the traffic class. The stream then can be further filtered into different

sub-streams based on their, e.g., priority levels [39]. Hence, this standard can be used to

block streams satisfying certain properties, which can be useful for securing the network

[45].

• Time-Sensitive Networking for Fronthaul (IEEE 802.1CM): to provide fronthaul

networks with bridged Ethernet capability [44].

• Interspersing Express Traffic (IEEE 802.3br): it is related to frame preemption to

tackle traffic priority problem where low priority traffic intercepts higher priority traffic

[44].

Chapter 2. Background 23

• Asynchronous Traffic Shaper (ATS) (IEEE 802.1Qcr): this is a new standard, and

it aims to improve the overall latency to have better performance than CQF [46].

TSN network is composed of five main constituents [47]:

1. End devices: these are the transmitter and receiver of TSN traffic. Sometimes, they are

referred to as talker and listener.

2. Bridges: these are the Ethernet switches.

3. TSN flow: it is latency-critical traffic transmitted between transmitter and receiver.

4. Central Network Controller (CNC): this component controls the TSN network by setting

the schedule for the TSN traffic.

5. Centralised User Configuration (CUC): it provides communication between end devices

and the CNC. Generally, the CUC asks the CNC for TSN flows by providing their

communication requirements.

Given the aforementioned description of TSN, it can be seen that it is the perfect candidate

for automotive networks with strict timing and resource requirements [10].

It is worth noting that there is another similar, deterministic, communication protocol de-

veloped by IETF (Internet Engineering Task Force) called Deterministic Networking (DetNet)8.

The main difference between TSN and DetNet is that TSN is developed for layer 2 of the OSI

model while DetNet aims to expand this to higher layers, i.e., layer 3 [41]. DetNet is still new

and the development of this protocol is ongoing.

In terms of error detection and correction, Ethernet has a strong detection mechanism, while

correcting the detected errors can only be done at the higher layers [30]. Furthermore, because

Ethernet is a more mature protocol and well-known in the IT world, it poses high risks of

cyber-security threats as adversaries are aware of different attacks experienced and performed

on computer networks. Such attacks can easily be extended to automotive Ethernet. Therefore,

since Ethernet has started to be integrated into the in-vehicle network, it is more crucial now

to investigate new solutions to secure this network effectively in order to ensure drivers’ and

passengers’ safety as well as vehicle components’ integrity.
8https://datatracker.ietf.org/wg/detnet/about/

https://datatracker.ietf.org/wg/detnet/about/

Chapter 2. Background 24

2.2 In-Vehicle Networking Architectures

The overall in-vehicle network topology is highly dependent on the E/E architecture used

in the vehicle. Such architectures define the integration between hardware (i.e., ECUs), com-

munication networks and software applications into one, consolidated system.

Initially, the evolution of E/E architectures started back in the 1970s [48] where vehicle’s

components (ECUs) were mainly connected in a point-to-point fashion. This architecture,

however, suffered a massive wiring complication. To deal with this limitation, in 1983, Bosch

developed the first fieldbus communication, i.e., CAN, which significantly improved the wiring

harness of the in-vehicle network. Typically, the in-vehicle network consisted of different control

systems, where each system had its own fieldbus. The issue with fieldbus communication is that

the interaction between different systems is not possible as each has its own communication

protocol that is different from the others. For this, a central-gateway architecture was intro-

duced. The central-gateway connects these different systems together. The main role of the

gateway in this architecture is limited to regulating and translating traffic from different sys-

tems that might use different communication protocols. In addition, all ECUs are connected to

this gateway, which means that the gateway incurs heavy load from all these ECUs. Two recent

architectures that came to minimise the load on the gateway and to further improve the wiring

cost are domain-based and zonal-based architectures. In domain-based architecture, ECUs

are grouped based on their functionality in one domain. The zonal-based architecture, on the

other hand, groups ECUs based on their physical locations in the vehicle. In the following, we

describe, in detail, the fieldbus, central-gateway, domain-based, and zonal-based architectures.

2.2.1 Fieldbus Architecture

Fieldbus architectures are the first E/E architectures, and they follow a linear bus topology.

Examples of communication protocols that use this architecture are CAN, LIN, and FlexRay.

The topology of this architecture looks like the one shown in Figure 2.6. This architecture is

considered decentralised, where there is no central entity that can control the overall in-vehicle

network. Instead, each ECU is responsible for the sending and receiving of network traffic, in

addition to detecting errors in the received message.

Chapter 2. Background 25

ECU ECU ECU

ECU ECU ECU

Fieldbus Sensor/Actuator

Figure 2.6: Fieldbus architecture.

2.2.2 Central-Gateway Architecture

Central-gateway architecture is sometimes referred to as distributed E/E architecture [49]. It

is in fact the traditional E/E architecture [23], [49], [50] that was introduced to support the co-

ordination between different subsystems that use different communication protocols. Figure 2.7

depicts an overview of the central-gateway architecture. As shown, the gateway connects differ-

ent communication protocols such as CAN, LIN, and FlexRay. Mainly, the goal of the gateway

is to facilitate communication between different systems by translating the traffic from the

sender communication protocol to the receiver protocol.

This architecture can be found in cars manufactured until around 2019 [49]. Examples of

cars that use this architecture are the Volkswagen Passat [23], Audi [51], and BMW 7 series

[52].

However, with the increasing functionalities added to the vehicle, limitations of this archi-

tecture started to emerge. The main issue is that the gateway became a source of bottleneck

where all traffic, both internal (between ECUs of the same protocol) and cross-traffic (between

different protocols), have to go through this gateway for processing and regulation [53]. There-

fore, a new architecture, domain-based, was introduced to deal with this issue as explained

next.

Chapter 2. Background 26

GatewayECU

ECU

ECU

ECU

ECU

ECU

ECU

ECU

CAN LIN FlexRay Ethernet Sensor/Actuator

Figure 2.7: Central-gateway architecture.

2.2.3 Domain-based Architecture

This architecture eliminates the extra loads incurred on the gateway in the central-gateway

architecture. The concept of this architecture is to distribute the load to other units called

Domain Control Units (DCUs)9. These units are capable of handling complex operations [43].

An overview of this architecture is depicted in Figure 2.8. As can be seen, this architecture

combines the ECUs based on their functionalities into one domain. Generally, there are four

domains, as explained in the vehicle’s domains (Chapter 2.1.2.1). Each domain is controlled

by a DCU, and a backbone network, e.g., Ethernet, interconnects different DCUs [50]. This

architecture is concerned with logical optimisation of the vehicle through functionalities [54].

For instance, all ECUs related to the infotainment system are grouped together into one domain

and managed by this domain’s DCU. This further improves the wiring harness and reduces the

number of ECUs.

Domain-based architecture is a centralised architecture, and it is the current architecture

used by many car manufacturers. However, domain-based architecture suffers from two chal-

lenges [43]. First, some functions require intensive communications between DCUs, which makes

the boundaries among these DCUs ambiguous. A second challenge is that for future E/E ar-

chitectures with increasing high-end functionalities, current bandwidths cannot accommodate
9Can also be called Functional Domain Controllers (FDCs), or simply Domain Controllers (DCs).

Chapter 2. Background 27

such intensive interactions. Therefore, to tackle these challenges, this architecture can be ex-

tended to cross-domain architecture [43]. In cross-domain architecture, more than one domain

function can be integrated into one unit called Cross-Domain Control Unit (CDCU) [43], [55].

Then the processing of complex functions is done in such CDCUs [55]. For instance, chassis and

powertrain functionalities can be consolidated into one vehicle motion control CDCU [43], [56].

Looking at Figure 2.8, in cross-domain architecture, the DCUs can be replaced with CDCUs.

GatewayDCU DCU

DCU

DCU

ECU

ECU

ECU

ECU

ECU

ECU

ECU

ECU

ADAS Infotainment Powertrain/Chassis Body/Comfort Sensor/Actuator

Figure 2.8: Domain-based architecture.

With more complex functionalities added to the vehicle system, domain and cross-domain

control units become overloaded with local processing of such functionalities that even re-

quire further bandwidth to transfer the processed data between ECUs [43], [53]. Moreover,

the increasing number of complex functionalities become more and more dependent on other

functionalities, which adds more wiring complications [43].

2.2.4 Zonal-based Architecture

Zonal-based architecture proposed to overcome the limitations that arose in domain-based

architecture due to the increasing number and complexity of vehicle functionalities. Zonal-

based architecture is also known as "Vehicle-Centralised Architecture" [43]. In this architecture,

the vehicle is divided into topological zones where each zone is controlled by a Zone Control

Unit (ZCU)10 [43], [50], [53]. Then, the ECUs are clustered based on their physical locations in
10Others call it a Zonal Gateway, Zone I/O Controller for controlling the zone input and output, or Zone

ECU (ZECU).

Chapter 2. Background 28

the vehicle, and each ECU is connected to the closest ZCU. All the ZCUs are interconnected

via Ethernet backbone network or mesh network [50]. As shown in Figure 2.9, this architecture

reduces the wiring and number of ECUs significantly as it enables centralised computing by

utilising a powerful compute unit, i.e., server. The central server takes all the complex process-

ing and computations burden, hence it can be a very powerful unit or a cluster of powerful units

[55]. Zonal-based architecture is the enabler for SDNs [50] where hardware-specific functions

can be replaced with software components, hence dramatically minimising the hardware and

wiring cost.

ServerZCU ZCUECU

ECU

ECU

ECU

ECU

ECU

ECU

ECU

ADAS Infotainment Powertrain/Chassis Body/Comfort Sensor/Actuator

Figure 2.9: Zonal-based architecture

Unlike domain control units in domain-based architecture, zone control units do not im-

plement complex functions, they are generally responsible for implementing the zone’s basic

functions [55] in addition to receiving and forwarding data related to the corresponding zone

to the server which performs the complex functions. Further, these complex functions can be

offloaded to the cloud for further processing [43]. ZCUs can also support gateway and switching

functionalities and act as a smart junction box [57].

Future E/E architectures are shifting towards more centralised architectures that adopt the

structure of having fewer number of very powerful ECUs instead of the current large number of

resource-constrained ECUs [48], [50]. Such powerful units are referred to as Vehicle Computers

[50], and they are considered High-Performance Computing Platforms (HPCPs) [58] that are

Chapter 2. Background 29

far more powerful than the current ECUs [21], [59]. Both domain-based and zonal-based archi-

tectures are centralised architectures that evolved as a result of the ongoing transformation of

current E/E architectures into centralised, cross-domain architectures [43]. As domain-based

architecture is concerned with the logical optimisation of the vehicle by functionalities, zonal-

based architecture is concerned with the physical optimisation of the vehicle by locations [54].

Benefiting from both architectures, it is expected that in the future, both domain-based and

zonal-based architectures will coexist as needed to achieve the optimal structure and function-

ality with minimal wiring cost [54].

2.3 Security and Monitoring Challenges in In-Vehicle Net-

works

Until recently, monitoring the in-vehicle network was not seen as a task worth investigating.

The main reason is that, in the past, security was not a concern [6], [23] because the vehicle

components were only internally connected with no access from or connection to the external

world as the case today. Nowadays, with the increasing advances in Connected and Autonomous

Vehicles (CAVs), and IoVs, the vehicle becomes more connected to the outside world and is able

to exchange information with other vehicles on the road (inter-vehicle communications) as well

as with the surrounding objects, such as RSUs, base stations, pedestrians, etc. Such connections

expose the vehicle to cybersecurity threats.

The following section discusses different attack surfaces of in-vehicle networks. Next, differ-

ent types of attacks and analysis of their severity level are described. Then, the challenges of

monitoring in-vehicle networks and the existing solutions are highlighted.

2.3.1 Attack Surfaces

Figure 2.10 shows examples of different attack surfaces that adversaries can exploit to gain

access to and tamper with the vehicle system [5], [60], [61].

One of the attack surfaces is a keyless access system. For this, authors in [62] and [63] showed

how the keyless access system can be hacked. The problem with this system is that the attack

can occur remotely, for instance, the car can be unlocked using a smartphone application that

sends the signal to the infotainment system [61], allowing adversaries to intercept the signal and

hack the system. In addition, for charging the Electric Vehicle (EV), it needs to be connected to

Chapter 2. Background 30

Figure 2.10: Attack surfaces on vehicle systems.

the charging station for long hours with payment information being exchanged with the station.

This gives plenty of time for adversaries to gain access to such private information through the

charging plug interface [61].

Tire pressure monitoring system has its own vulnerabilities as well [4], [61]. It suffers from

two critical issues. First, there are no authentication mechanisms for the messages exchanged

between the system and the in-vehicle network. This can be exploited by adversaries as shown in

[64] where they could eavesdrop on the communication of a moving vehicle and inject messages

that trigger the system alarm. This is a general problem in CANs (which is the communication

protocol used in tire pressure monitoring systems) where they do not support authentication

or authorisation mechanisms [11]. The second issue is that because each tire has its own fixed

identification key that is being communicated alongside the tire pressure messages to the in-

vehicle network, these messages can easily be traced, and the car can be identified [61], [64].

Moreover, the onboard diagnostics system is susceptible to both remote and physical attacks

[65]–[67]. Furthermore, connecting the vehicle to the Internet through the infotainment and

telematics systems, provides another attack surface to exploit by hackers all over the Internet.

Not to mention that passengers’ and drivers’ smartphones can also be exploited by hackers to

tamper with the vehicle through smartphone car applications [68], [69]. Different sensors in the

vehicle can also be exploited by adversaries to perform different types of attacks [70].

On the other hand, vehicle connectivity with other vehicles and the surrounding infrastruc-

ture (using external communications) also poses a great risk of security threats [61], [71].

Chapter 2. Background 31

2.3.2 Attack Types

Different attack types can be performed by hackers based on the communication proto-

col they target. The following are examples of the attack types that in-vehicle networks are

susceptible to [72], [73]:

• Eavesdropping attacks

In this attack, adversaries can intercept the communication between ECUs in the vehicle

and listen to the information being communicated between them.

• Impersonation attacks

Adversaries perform this attack by planting a malicious node into the in-vehicle network.

The malicious node impersonates one of the existing, legitimate, nodes and manipulates

its functionality to impair its operation.

• DoS attacks

In DoS attacks, the attacker frequently transmits a large number of forged request mes-

sages with the goal of flooding the network so that the service will not be available to

other users/nodes (or ECUs in the scenario of in-vehicle networks) in the network.

• Fuzzy attacks

Fuzzy attacks occur when a malicious node transmits random messages with legitimate

IDs but fake data values. This attack results in unexpected and unwanted behaviour

which can cause serious harm.

• Replay attacks

Adversaries who gained control over one of the ECUs can collect messages transmitted in

the network, so they can replay them with the aim of causing disruption to the network.

• Spoofing attacks

In this type, a malicious node sends messages with a false ID which is the same as one of

the legitimate IDs. Then the receiving node cannot distinguish if the received message is

valid or not.

Table 2.3 shows security threats of in-vehicle networks and the severity of each attack [23],

[72]. It is important to note that the severity level of these attacks is subjective as it depends

on different factors such as the sophistication of the attack, whether the attack is remote or

Chapter 2. Background 32

physical, and if the attack targets a single or multiple vehicle’s components. For instance, the

eavesdropping attack by itself is relatively harmless compared with other attacks. However, such

attack can be a starting point and enabler for more harmful attacks such as the impersonation

attack.

In this thesis, we focus on CAN and AE as the communication protocols for in-vehicle

networks, and investigate the proposed approach to detecting DoS attack.

Table 2.3: Security threats and their severity on the in-vehicle network.

Attack Vulnerable net-

work

Target Consequences Risk

Eavesdropping CAN In-vehicle com-

munications,

drive pattern,

vehicle location,

camera records

Privacy

breaches

Low

Impersonation CAN, AE Immobilisation,

remote key ac-

cess, odometer

reading, DVD

player, vehicle

speed

Financial loss,

involuntary

manoeuvre, life

threat to users

High

DoS CAN, AE Vehicle speed,

movement

direction

Paralysing traf-

fic, life threat to

all road users

High

Fuzzy CAN Steering com-

mand, vehicle

speed, brake

interference

Involuntary

manoeuvre,

financial loss,

life threat to all

road users

High

Chapter 2. Background 33

Table 2.3: Security threats and their severity on the in-vehicle network.

Attack Vulnerable net-

work

Target Consequences Risk

Replay CAN, AE Immobilisation,

remote key ac-

cess, odometer

reading, DVD

player

Financial loss Low to medium

Spoofing CAN, AE In-vehicle com-

munications

Financial loss,

communication

disruption

Low to medium

As illustrated in Table 2.3, CAN is the most vulnerable protocol in in-vehicle networks.

Despite that it has been around for a while now, it is still the least secured protocol. Sev-

eral issues with CAN make it vulnerable to most types of attacks. For instance, the lack of

authentication and authorisation mechanisms facilitates the spoofing attacks. In addition, the

fact that CAN messages are broadcast to all ECUs connected to the CAN bus, makes it easy

to perform eavesdropping attacks. Further, the arbitration process helps DoS attacks to take

place on CAN by simply injecting frequent and high-priority messages [74]. Replay attacks, on

the other hand, are driven by the lack of timestamp information of messages exchanged in the

CAN network. To this extent, it is necessary to secure the vehicle against attacks as well as to

ensure its appropriate functionality under abnormal behaviours.

The following highlights the importance of monitoring the in-vehicle networks and provide

description of a complete monitoring system that the manufacturers should adopt for their

in-vehicle networks.

2.3.3 In-Vehicle Network Monitoring

As discussed earlier, modern in-vehicle networks require considering security aspects [21].

In fact, security should be one of the main design principles of modern vehicles and car manu-

facturers should adopt the security-by-design norm [75].

Chapter 2. Background 34

However, with necessary security measures in place, there is still a chance that the vehicle

can get compromised one way or another by, for instance, new attacks that have not been

known to the system before, and thus no measures are readly available against such attacks.

For this reason, the in-vehicle network should have a system that can detect such attacks. This

can be achieved by developing a robust monitoring system. A typical monitoring system should

consist of three main phases:

1. Detection phase: this phase involves monitoring the network to detect any abnormal

behaviour.

2. Localisation phase: this phase is the subsequent phase to the detection phase, in which

the source of the detected abnormality is located. Note that this phase can also be

achieved through the detection phase, hence having a single phase for both detection and

localisation (this has been illustrated in one of the proposed tomographic approaches, i.e.,

DNT, in Chapter 5).

3. Mitigation phase: this phase is crucial for safety-critical applications such as in-vehicle

networks. In this phase, the malfunctioning behaviour should be mitigated so that it

results in minimum loss and ensures the safety of drivers and passengers.

2.3.4 Existing Solutions for Monitoring In-Vehicle Networks

As current in-vehicle networks lack sophisticated monitoring approaches, the research com-

munity are investigating different monitoring solutions to be incorporated into the in-vehicle

network. In the following, we discuss these solutions and categorise them into four categories:

frequency and time-based solutions, physical specification-based solutions, information theory-

based solutions, and AI-based solutions.

2.3.4.1 Frequency and Time-based Solutions

Measuring the frequency and time intervals of CAN messages is a good indicator of whether

the network is experiencing anomalous behaviour or not. For example, authors in [76] proposed

an IDS to detect injection attacks based on the message frequency of different CAN IDs exploit-

ing the fact that each message ID has a certain time interval. The procedure starts by checking

the ID of the incoming message and measuring its time interval based on the last message

received. The IDS trigger an alarm if the measured time interval is less than the normal value.

Chapter 2. Background 35

To reduce the false alerts, they used a scoring strategy. For instance, to detect DoS attacks,

for all CAN messages they set a single threshold of 0.2ms time interval, if the time interval of

the received message is less than this value then the IDS determines this as DoS behaviour and

increases the score value by 1. This approach achieved 100% accuracy if the scoring threshold

is 4. This means that the IDS classify the message as a DoS attack if there are 4 (or more)

consecutive instances of this message with a time interval less than 0.2ms. Similar approaches

proposed in [77] and [78]. Authors in [77] used inter-signal wait times of CAN messages as a

measure to detect injection attacks, including DoS attacks. While authors in [78] used message

rates in addition to time intervals to detect injection attacks.

Another one of the state-of-the-art monitoring solutions for in-vehicle networks is proposed

by Lee in [79] and is called Offset ratio and Time interval based Intrusion Detection System

(OTIDS). The idea of OTIDS is that it plugs a monitoring ECU for the sole purpose of

monitoring the CAN bus using remote frames (see Chapter 2.1.2.2). It periodically requests

messages provided by all CAN nodes and measures their offset ratio and time intervals. They

evaluated their approach to detecting three types of attacks: DoS, fuzzy, and impersonation

attacks. For each attack type, they measured a different metric. For example, to detect DoS

attacks, they measured the ratio of instant replies of remote frames, to detect fuzzy attacks,

they used a correlation coefficient between offsets and time intervals, while average response

time was used to detect impersonation attacks. A limitation of this approach is that if the

number of unique CAN IDs is high, then it incurs extra burden on the network and consumes a

large amount of bus bandwidth by frequently communicating request/reply frames for all CAN

IDs. Moreover, a delay-based monitoring approach was proposed by Wang et al. [80]. The idea

in this approach is to connect one monitor to the CAN bus through two wires. The approach

comprises three main steps: measuring normal delay profiles by timestamping CAN messages,

learning the threshold delay value for each CAN message ID, and the final step is the detection

step based on the measured delay difference.

The above approaches consider only the CAN part as a subsystem of the whole in-vehicle

network. In contrast, Waszecki et al. [81] studied the monitoring aspect of CAN in the overall

E/E architecture. They proposed a monitoring algorithm based on network calculus and a

leaky-bucket algorithm to compute the arrival curve, which is then used to detect message-

based attacks that result in violation of the predefined communication parameters.

Chapter 2. Background 36

2.3.4.2 Physical Specification-based Solutions

Other approaches focus on monitoring the physical specifications of the network. For in-

stance, Clock Offset based Intrusion Detection System (COIDS) [82]. As the name suggests,

this approach is based on monitoring the clock offset of each ECU. It follows three main steps:

first, a baseline of each ECU’s normal clock profile is constructed using active learning such as in

[83], second, to detect anomalies, the cumulative sum of deviations from the normal behaviour

is derived using cumulative sum method [84], last, the exact time of the attack is specified using

sequential change-point detection. As with OTIDS, they evaluated their proposed approach to

detect DoS, fuzzy, and impersonation attacks. COIDS also requires plugging a monitoring ECU

into the CAN bus to monitor the network.

Older approaches suggested the use of monitoring sensors [85], [86]. A number of sensors

were introduced such as formality sensor that checks for formal correctness of each CAN mes-

sage, location sensor to check if the message belongs to the correct domain, type sensor that

checks for the message type correctness, range sensor that checks for the validity of data range

in the payload, frequency sensor, to check if the periodicity of CAN messages are within the

upper and lower bounds specified, protocol sensor which monitors the messages with respect to

the protocol specifications, plausibility sensor to check for message semantics, within a single

domain, and decide whether it is realistic or not, and consistency sensor that checks for message

semantics across all domains.

A local outlier factor-based Intrusion Detection System (IDS) was proposed by Ning et

al. [87] to detect spoofing attacks and one type of DoS attacks called bus-off attacks [88].

Their approach leverages the fact that the voltage waveform on the CAN bus is hard to fake

since messages sent by different ECUs are assigned unique voltage waveforms. They used this

property to detect the attacker node. They compared their approach with Support Vector

Machine (SVM) algorithm and found that their approach achieved a better detection rate with

a lower false detection rate.

Other approaches to detect spoofing attacks are [7] and [89]. In [7], authors proposed

CopyCAN ; an anti-spoofing IDS. The main concept of CopyCAN is that it uses the CAN fault

confinement technique to determine when an ECU has been disconnected from the network

because it enters a bus-off state. On the other hand, [89] used a sliding window with Recurrence

Quantification Analysis (RQA) to detect spoofing attacks on CAN. They claimed that the

benefit of their approach is that it does not require any processing of the CAN frame fields,

Chapter 2. Background 37

including the arbitration and payload fields. Instead, it only needs CAN messages’ arrival times.

2.3.4.3 Information Theory-based Solutions

Researchers also tried information theory-based monitoring approaches, such as [90]–[92].

Authors in [90] suggested measuring the entropy of the CAN network to construct the normal

behaviour of the network. Then, any deviation from the normal behaviour is considered an

anomaly. Optimised by sliding window, another entropy-based approach was proposed by Wu

et al. in [91]. For the sliding window, they used a fixed number of CAN messages and adopted a

heuristic algorithm based on simulated annealing to get the optimal sliding window parameters.

After the IDs are extracted based on sliding window size, entropy analysis will take place. This

is the first, offline, step. The second step is the online detection step, which determines attack

messages with IDs that are not within the correct range of the calculated entropy value. Baldini

[92] extended the approach in [91] by considering more types of attacks and entropy measures.

Another information theory approach based on measuring the hamming distance was proposed

in [93]. By calculating the hamming distance between subsequent payloads of the same message

ID, they were able to detect fuzzy and replay attacks on CAN.

2.3.4.4 AI-based Solutions

With the contemporary advances in Artificial Intelligence (AI) and Machine Learning (ML),

more researchers are focusing on employing these techniques to detect anomalies on the vehicle

network [94]–[100]. Authors in [94] proposed GIDS ; a Generative Adversarial Network (GAN)-

based anomaly detection for CAN. The approach first converts CAN data into images, then,

using generator and discriminator models, the generator generates fake images while the dis-

criminator tries to distinguish these fake images. They used two discriminators to detect both

known and unknown attacks. GIDS was tested on different types of attacks, including DoS and

fuzzy attacks. A DNN-based IDS was proposed by Zhang et al. in [95] to detect replay and

spoofing attacks on CAN. A transfer learning-based approach called CANTransfer was intro-

duced by Tariq et al. in [96] where they used convolutional Long Short-Term Memory (LSTM)

network to train with normal data and known attacks, then using one-shot transfer learning

[101], they retrain the model to be able to detect new attacks. With transfer learning [102],

they tackle the challenges of finding large datasets to train with.

Chapter 2. Background 38

Another deep learning-based approach using Convolutional Neural Network (CNN) was

proposed by authors in [97]. They exploit the sequential nature of CAN messages to detect

attacks on the CAN network. This approach could only detect attacks that the model was

trained on, it could not detect new attacks unknown to the model. To tackle this issue, they

proposed a self-supervised anomaly detection approach to detect attacks that the model has

not seen before [98]. In [98], they also addressed the problem of not having enough anomalous

datasets to train with, and they proposed to use normal data contaminated with some noise

ratios. They generated such datasets using LSTM network. In addition, a domain adversarial

neural network was used in [100] to detect attacks on CAN. This approach requires accessing

the CAN message details, including all fields. However, they claim that their approach could

detect variant attacks (of known attacks) that the model has not been trained on. A recent

approach, [103], used Deep-SVDD (Support Vector Data Description) to obtain voltage finger-

prints for each CAN ID, which is then used to detect malicious frames and determine their

source. Different ML-based models were evaluated in [104] and it was found that the ones that

use time-series data achieve better accuracy.

In addition, another monitoring solution for CAN is proposed in [105] where authors used

n-gram analysis to detect three types of attacks on CAN: replay, fuzzing, and DoS attacks.

However, their approach could not distinguish between single message replay and payload fuzzy

attacks. In addition, it cannot detect Man-in-the-Middle (MitM) attacks where the attacker

can have full control over the medium.

It is clear that all the aforementioned monitoring approaches focused on CAN networks and

failed to consider other communication protocols used in the automotive networks, especially

the newcomer that is expected to prevail in the automotive network, i.e., AE. The first study

to consider automotive Ethernet is by Jeong et al. [99]. In particular, they focused on detecting

injection attacks for Audio-Video Transport Protocol (AVTP) streams. Their approach utilised

a machine learning algorithm based on CNN and it could detect continuous replay attacks with

high recall value.

The aforementioned studies are mostly concerned with one or two aspects of the monitoring

steps, i.e., anomaly detection and/or localisation. Anomaly mitigation, on the other hand, is

ignored by these studies. A very limited number of studies consider anomaly mitigation, such as

[106] and [55]. Kwon et al. [106] proposed a mitigation framework through ECU reconfiguration.

Chapter 2. Background 39

For instance, the ECU mode can be switched to safe mode. On the other hand, Bandur et al. [55]

proposed a mitigation mechanism for centralised domain-based architecture. In particular, they

proposed a decentralised mitigation approach where the functions implemented by the failed

domain controller can be implemented by the ECU in the same domain. A brief summary of

the monitoring solutions proposed for in-vehicle networks is shown in Table 2.4. For complete

surveys on the topic, readers can refer to [107] and [16]. And to [108] for more AI-based IDSs.

Table 2.4: Summary of existing monitoring approaches. AL stands for
Anomaly Localisation and AM stands for Anomaly Mitigation.

Approach Method AL AM

OTIDS [79] Time interval monitoring of remote

frames

No No

COIDS [82] Clock offset monitoring No No

Wang et al. [80] Delay-based monitoring Yes No

Müter et al. [85], [86] Monitoring sensors No No

Ning et al. [87] Voltage waveform Yes No

CopyCAN [7] CAN fault confinement Yes No

G. Baldini [89] RQA No No

Müter et al. [90] Entropy-based monitoring No No

Wu et al. [91] Sliding window entropy No No

G. Baldini [92] Information-based entropy No No

Stabili et al. [93] Hamming distance measure No No

Song et al. [76] CAN message frequency No No

Moore et al. [77] Inter-signal weight time No No

Young et al. [78] Message rate and message interval No No

Seo et al. [94] GAN No No

Zhang et al. [95] DNN Yes No

CANTransfer [96] Transfer learning with LSTM net-

work

No No

Song et al. [97] CNN No No

Song et al. [98] Self-supervised learning approach No No

Wei et al. [100] Domain adversarial neural network No No

Chapter 2. Background 40

Table 2.4: Summary of existing monitoring approaches. AL stands for
Anomaly Localisation and AM stands for Anomaly Mitigation.

Approach Method AL AM

Deng et al. [103] Deep-SVDD Yes No

Stabili et al. [105] n-gram analysis No No

Waszecki et al. [81] Network calculus No No

Kwon et al. [106] ECU reconfiguration No Yes

Bandur et al. [55] Enabling ECUs to implement DC

functions

No Yes

There are many limitations in the existing monitoring approaches for in-vehicle networks.

First, they mostly only focused on a single communication protocol, mainly CAN, and ig-

nored the fact that other protocols (such as AE) exist. Consequently, they fail to consider a

very important factor, which is the cross-communication between different subsystems. Such

communication also deserves a high level of monitoring solutions [109]. Third, most existing

approaches rely heavily on ML-based algorithms, which neglect the time and resources needed

to train such algorithms. In addition, it has been doubted that such algorithms would be

suitable for in-vehicle networks [110] due to the fact that they still have some level of false

positive/negative rates, which makes them even inapplicable for IDSs [111]. Finally, and more

importantly, the existing solutions do not consider a complete monitoring solution where all

three steps (detection, localisation, and mitigation) should have to be considered.

2.4 Network Tomography

Network tomography is a monitoring tool that can monitor the network and provide use-

ful insights about its performance, traffic density, and topology. In the following, we further

describe network tomography, its categories, measurement types, metrics and applications.

2.4.1 Background

The term network tomography was first popularised by Vardi [112] back in 1996. The naming

emerged due to the similarity with tomography in medical imaging [13]. In general, network

Chapter 2. Background 41

tomography can be defined as the process of inferring network parameters using measurement

traffic sent along a limited subset of the network. Network tomography scope, so far, has been

limited to large-scale computer networks and the Internet [13], [14], [113], [114].

There are three main components of network tomography: vector of end-to-end measure-

ments y, vector of link-level measurements x, and measurement matrix A (see Table 2.5). Then

network tomography problem is formulated as a system of linear equations as follows

y = Ax. (2.1)

Table 2.5: Chapter 2 notations and their descriptions.

Notation Description

Network & Graph Theory

G = (V ,E) Network represented as graph G

V (G) Set of vertices (nodes) in network G

E(G) Set of edges (links) in network G

I(G) ⊂ E(G) Set of internal links in G (see Definition 6.7.1)

T (G) ⊂ E(G) Set of external links in G (see Definition 6.7.1)

vivj ∈ E(G) A link connecting nodes vi and vj

G+ {vivj} Adding link vivj to network G

d(vi, vj) Distance between nodes vi, vj ∈ V (G)

C(G) Set of graph components in G

Cn A cycle with n nodes where n ≥ 3

vh(ei) Endpoint (head) of ith link ei ∈ E(G)

vt(ei) Endpoint (tail) of ith link ei ∈ E(G)

Network Tomography

y Vector of end-to-end measurements

x Vector of link-level measurements

A Measurement matrix

yvi,vj ∈ y End-to-end (path-level) measurement between nodes vi and

vj

Chapter 2. Background 42

Table 2.5: Chapter 2 notations and their descriptions.

Notation Description

Network Tomography

xi ∈ x Link-level metric of link ei ∈ E(G)

Deep Neural Network

θ Input vector

β Bias vector

W Matrix of weights

hi Vector of ith hidden layer

f(z) Hidden layer activation function

fo(z) Output function

ŷ Vector of output layer

L Loss function

α Learning rate

Depending on the problem at hand, either one (or more) of these three components is

unknown, and the goal is to infer its value(s) given the known components.

2.4.2 Categories

Three different categories of network tomography have been studied in the literature based

on the problem that network tomography is trying to solve. These categories are path-level

inference, link-level inference, and topology inference. Below is a brief description of each one

of these categories.

2.4.2.1 Path-level Inference

In this problem, the link-level measurements x (and likely the network topology) are known

and used to infer the unknown path-level performance y. Therefore, in this category, the

link-level performance between internal network elements are measured to infer the path-level

Chapter 2. Background 43

performance. Vardi’s work [112] falls into this category, where the goal was to estimate the

origin-destination traffic intensities between different end nodes in the network. An example of

this category is shown in Figure 2.11. The network G shown on the left consists of four nodes

(v1, . . . , v4), traffic counts between these nodes are known and hence used in the table shown

on the right to compute the origin-destination traffic matrix.

v1

v2

v3

v4

10 30

10

25

15

5

v1 v2 v3 v4 yi

v1 0 10 10 15 35
v2 30 0 0 0 30
v3 25 0 0 0 25
v4 0 5 0 0 5
yj 55 15 10 15 95

Figure 2.11: Example of origin-destination traffic intensity inference.

2.4.2.2 Link-level Inference

This category often assumes that the measurement matrix A is known, as well as the path-

level performance y along selected paths in the network. Then the goal is to find the link-level

performance x. Figure 2.12 shows an example of this category. The topology shown in this

figure consists of six nodes (v1, . . . , v6) and five links (e1, . . . , e5). Let yvi,vj be the end-to-end

(path-level) measurements11 of the path between vi and vj , then as shown in the figure, by

measuring five paths, then solving the system in (2.1), the link-level measurement xi ∈ x for

each link ei could be inferred. Multiple number of studies consider this problem such as [115]–

[117], [20] and [118]. Similarly, this thesis uses this type of tomography given the constraints

of in-vehicle networks (internal elements are inaccessible).

v1

v2

v3 v4

v5

v6

e1

e2

e3

e4

e5

yv1,v2 = 25
yv1,v5 = 30
yv2,v5 = 20
yv2,v6 = 35
yv5,v6 = 20

x1 = 17.5
x2 = 7.5
x3 = 10
x4 = 2.5
x5 = 17.5

Figure 2.12: Example of link-level inference.

11Note that the terms end-to-end measurements and path-level measurements are used interchangeably in this
thesis.

Chapter 2. Background 44

2.4.2.3 Topology Inference

Topology inference is another category of network problems that network tomography can

be used to solve. This problem assumes that the network topology is unknown, and the goal is

to infer it using network tomography. However, network tomography can only infer the logical

topology of the network, where in some cases this logical topology does not match the physical

topology as shown in the example illustrated in Figure 2.13. Traceroute can be used to infer the

logical topology where the end-to-end performance, e.g, time-to-live, can be measured [119]. In

addition to [119], other studies have also focused on this category of network tomography such

as [120], [121], and [122].

v1

v2

v3 v4 v5

v6

v7

(a) Physical topology

v1

v2

v3 v4

v5

v6

(b) Logical topology

Figure 2.13: Example of logical topology inference.

2.4.3 Measurement Types

As mentioned earlier, network tomography requires some sort of either end-to-end or link-

level measurements (depending on the nature of the problem being addressed). These measure-

ments can be taken in two ways: active or passive, or sometimes a combination of both. The

following defines these two types of measurements.

Chapter 2. Background 45

2.4.3.1 Active Measurements

Active measurements use certain probe messages designed and sent between selected nodes

for the purpose of monitoring the network. Examples of such measurements’ techniques are ping,

pathchar (pchar), traceroute, and clink [114]. This type requires a certain number of monitors12

where the probes are sent between them. Most network tomography-related literature focuses

on using this type of measurement [20], [117], [123]–[125].

2.4.3.2 Passive Measurements

In passive measurements, the existing traffic is measured by, for example, mirroring or sam-

pling methods. Hence, unlike the case with active measurements, there is no need to design

specific monitoring probes. In contrast to active measurements, fewer number of studies used

passive measurements [126]–[129].

Each one of these types has its pros and cons. For example, active measurements require

a certain number of monitors to ensure full identifiability of the network, in addition, such

monitors need to be placed properly within the network. Moreover, inserting monitoring probes

into the network might add extra burden and can affect the performance of original traffic [126].

On the positive side, however, with the proper design of probes and placement of monitors, this

type can ensure full identifiability and give accurate results.

On the contrary, passive measurements eliminate the hustle of finding monitors and the

process of placing them [130]. In addition, using existing traffic can provide more realistic

and accurate measurements than the inserted probes, which, usually, behave differently to the

actual traffic [126]. However, because passive measurements use existing traffic, the existing

routing does not ensure full network identifiability. Moreover, different traffic in the network

might use different network parameters, and thus cannot be used in network tomography to

characterise the overall network performance. For instance, to measure the network delay, if

existing traffic has different parameters, then the measurements will be different based on the

used parameters, hence the inferred delay will not be accurate.
12A monitor is a node that participates in the monitoring process by sending and/or receiving monitoring

messages.

Chapter 2. Background 46

2.4.4 Metrics

Different network monitoring techniques can be used to measure different parameters such

as delay, packet loss/success rate, binary status, and bandwidth consumption. The network

tomography model should specify which metric it measures. In the following, we focus on delay,

loss/success rate, and binary status metrics by giving a brief description of each.

2.4.4.1 Delay

With network tomography, one can measure the delay of the network to infer the internal

link-level delay or the end-to-end delay. The delay can be measured by a timestamp assigned to

the probe message. For inferring the internal network delay performance, the probe message is

timestamped at the source node and the receiving time at the receiving node is recorded. Nu-

merous studies consider using network tomography to measure the network delay performance

[131]–[142].

2.4.4.2 Packet Success/Loss Rate

Another metric that network tomography can measure is the success (or loss) packet rate.

The success/loss rate metric is not additive like the delay metric, but it can be transformed into

an additive metric by taking the natural logarithm of the measurements. Several studies used

network tomography to measure the network packet success (or loss) rate [125], [143]–[145]. It

is worth noting that packet success/loss metrics can greatly benefit from passive measurements

if these measurements are independent and can fully identify the network. This is because, with

this metric, only counts of the sent/received packets are needed, then the rate (or percentage)

is computed, and these are not affected by the different network parameters used, unlike the

case with the delay metric discussed above.

2.4.4.3 Binary Status

A type of network tomography called binary tomography measures the state of the network.

The state is determined as either good (normal) or bad (anomalous) using binary values 0 and

1, respectively. The system in (2.1) then uses boolean matrix multiplication to determine the

state of links, or paths, depending on the nature of the problem. This category usually requires

using other metrics, e.g., the delay metric, as a way to characterise the status. The first to

introduce this category was Duffield in [146]. Many other studies then further investigated and

Chapter 2. Background 47

used binary tomography to determine faults or abnormal behaviour of the network [147]–[151].

Binary tomography can also be combined with other tomography approaches, such as delay or

packet loss rate [152].

2.4.5 Solution Approaches for Network Tomography Problem

In order to solve the network tomography problem (2.1), different approaches can be used

based on the type of problem and the availability of measurements and monitors. Broadly

speaking, there are three main approaches investigated so far: algebraic, statistical, and machine

learning-based approaches.

2.4.5.1 Algebraic Approaches

The typical algebraic approach [153] requires having a full-rank matrix A (see the following

chapter for more details). Sometimes this is not possible, for instance, if some part of the

network is inaccessible or cannot perform monitoring tasks. For this, other algebraic approaches

can be adopted, such as compressed sensing [125], [154]–[156], and network coding [157]–[159].

2.4.5.2 Statistical Approaches

To tackle the problem of not having enough measurements, researchers are trying to solve

network tomography using different statistical approaches [124] including the first tomography

paper by Vardi [112] which utilised statistical moment methods and Expectation Maximization

(EM)-based algorithm. Also, authors in [127] used the EM algorithm. Some other studies used

Bayesian inference [160], [161], while others used different statistical approaches [134], [162],

[163].

2.4.5.3 Machine Learning-based Approaches

Recently, like any other field, machine and deep learning made their way into the net-

working realm. This includes network tomography problems. One example is by Yang et al.

[164]. In their study, they used artificial neural networks to solve network tomography in space

optical networks. In addition, authors in [165] developed a neural network-based network to-

mography framework called NeuTomography. Similarly, [166] used a neural networks-based

approach for network tomography in overlay networks based on Software-Defined Wide Area

Network (SD-WAN). Moreover, the neural network has been used for dynamic routing and

Chapter 2. Background 48

partial topology knowledge [167].

For critical systems such as in-vehicle networks, statistical approaches are not recommended

since they do not provide exact deterministic values, instead, they give probabilistic values which

are not always accurate [168]. Similarly, machine learning-based solutions are not efficient to

be used for in-vehicle networks due to the high computational and memory requirements that

in-vehicle devices with their resource-constrained capabilities do not provide. In addition, such

solutions cannot completely eliminate false alerts, where having false positive or false negative

results is intolerable for highly critical applications as is the case with in-vehicle networks.

Therefore, algebraic approaches are preferable for such scenarios.

2.4.6 Applications

Network tomography has been utilised in different fields, mainly in computer networks and

the Internet. Examples of specific applications that benefit from network tomography include

traffic load balancing [169], [170], anomaly detection [171], [172], anomaly localisation [173],

[174], and network slicing applications [166].

Beyond computer networks and the Internet, network tomography has been used in the

transportation sector for urban traffic monitoring [175], smart cities’ traffic monitoring [176],

locating congestions in VANET [177], and for allocating power to EVs charging stations [178].

Differently, this thesis investigates network tomography as a monitoring application for in-

vehicle networks.

2.5 Deep Neural Networks (DNNs)

Deep Neural Network (DNN) [179] is one branch of several machine learning algorithms.

Generally, there are four types of learning: supervised learning, unsupervised learning, semi-

supervised learning, and reinforcement learning [180]. In supervised learning, the dataset used

for training is labelled. In contrast, unsupervised learning uses unlabelled datasets, whereas

semi-supervised learning uses a combination of both supervised and unsupervised learning,

where the datasets used in this type include labelled and unlabelled entries. Reinforcement

learning [181] is different from the other types, where the idea is to deploy an agent in an

Chapter 2. Background 49

environment so that it explores and learns from its actions. The agent then learns by either

receiving rewards or punishments based on the correctness of the action it takes.

The DNN used in this thesis is based on supervised learning. As shown in Figure 2.14, the

neural network structure consists of three main layers [179], [182]: input layer, hidden layer,

and output layer. Each layer consists of a certain number of nodes called neurons. If there is

more than one hidden layer, then the network is called a deep neural network [179], [182].

θ1

θj

..
.

In
pu

t
la

ye
r

Hidden layers

O
ut

pu
t

la
ye

r

h1
1

h2
1

h3
1

hn1

..
.

h1
m

h2
m

h3
m

hnm
..

.

ŷ1

ŷk

..
.

. . .

. . .

. . .

. . .

Figure 2.14: Deep neural network structure.

Training the neural network is done in two steps: feed forward and backpropagation [182],

[183]. The description of each step is explained in the subsequent sections.

2.5.1 Feedforward

In the feedforward step, the input vector θ is fed to the first layer of the neural network

(see Figure 2.14). At the first hidden layer, the input will be multiplied by a weight matrix

W and added to a bias value β1 ∈β. The result then will be fired by a function f(z) called

an activation function. The activation function usually used for the hidden layers is Rectified

Linear Unit (ReLU) [184]. The role of this function is to introduce some nonlinearity to the

input. ReLU is calculated as

f(z) = max(z, 0). (2.2)

The output of the first hidden layer then will be a vector hi, where i = 1, and is computed

as

h1 = f
(
W T

1 θ + β1
)
. (2.3)

Chapter 2. Background 50

Similarly, the output of the first hidden layer h1 will be feed-forwarded to the subsequent

hidden layers. The output of any subsequent hidden layer hi+1 then will be

hi+1 = f(W T
i+1hi + βi),

∀i ∈ {1, . . . ,m− 1}.
(2.4)

where m is the number of hidden layers in the neural network.

This process continues in the same fashion until the output layer. At the output layer,

usually, a different activation function fo(z) is used depending on the type of problem [185].

For instance, a sigmoid function [186] is often used in binary classification problems [187], while

the softmax function [188] is used for multi-classification problems [189], and the linear function

[185] is usually used for regression problems [190].

The output layer then produces a vector of estimated values ŷ as

ŷ = fo(W
T
m+1hm + βm). (2.5)

Next, the backpropagation step will take place as explained next.

2.5.2 Backpropagation

At the output layer, the estimated value will be compared against the actual value using a

loss function L. Such a function is used to compute the error value between the actual and the

estimated values. There are many loss functions that one can use [191]. The well-known one is

Mean-Squared Error (MSE) [179] and it is computed as

L =
1
N

N∑
i=1

(yi − ŷi)2, (2.6)

whereN is the number of samples in a batch, as the neural network is trained on mini-batches

[192]. Compared with Stochastic Gradient Descent (SGD) [193] and Batch Gradient Descent

(BGD) [194], Mini-Batch Gradient Descent (MBGD) is more efficient [195]. In SGD, only one

entry of the dataset is used to update the model weights. This is considered computationally

expensive. On the other hand, in BGD, the whole dataset is used. This is computationally

efficient, however, it suffers from poor performance due to under-fitting issues. MBGD uses a

Chapter 2. Background 51

combination of both, hence it is more appropriate in terms of both performance accuracy and

computational consumption [194], [195] .

At the backpropagation step, the goal is to minimise (2.6) so that the estimated value is

close to the actual value [183]. To achieve this goal, the error will be backpropagated into the

previous layers in order to update the weights so that the loss function L is minimised. This is

done using gradient descent that takes the partial derivative of the loss function with respect

to each weight. In particular, for each weight wij between neurons i and j, calculate ∂L
∂wij

[182].

For a batch of size N , the partial derivative of L with respect to wij is

∂L

∂wij
=

1
N

N∑
n=1

∂Ln
∂wij

. (2.7)

With learning rate α, the updated weight wtij at iteration t then will be

wtij = wt−1
ij − α

∂L

∂wt−1
ij

. (2.8)

Training DNN goes through multiple iterations, where each iteration follows the above two

steps (feedforward and backpropagation) [179], [182].

In this thesis, we leverage DNN to tackle the problem of rank-deficient matrix A.

2.6 Graph Theory Preliminaries

Graph theory is a mathematical branch of studying graphs which represent networks of

connected objects [196], [197]. Graph theory has been useful for representing different real-

world phenomena and structures. This includes communication networks. Similarly, graph

theory is used to represent and model the in-vehicle networks studied throughout this thesis.

For the sake of clarity, the following graph properties are necessary to define (see Table 2.5

for the notations’ descriptions):

• Graph connectivity: A graph G is connected if there is at least one path connecting

any two vertices in G. In other words, d(vi, vj) ̸=∞ for all vi, vj ∈ V (G), where d(vi, vj)

is the distance between vi and vj . If, for some vi, vj ∈ V (G), d(vi, vj) = ∞, then G is

disconnected, where each connected subgraph is called component and in this case

C(G) ̸= ∅, where C(G) is the set of components in disconnected graph G.

Chapter 2. Background 52

• Mutligraph: A graph G is multigraph if it contains more than one link between some

nodes vi, vj ∈ V (G).

• Cyclic graph: A connected graph G is called a cyclic graph if it contains at least one

cycle Cn, where n :=
∣∣∣V (C)

∣∣∣ and n ≥ 3. A path connecting such cycle contains n edges

with e1 = v1v2, e2 = v2v3, en−1 = vn−1vn and en = vnv1.

• Self-loop: A graph G has self-loop when there is a link ei ∈ E(G) with vh(ei) = vt(ei),

where vh(ei) and vt(ei) represent the endpoints of the link ei ∈ E(G).

• Simple graph: A graph G that has no self-loops and has at most one link between any

two nodes in V (G) is called a simple graph.

• Acyclic graph: A connected graph G is called an acyclic graph if it is simple and does

not contain any cycle. It is also called maximally acyclic graph because G+ {vivj}

results in a cycle for any two non-adjacent vertices vi, vj ∈ V (G).

• k-edge-connected graph: A graph G is k-edge-connected if it stays connected whenever

any fewer than k links are removed.

• Simple paths: Simple paths are paths that do not traverse repeating nodes or edges.

• Disjoint paths: These are paths that do not have common links, i.e., we say that two

paths pi and pj are disjoint if pi ∩ pj = ∅.

• Internally disjoint paths: These are paths that do not have common internal links,

i.e., we say that two paths pi and pj are internally disjoint if pi ∩ pj ̸⊆ I(G) and pi ∩ pj =

{ek, el} where both ek, el ∈ T (G). I(G) ⊂ E(G) and T (G) ⊆ E(G) are sets of internal

and external links, respectively (see Definition 6.7.1).

2.7 Tools Used for Implementation and Analysis

The research experiments implemented in this thesis are all based on simulations. Several

simulation and implementation tools, such as OMNeT++, Mininet, MATLAB, and Ryu SDN

controller, have been used. In the following, we give a brief background of these tools.

Chapter 2. Background 53

2.7.1 OMNeT++

OMNeT++ [198] is an open-source discrete event-based simulator that is primarily used

for designing and modelling networked systems. It was developed to help the academic and

research communities to have a powerful simulation tool that can be used to model, test, and

evaluate different systems. OMNeT++ can be used on all main platforms: MacOS, Linux,

and Windows. Several features of OMNeT++ make it stand out among other simulation

tools. For instance, it supports the reusability of components. This feature eliminates the

need to implement new modules, instead, one module can be implemented once and used in

different scenarios. Another feature is the support of topology description language called NED

language. With NED, the user can model the structure of the network with all the involved

components and interactions between them. Further, NED files can be translated into XML

format and vice versa. Additionally, it has powerful visualisation and debugging capabilities

available in its own Integrated Development Environment (IDE). The editor supports two-way

model representation so that the user can edit the network in either a graphical or source

code view. Simulations with OMNeT++ are highly scalable and one can experiment with

different input parameters to represent the different behaviours of the system. Furthermore,

result analysis and result visualisation are other built-in features of OMNeT++ with the ability

to use different data processing and filtering steps. Parallel and batch simulation supports are

further characteristics of OMNeT++ which can facilitate speeding up the simulation process.

This thesis uses OMNeT++ to simulate different in-vehicle networking architectures and

study and evaluate the proposed monitoring approach on such architectures.

2.7.2 Mininet

Mininet is a virtual network emulator for emulating SDN networks [199]. Mininet supports

six attractive characteristics of designing and developing any SDN network. First, it is flexible

in that new network topologies and features can be implemented in software. Second, Mininet

source code developed for a network prototype can be easily used in a real network without

any modifications. Third, it supports interactivity with real-time management of the emulated

network. Fourth, it is scalable, making it possible to add hundreds to thousands of network ele-

ments. Fifth, it mimics realistic real-time network environments with application and protocol

stacks to be available to use. Finally, network prototypes developed in Mininet can be shared

Chapter 2. Background 54

between collaborators and researchers, allowing further experimentation and alteration of the

prototype.

In this thesis, Mininet is used to emulate SDN-enabled in-vehicle networks with Ryu as the

SDN controller (see next).

2.7.3 Ryu SDN Controller

Ryu is a component-based SDN controller [200]. It supports different predefined software

components where each component can be modified, extended, and composed to develop new

controller applications. Besides OpenFlow protocol, Ryu provides support for other southbound

protocols such as Netconf and OF-config. Ryu is publicly available to use under the Apache

2.0 license. Although other SDN controllers are also available (e.g., POX, FloodLight, and

OpenDaylight), Ryu is the best controller [201], [202], especially in terms of latency requirements

[202] which makes it the ideal option to use for delay-sensitive applications like the ones in

vehicular communications.

Ryu controller is used in this thesis as the SDN controller for the SDN-enabled in-vehicle

network.

2.7.4 MATLAB

MATLAB (MATrix LABoratory) [203] is a powerful programming and computing tool that is

used by researchers and instructors. It includes a computation, programming, and visualisation

environment with advanced data structures and a built-in editor and debugger. It has different

toolboxes for applied science and engineering such as signal processing, symbolic computation,

control theory, optimisation, and simulation.

MATLAB, in this thesis, is used for network tomography computations as well as to simu-

late different network topologies and to implement a number of the proposed algorithms.

Additionally, for data analysis and deep learning models, tools such as Pandas, Keras and

TensorFlow have been used.

2.7.5 Pandas

This is a Python library for data analysis and manipulations [204]. Pandas provides several

functionalities that are important for analysing different types of data. For example, it enables

Chapter 2. Background 55

data access using labels in addition to the traditional method with integer-based indexing. It

also allows slicing and extracting data with the same access methods (either using integer-index

or label-index data access). Automatic alignment of data, e.g., time series datasets is another

functionality that Pandas support in addition to supporting different ways of handling missing

data from the dataset (e.g., dropping or replacing missing data entries). Other functionalities

of Pandas include hierarchical indexing, pivoting, reshaping, grouping and aggregating data

based on user-defined criteria, as well as combining and joining different datasets. Additionally,

it allows integration with other libraries such as Matplotlib [205] for producing data plots.

2.7.6 TensorFlow and Keras

TensorFlow is another Python library for machine and deep learning [205]. It is mainly

used to build and train machine and deep learning models. Further, it supports different

system platforms including Windows, Mac, and Linux.

Keras is a higher layer of TensorFlow that provides high-level building blocks to facilitate the

process of creating any deep neural network model [206]. Keras supports many key features such

as the ability to run the same code on CPU or GPU, the support for different neural networks

like convolutional neural networks, and recurrent neural networks, as well as a combination

of both. With Keras, one can build any network structure with multi-input and multi-output

models, layer sharing, model sharing, etc.

2.8 Summary

In this chapter, we first discussed vehicular communications in general, with a focus on

in-vehicle networks. We described the well-known communication protocols used in automotive

networks, covering a detailed description of CAN and AE. Next, different in-vehicle networking

architectures based on E/E architectures were described, starting from the first E/E architec-

ture, fieldbus, to the next-generation centralised zonal-based architecture. In-vehicle networks’

limitations related to security were then discussed, in addition to the challenges faced in moni-

toring the network. In particular, attack surfaces on in-vehicle networks were highlighted with

brief descriptions of different attack types that can target in-vehicle networks, in addition to

defining the main three steps of a typical monitoring system: anomaly detection, localisation,

and mitigation. A detailed discussion of current research efforts related to monitoring the

Chapter 2. Background 56

in-vehicle networks was also mentioned in this chapter. Moreover, the concept of network to-

mography was introduced in addition to a description of its different categories, measurement

types, metrics, solutions approaches as well as different applications that can benefit from it.

DNN’s structure and training have also been described. In addition, some of the graph theory

preliminaries have been stated as they are necessary for the understanding of the in-vehicle

networks analysis and modelling. Finally, a brief background about the implementation, simu-

lation, and analysis tools used in this thesis was highlighted.

The following chapter introduces network tomography, for the first time, as a monitoring

approach for in-vehicle networks.

57

3 In-Vehicle Network

Tomography

"The best way to predict the future is to

create it."

Abraham Lincoln

3.1 Overview

Network tomography is a powerful monitoring tool that can be used to infer network per-

formance by monitoring just a small subset of the whole network. In this chapter, we study

the applicability of this approach in in-vehicle networks by considering different E/E architec-

tures. In particular, we investigate the use of network tomography in an in-vehicle network

by analysing network identifiability of three main architectures: fieldbus, central-gateway, and

Ethernet-based architectures (see Figure 3.1).

Chapter 3. In-Vehicle Network Tomography 58

ECU ECU ECU

ECU ECU ECU

(a) Fieldbus architecture

GatewayECU

ECU

ECU

ECU

ECU

ECU

ECU

ECU

(b) Central-gateway architecture

SwitchGW GW

GW

GW

ECU

ECU

ECU

ECU

ECU

ECU

ECU

ECU

(c) Ethernet-based architecture

CAN bus Ethernet Sensor/Actuator

Figure 3.1: Three main E/E architectures investigated for network tomogra-
phy application. GW stands for gateway.

3.2 Motivation

Although Controller Area Network (CAN) [8] is the most dominant communication protocol

used in the automotive industry, it suffers from two major shortcomings. First, it lacks authen-

tication and authorisation mechanisms which negatively affect network security [11]. Second,

it cannot meet today’s high bandwidth demands imposed by new E/E architectures and ADAS

applications [48]. To tackle the first issue, a central-gateway architecture was introduced to

Chapter 3. In-Vehicle Network Tomography 59

separate different subsystems and regulate traffic at the gateway [48]. On the other hand, to

compensate for the limited bandwidth in CAN, Ethernet has become an essential part of the

in-vehicle network, mainly as a backbone to connect different system domains [207], and for

bandwidth-hungry applications.

The new E/E architectures result in more closed-in vehicle networks, which lead to diffi-

culty in direct monitoring of the internal network’s components. This issue can be addressed

by investigating new solutions based on monitoring the network from the edges, where no par-

ticipation is required from the internal components. Such solutions need not only to provide

end-to-end measurements but should also be able to infer the internal network performance.

To this end, we propose, for the first time in literature, to employ network tomography as a

monitoring approach for in-vehicle networks.

Network tomography is one of the network monitoring approaches that is based on math-

ematical modelling of the network and its performance metrics. It was first studied by Vardi

[112] to estimate the origin-destination traffic matrix. As mentioned in the last chapter, net-

work tomography can be divided into three categories: (i) link-level parameter estimation, (ii)

origin-destination traffic matrix estimation, and (iii) topology inference. Because it is difficult

to access the internal elements of in-vehicle networks, we focus on the first category, where

the end-to-end measurements (path-level) are used to infer the metric of link-level internal

performance.

3.3 System Model and Problem Formulation

3.3.1 In-Vehicle Network Model

In-vehicle network topology is assumed to be known as it is naturally a fixed topology that

does not change or can easily be modified. Graph theory conventions defined in [196] are fol-

lowed in this thesis to represent the in-vehicle network and its characteristics. Table 3.1 shows

the notations used in this chapter and their descriptions.

Chapter 3. In-Vehicle Network Tomography 60

Table 3.1: Chapter 3 notations and their descriptions.

Notation Description

Network & Graph Theory

G = (V ,E) Network represented as graph G

V (G) Set of vertices (nodes) in network G

E(G) Set of edges (links) in network G

E(G) ⊂ V (G) Set of edge nodes in G (see Definition 3.3.1)

Em(G) ⊂ E(G) Set of monitoring edge nodes in G

R(G) ⊂ V (G) Set of intermediate nodes in G (see Definition 3.3.1)

P(G) Set of all possible paths in network G

Pm(G) ⊆ P(G) Set of measured paths in network G

B(G) Set of CAN buses in G

d(vi) Degree of node vi ∈ V (G)

pvi,vj ∈ P(G) Path connecting two non-adjacent nodes vi, vj ∈ E(G)

pi ∈ P(G) ith path connecting two non-adjacent nodes vi, vj ∈ E(G)

svi,vj Segment connecting two non-adjacent nodes vi, vj ∈ V (G)

with vi ∨ vj ∈ R(G)

ei ∈ E(G) ith link in network G

vivj ∈ E(G) A link connecting nodes vi and vj

bi ∈ B(G) The ith CAN bus in G

Network Tomography

y Vector of end-to-end measurements

x Vector of link-level measurements

A Measurement matrix

yi ∈ y End-to-end measurement of ith path pi ∈ Pm(G)

xi ∈ x Link-level metric of ith link ei ∈ E(G)

aij ∈ {0, 1} The element of the measurement matrix A at the ith row

(for pi ∈ Pm(G)) and jth column (for ej ∈ E(G))

r(A) Rank of the measurement matrix A

Chapter 3. In-Vehicle Network Tomography 61

Table 3.1: Chapter 3 notations and their descriptions.

Notation Description

Numbers & Cardinalities

ηG :=
∣∣∣V (G)

∣∣∣ Total number of nodes in network G

γ :=
∣∣∣E(G)∣∣∣ Total number of links in network G

κ :=
∣∣∣Pm(G)∣∣∣ Total number of measured paths in G

lG Number of uniquely identifiable links in G

ci ∈ Z+ Priority level of CAN node vi ∈ E(G)

The in-vehicle network is mapped into a graph G = (V ,E) with a pair of two sets, V (G)

and E(G) as sets of vertices (nodes) and edges (links)1, respectively. Nodes in V (G) are

interconnected through the set of links E(G) with each link ei = vivj connecting two adjacent

nodes vi, vj ∈ V (G).

Based on node degree, d(vi), which is defined as the number of links node vi ∈ V (G) is

incident to, the following definition further defines two sets of nodes.

Definition 3.3.1. Given an in-vehicle network G, sets of edge nodes E(G) ⊂ V (G) and inter-

mediate nodes R(G) ⊂ V (G) are defined as2

• E(G) := {vi ∈ V (G) : d(vi) = 1} and

• R(G) := {vi ∈ V (G) : d(vi) ≥ 2},

where E(G) ∪R(G) = V (G) and E(G) ∩R(G) = ∅.

Let ηG :=
∣∣∣V (G)

∣∣∣ be the total number of nodes in G, and let pvi,vj ∈ P(G) be a path

between any two edge nodes vi, vj ∈ E(G), and it is represented as a set of links such path

traverses3. Further, let P(G) be the set of all possible paths and let Pm(G) ⊆ P(G) be a

set of measured (monitored) paths in the in-vehicle network G. Note that paths in P(G) are

simple paths, they do not include cycles with repeating nodes. A segment svi,vj connects two

non-adjacent nodes, vi, vj ∈ V (G), where at least one of these nodes is an intermediate node,

vi ∨ vj ∈ R(G).
1In this thesis, we use the terms vertices and nodes, edges and links interchangeably.
2When the context is clear, we sometimes drop the network G and simply say E, R, etc.
3When suitable, we sometimes refer to pvi,vj ∈ P(G) as simply pi ∈ P(G).

Chapter 3. In-Vehicle Network Tomography 62

Example 3.3.1. Figure 3.2 shows an example of an in-vehicle network mapped into a graph

G = (V ,E) with the sets of nodes V (G) = {v1, v2, . . . , v10} and links E(G) = {e1, e2, . . . , e9}.

In this example, E(G) = {v1, v2, v3, v4, v5, v6, v7, v10} and R(G) = {v8, v9}. The set of all paths

in this example is

P(G) =
{
pv1,v2 , pv1,v3 , pv1,v4 , pv1,v5 ,

pv1,v6 , pv1,v7 , pv1,v10 , pv2,v3 ,

pv2,v4 , pv2,v5 , pv2,v6 , pv2,v7 ,

pv2,v10 , pv3,v4 , pv3,v5 , pv3,v6 ,

pv3,v7 , pv3,v10 , pv4,v5 , pv4,v6 ,

pv4,v7 , pv4,v10 , pv5,v6 , pv5,v7 ,

pv5,v10 , pv6,v7 , pv6,v10 , pv7,v10

}
.

Examples of segments in this network include sv1,v8 , sv7,v8 and sv9,v10 .

v9v2

v1

v3

v5

v4

v6

v7

v8 v10

e2

e1

e3

e5

e4

e6

e9

e7

e8

Figure 3.2: Example of an in-vehicle network model.

The in-vehicle network model discussed above can represent any in-vehicle network that is

based on either central-gateway or Ethernet-based architecture with a set of CAN buses B(G)

of at least two, i.e.,
∣∣∣B(G)

∣∣∣ ≥ 2. For a single CAN (i.e., fieldbus architecture), on the other

hand, the network is represented as G = (V , {bi}), where bi ∈ B(G) is the CAN bus, and since

it is a single CAN, i = 1. Note that in this case, E(G) = V (G) and R(G) = ∅.

3.3.2 Problem Statement

Given an in-vehicle network G, our objective is to determine the network performance by

monitoring G. The issue with G is that it is a closed-in system where it is difficult to access

Chapter 3. In-Vehicle Network Tomography 63

the internal network components, i.e., links in E(G) and intermediate nodes in R(G). This

limitation makes it hard to directly monitor every single part of the network.

Let Em(G) ⊆ E(G) be a subset of nodes that can be directly accessed, and let V (G)\Em(G)

be the set of remaining nodes. Each monitoring node vi ∈ Em(G) provides its end-to-end

measurement value yi ∈ y. Then, the aim is to infer the performance of ei,∀ei ∈ E(G) given

only the measurements set y.

3.4 Network Tomography for In-Vehicle Networks

This section discusses network tomography for in-vehicle networks, analyses its requirements

and derives the necessary conditions needed for network tomography to be applied in in-vehicle

network scenarios.

3.4.1 Network Tomography Problem Formulation

Assuming that a path pi ∈ Pm(G), i ∈ {1, . . . ,
∣∣∣Pm(G)∣∣∣} is measured, then the measurement

for such path is represented by yi ∈ y. Such measurement can be the end-to-end delay, packet

loss rate, or any other metric discussed in Chapter 2.4.4. Let the set of all measurements of

paths in Pm(G) ⊆ P(G) be y and let κG :=
∣∣∣Pm(G)∣∣∣ be the total number of measured paths.

For each link ei ∈ E(G), i ∈ {1, . . . ,
∣∣∣E(G)∣∣∣}, let its measurement be xi ∈ x, then the set

of measurements for all links in E(G) is represented by x, and let γG :=
∣∣∣E(G)∣∣∣ be the total

number of links in network4 G. The system of network tomography therefore can be formulated

as

y = A⊗x, (3.1)

where y = [y1, y2, . . . , yκG]
T is a vector in Rκ of path-level measurements, A is a κG × γG

measurement matrix, and x = [x1,x2, . . . ,xγG]
T is a vector in Rγ of link-level metrics. Entries

of the measurement matrix A can be either binary values if the routing in the in-vehicle network

is deterministic, or probabilities in case the routing is non-deterministic. Mostly in this thesis,

we assume that the in-vehicle network G supports only deterministic routing with a single path

in use between any nodes in the network, therefore the entries of A are binary values with

aij = 1 if path pi traverses link ej , and aij = 0 otherwise. The operation ⊗ depends on the
4When suitable, we drop the network subscript G and simply say γ, κ, η, etc.

Chapter 3. In-Vehicle Network Tomography 64

problem type. If the problem is additive (e.g., delay or packet success/loss rate tomography)

then ⊗ is for matrix multiplication. For boolean problems such as binary tomography, ⊗ is

boolean matrix multiplication, i.e., yi = ∨j(aij ∧ xj).

3.4.2 Network Identifiability

In network tomography, the term "identifiability" [208] determines the applicability of alge-

braic tomography and, hence, is worth defining.

Definition 3.4.1. A link ei ∈ E(G), i ∈ {1, 2, . . . , γG} is identifiable if its associated metric,

xi ∈ x, can be uniquely determined from the end-to-end, path-level, measurements y by solving

the system in (3.1) for x.

Definition 3.4.2. Let lG be the number of uniquely identifiable links in G, then based on the

above definition, we classify network-wide identifiability into three main levels:

• Fully-identifiable network: an in-vehicle network G is fully-identifiable if the link-level

metrics for all links in E(G) are uniquely determined by solving (3.1). In this case,

lG = γG, hence, a fully-identifiable network can also be called γG-identifiable network.

• lG-identifiable network: we say that an in-vehicle network G is lG-identifiable if the

maximum number of links that can be uniquely identified is lG, where lG < γG.

• Unidentifiable network: if no link metrics for any link in E(G) can be uniquely deter-

mined by solving (3.1), then we say that G is unidentifiable. In this case lG = 0.

Two main factors contribute to determining network identifiability level. First is the number

of measurements, and second is whether the measurements are linearly independent or not.

Below is the definition of linearly independent measurements.

Definition 3.4.3. A set of measurement paths Pm(G) is linearly independent if none of its

elements is a linear combination of others. Otherwise, if at least one path pi ∈ Pm(G) is a linear

combination of one or more other paths, then the measurement paths are linearly dependent.

In order to have a fully-identifiable network G, the measurement matrix A should be a

full-rank matrix with r(A) = γG.

Remark 3.4.1. To achieve a full-rank measurement matrix A, the following conditions need to

be satisfied:

Chapter 3. In-Vehicle Network Tomography 65

1. The number of end-to-end measurements is equal to the number of links in the network.

In other words, κG = γG.

2. All the available measurements are linearly independent (see Definition 3.4.3).

Assuming G is symmetric, then the maximum number of distinct paths between edge nodes

in E(G) can be computed by

∣∣∣P(G)∣∣∣ = (
∣∣∣E(G)∣∣∣

2

)
=

∣∣∣E(G)∣∣∣(∣∣∣E(G)∣∣∣− 1
)

2 . (3.2)

The rank of measurement matrix A, r(A), is affected by two elements: the network topol-

ogy and the paths used in Pm(G). The latter depends on the number of monitors and their

placement. These elements are further discussed below with a discussion of identifiability in

in-vehicle networks.

3.4.2.1 Identifiability based on Topology

As will be shown in the following examples, satisfying r(A) = γG and hence, having fully

identifiable network G highly depends on the network topology.

ECU1

switch

ECU2 ECU3

e1

e2 e3

(a) Topology example forming full-rank measurement matrix

switchgateway1 gateway2ECU1 ECU4

ECU2 ECU3

e5 e6e1 e4
e2 e3

(b) Topology example forming rank-deficient measurement matrix

Figure 3.3: In-vehicle network topologies forming full-rank vs rank-deficient
measurement matrices.

Chapter 3. In-Vehicle Network Tomography 66

Example 3.4.1. Consider the network topology shown in Figure 3.3(a) with γG = 3. Let

Pm(G) = {p1, p2, p3} where p1 = {e1, e2}, p2 = {e1, e3}, and p3 = {e2, e3}. Then the measure-

ment matrix will be

A =

1 1 0

1 0 1

0 1 1

 . (3.3)

The matrix in (3.3) has r(A) = 3 and thus, it is a full-rank matrix (because r(A) = γG). This

matrix can be used to solve (3.1) to uniquely identify xi ∈ x,∀ei ∈ E(G).

Example 3.4.2. Now consider the topology shown in Figure 3.3(b). This topology has γG = 6

links. Let Pm(G) = {p1, p2, p3, p4, p5, p6} where p1 = {e1, e2}, p2 = {e1, e5, e6, e3}, p3 =

{e1, e5, e6, e4}, p4 = {e2, e5, e6, e3}, p5 = {e2, e5, e6, e4}, and p6 = {e3, e4}. The measurement

matrix using these paths is

A =

1 1 0 0 0 0

1 0 1 0 1 1

1 0 0 1 0 0

0 1 0 0 1 1

0 1 0 1 1 1

0 0 1 1 0 0

. (3.4)

The rank of A in (3.4) is r(A) = 5, hence, r(A) < γG. This is due to the two links e5 and e6

always appearing together whenever any path in Pm(G) traverses any of them. Therefore, the

link-level metrics for these two links cannot be uniquely identified.

It is clear from Example 3.4.2 and as stated in [115] and [19] that the topology can affect net-

work identifiability. Authors in [19] studied the necessary and sufficient conditions for network

topologies to be fully identifiable with two or more monitors. They proved that it is impossible

to identify all γG ≥ 2 links using only two monitors. And they stated that the extended graph

Gex of the network G should be 3-vertex-connected5 in order to identify all link-level metrics

in G (Theorem III.3 [19]). The extended graph is formed by adding two virtual nodes vm1 and

vm2 to G and connecting all monitors in G to these additional nodes (i.e., adding 2
∣∣∣Em(G)∣∣∣

links). Recall that only edge nodes E(G) are accessible (monitors) in the in-vehicle network,
5A graph G is k-vertex-connected if it has ηG > k and it remains connected whenever fewer than k vertices

are deleted.

Chapter 3. In-Vehicle Network Tomography 67

ECU1

switch

ECU2 ECU3

vm1 vm2

(a) Extended graph of Figure 3.3(a)

switchgateway1 gateway2ECU1 ECU4

ECU2 ECU3

vm1 vm2

(b) Extended graph of Figure 3.3(b)

Figure 3.4: Extended graphs for the topology examples shown in Figure 3.3.

thus, the additional virtual nodes can only be connected to the edge nodes in G (see Figure 3.4

for the extended graphs of the examples shown in Figure 3.3).

Although the condition that the extended graphGex should be 3-vertex-connected is satisfied

for the topology shown in Figure 3.3(b) (see Figure 3.4(b) for its extended graph), we have shown

in Example 3.4.2 that links e5 and e6 cannot be uniquely identified. Therefore, in the following

theorem, we state the necessary topological condition for identifying all links’ metrics in an

in-vehicle network G where only edge nodes in E(G) are accessible and can act as monitors.

Theorem 3.4.1. In order to identify all links’ metrics of in-vehicle network G with γ ≥ 2, the

necessary topological condition is that d(vi) ≥ 3,∀vi ∈ R(G).

Proof. We prove this theorem by contradiction.

Assuming that network G is identifiable if d(vi) < 3,∃vi ∈ R(G). This means that A

should have full rank, i.e., r(A) = γG. Let V (G) = {v1, v2, v3} where each node vi is directly

connected to vi+1. Let E(G) = {e1, e2} with e1 = v1v2 and e2 = v2v3, hence γG = 2. Then

by (3.2), the maximum number of possible paths in G is
∣∣∣P(G)∣∣∣ = 1, then the highest rank A

can have is r(A) = 1 < γG, thus r(A) ̸= γG which is a contradiction.

Testing the above theorem on the network G shown in Figure 3.3(b) where γG = 6, we

can see that (let v1 = switch) d(v1) < 3. Hence, e5 and e6 are not identifiable, and we can

only identify their concatenated metrics for segment sv2,v3 as xsv2,v3
= xe5 + xe6 , where v2 =

Chapter 3. In-Vehicle Network Tomography 68

gateway1 and v3 = gateway2. In this case, G is lG-identifiable with lG = 4 < γG = 6, hence

this topology is 4-identifiable network (see Definition 3.4.2).

3.4.2.2 Identifiability based on Monitors

Two other aspects can determine r(A): number of monitors and their placement. From

Theorem III.1 in [19], we know it is not possible to have only two monitors to identify all

γG ≥ 2 links in G. Therefore, more than two monitors are required. Moreover, monitors should

be properly placed such that all links in E(G) can be uniquely identified.

Lemma 3.4.1. In order to fully identify in-vehicle network G, given that the topological con-

dition in Theorem 3.4.1 is satisfied, each link ei ∈ E(G), i ∈ {1, 2, . . . , γG} should be traversed

by at least one measurement path pi ∈ Pm(G), i ∈ {1, 2, . . . ,κG}.

Proof. By definition, identifying in-vehicle networkGmeans to uniquely determine the link-level

metrics for all links in E(G) using measurements in y (see Definition 3.4.1 and Definition 3.4.2).

If no paths in Pm(G) traversed link ei ∈ E(G), i ∈ {1, 2, . . . , γG}, then the associated metric

of ei, xi, cannot be uniquely determined from y.

Let Em(G) ⊆ E(G) be the set of monitoring edge nodes in an in-vehicle network G, then

monitor placement condition in the following theorem should be satisfied in order to fully

identify G.

Theorem 3.4.2. An in-vehicle network G with γG ≥ 2 that satisfies the condition in The-

orem 3.4.1 is fully identifiable if and only if E(G) = Em(G). That is ∀vi ∈ E(G) with

i ∈ {1, 2, . . . , ηG}, vi is a monitoring node.

Proof. We prove this by contradiction.

Assume that in-vehicle network G with γG ≥ 2 is identifiable, hence, r(A) = γG. Let

vi ∈ E(G)\Em(G) be a non-monitor edge node. Then
∣∣∣Em(G)∣∣∣ < ∣∣∣E(G)∣∣∣ and the link incident

to node vi will not be traversed by any paths in Pm(G) (see Lemma 3.4.1) and by rewriting

(3.2) as

∣∣∣Pm(G)∣∣∣ =
∣∣∣Em(G)∣∣∣(∣∣∣Em(G)∣∣∣− 1

)
2 ,

where
∣∣∣Em(G)∣∣∣ = ∣∣∣E(G)∣∣∣− 1, we get

∣∣∣Pm(G)∣∣∣ < γG. Thus, r(A) < γG which contradicts that

r(A) = γG.

Chapter 3. In-Vehicle Network Tomography 69

From the above theorem, we can quantify the minimum number of monitors required to

achieve a fully identifiable network.

Corollary 3.4.1. Given that the topological condition in Theorem 3.4.1 is satisfied, the mini-

mum number of monitors required to uniquely identify all γG ≥ 2 links in G is
∣∣∣E(G)∣∣∣.

3.4.2.3 Identifiability in In-Vehicle Networks

CAN network is a special case, where it can be viewed as a network of a single link that

connects multiple ECUs (see fieldbus architecture shown in Figure 3.1(a)). As described in

Chapter 2, each CAN node is assigned a unique ID; this ID gives each CAN node a priority

level in which such node uses this value in the arbitration process (see the following definition).

The lowest ID value indicates the highest priority level.

Definition 3.4.4. Given a single CAN network G, let E(G) = V (G) = {v1, v2, . . . , vηG} and

c1, c2, . . . , cηG ≥ 0, ci ∈ Z+, be the set of edge nodes and their associated IDs, respectively. If

two nodes vi and vj with respective IDs ci = 0 and cj = 1 start transmitting simultaneously,

then node vi wins the arbitration process and access the CAN bus to transmit, while vj backs

off until vi finishes transmitting. Similarly, if all nodes in V (G) are trying to transmit at the

same time, then we say that vi ∈ V (G) wins the arbitration process and access the CAN bus

bn if min{c1, c2, . . . cηG} = ci.

It is worth mentioning that CAN networks can be seen as asymmetric networks, this means

that the delay (primarily composed of access and transmission delay components) in one direc-

tion is different from the opposite direction. This is due to the priority level assigned to each

ECU.

Lemma 3.4.2. Link delay in CAN network G has different values in opposite directions if two

nodes transmit simultaneously.

Proof. Consider CAN network G with two nodes v1 and v2. Let c1 be the ID for v1 and c2 be

the ID for v2, where c2 < c1. Assume at time t that both v1 and v2 are trying to transmit. By

Definition 3.4.4 we know that v2 will win the arbitration process and start transmitting before

v1. After v2 finishes transmitting, v1 can start its transmission process. Then, the access delay

on link b1 (the CAN bus) from v2 to v1 is less than its access delay from v1 to v2 because a

message from v2 will access the bus before v1’s messages. Hence, messages transmitted by v1

Chapter 3. In-Vehicle Network Tomography 70

will be delayed by messages transmitted by v2. Thus, −→xb1 <
←−xb1 where −→xb1 is the delay of link

b1 from v2 to v1 and ←−xb1 is the delay of link b1 from v1 to v2.

The above lemma indicates that the CAN network can be seen as an asymmetric network

and, based on Corollary 2.7 in [209], asymmetric networks are not identifiable unless the nodes

incident to each link are monitoring nodes. Although CAN can be asymmetric, the following

theorem is true.

Theorem 3.4.3. Any single CAN network G can be abstracted as
∣∣∣V (G)

∣∣∣ = 2 and it is always

identifiable.

Proof. We first prove the case when G is asymmetric. In the CAN network, all nodes have a

degree of one, i.e., d(vi) = 1, ∀vi ∈ V (G), thus E(G) = V (G). According to Theorem 3.4.2,

both nodes in G should be monitors as they are already in E(G). And because there is only one

link b1 in CAN, γG = 1, the condition that the nodes incident to the link should be monitoring

nodes (Corollary 2.7 in [209]) is fulfilled. Therefore, if the two nodes are transmitting at the

same time, then G is asymmetric and both link directions could be measured.

If G is symmetric (link delay in opposite directions are the same), meaning that the two

nodes are not competing to access the bus b1, then G is identifiable according to Corollary 2.5

in [209].

This can also be true for a single CAN network with
∣∣∣V (G)

∣∣∣ > 2. We can assume that CAN

always includes two nodes; one is the source node and the second is the receiving node. This

is a valid assumption in CAN as the priority level assigned to nodes can also be seen as traffic

property. Therefore, we can view CAN as a network of two nodes and one link. Hence, CAN

is always identifiable.

Corollary 3.4.2. Any single CAN network G with
∣∣∣V (G)

∣∣∣ > 1 is identifiable using only two

monitors.

Based on Lemma 3.4.2, an in-vehicle network G that is composed of multiple CANs con-

nected via a central-gateway as shown in Figure 3.1(b) can be asymmetric if two or more nodes

transmit simultaneously. However, G can be symmetric if CAN nodes used as monitors are

carefully configured to avoid engaging in the arbitration process with other monitors. This can

be achieved by changing the transmission times of different CAN monitoring nodes.

Chapter 3. In-Vehicle Network Tomography 71

Corollary 3.4.3. An in-vehicle network G with
∣∣∣B(G)

∣∣∣ > 2, where all CANs are connected

via a central-gateway g ∈ R(G), is identifiable if G is symmetric. The minimum number of

required monitors is
∣∣∣B(G)

∣∣∣, where each monitor is placed in one CAN network.

From the above analysis, we can conclude that fieldbus and central-gateway architectures

are always identifiable given that the required number and placement of monitors are satis-

fied. Other architectures, however, cannot be guaranteed to be identifiable. For example, the

Ethernet-based architecture shown in Figure 3.1(c) is unidentifiable because it does not satisfy

the topological condition in Theorem 3.4.1. As seen, the gateways have a degree less than 3

(remember that CAN includes a single link, i.e., the CAN bus that the gateway is connected

to). However, it can be lG-identifiable, if we connect some (or all) gateways to extra CANs.

If each gateway is connected to another CAN, then similar to central-gateway architecture,

Ethernet-based network G shown in Figure 3.1(c) can be fully identifiable with
∣∣∣B(G)

∣∣∣ moni-

tors, assuming that all nodes in E(G) are CAN nodes. Additionally, if exists in the network,

each edge Ethernet node should be a monitor.

3.5 Evaluating Network Tomography in In-Vehicle Net-

works

This section evaluates the above theoretical analysis by applying network tomography to in-

vehicle networks. To do this, we use simulation-based experiments using OMNeT++ simulator

[198]. In addition, we compare the performance of the network tomography-based monitoring

approach with OTIDS [79]. The following gives a more detailed description of the experiments’

setup and the results obtained from such experiments.

3.5.1 Simulation

Figure 3.5 shows an overview of the three different in-vehicle network architectures that we

simulated. Figure 3.5(a) is a single CAN network G1 with ηG1 = 30. In addition, central-

gateway and Ethernet-based in-vehicle networks shown in Figure 3.5(b) and Figure 3.5(c),

respectively, were also simulated. These network architectures resemble the new E/E architec-

tures that support centralisation (see Chapter 2.2).

Chapter 3. In-Vehicle Network Tomography 72

ECU1 ECU2 ECU3

ECU4 ECU5 ECU6

b1

(a) Single CAN network (G1)

GatewayECUs ECUs

ECUs

ECUs

b1 b2

b3

b4

(b) Central-gateway in-vehicle network (G2)

SwitchGW1 GW2

GW3

GW4

ECUs

ECUs

ECUs

ECUs

ECUs ECUs

ECUs ECUs

e1 e2
e3

e4

b1

b2

b3

b4

b5 b6

b7 b8

(c) Ethernet-based in-vehicle network (G3)

CAN bus Ethernet link

Figure 3.5: Simulated in-vehicle networks to evaluate network tomography as
a monitoring approach. GW stands for gateway.

Let G1, G2, and G3 be the three simulated networks shown in Figure 3.5, then Table 3.2

shows the parameters used for each simulated network.

Table 3.2: Network parameters used in each simulated scenario for applying
network tomography in in-vehicle networks.

Parameter G1 G2 G3

Number of nodes (η) 30 121 245

Number of edge nodes (
∣∣∣E∣∣∣) 30 120 240

Number of CAN buses (
∣∣∣B∣∣∣) 1 4 8

Number of links (γ) 1 4 12

Chapter 3. In-Vehicle Network Tomography 73

Table 3.2: Network parameters used in each simulated scenario for applying
network tomography in in-vehicle networks.

Parameter G1 G2 G3

Number of monitors (
∣∣∣Em∣∣∣) 2 4 8

Number of measured paths (κ) 1 4 12

CAN bus bandwidth 1 Mbps 1 Mbps 1 Mbps

Ethernet link bandwidth N/A N/A 100 Mbps

Switch processing delay N/A N/A 8 µs

Note that for the single CAN network G1, there is only one link which corresponds to

the CAN bus B(G1) = {b1}. Moreover, because CAN network is identifiable using only two

monitors, only one path between these monitors needs to be measured. As the maximum

number of nodes CAN can accommodate is 30 (see Chapter 2.1.2.2), in the central-gateway

and Ethernet-based in-vehicle network architectures, there were 30 ECUs connected to each

CAN bus. Within each CAN, we simulated traffic similar to real car traffic from the available

dataset provided by [97]. Note that [97] provides more than one dataset. In this experiment,

we use the dataset for normal traffic (attack-free). In addition, cross-traffic existed between

different domains. The payload size for all normal traffic was 8 bytes (see Appendix A for more

details about traffic frequency). While monitoring traffic did not have a payload, its packet size

was 47 bits (header size). To avoid asymmetric behaviour, the first monitoring messages were

transmitted at different times. Then, each message was periodically sent every 10ms. We ran

the simulations for 130s and the total number of probing messages was 13000.

As used in OTIDS, we simulated remote frames (see Chapter 2.1.2.2) as monitoring messages

in the central-gateway scenario where a CAN node requests such frames every 10ms. The

network parameters used for applying OTIDS are shown in Table 3.3.

Table 3.3: Network parameters used in each simulated scenario for applying
OTIDS in in-vehicle networks.

Parameter G1 G2 G3

Number of nodes (η) 30 121 245

Number of edge nodes (
∣∣∣E∣∣∣) 30 120 240

Chapter 3. In-Vehicle Network Tomography 74

Table 3.3: Network parameters used in each simulated scenario for applying
OTIDS in in-vehicle networks.

Parameter G1 G2 G3

Number of CAN buses (
∣∣∣B∣∣∣) 1 4 8

Number of links (γ) 1 4 12

Number of monitors (
∣∣∣Em∣∣∣) 27 29 35

Number of measured paths (κ) 26 28 34

CAN bus bandwidth 1 Mbps 1 Mbps 1 Mbps

Ethernet link bandwidth N/A N/A 100 Mbps

Switch processing delay N/A N/A 8 µs

3.5.2 Results

We evaluate the network performance when monitoring traffic exists alongside normal traffic.

Moreover, we compare the monitoring overhead against the OTIDS approach. Figure 3.6 and

Figure 3.7 show the average bandwidth utilisation for each CAN bus and the average latency

for normal traffic, respectively.

As shown in Figure 3.6, the consumed bandwidth has increased after adding network to-

mography monitoring traffic. This increase, however, is not significant (maximum increase is

about 0.96% for b1 in the central-gateway topology shown in Figure 3.5(b) and 1.9% for b7 in

Ethernet-based scenario shown in Figure 3.5(c)). However, when OTIDS is used, the consumed

bandwidth has significantly increased. This is because OTIDS frequently requests for remote

frames produced by all CAN nodes in the network; as the number of CAN IDs increases, the

utilised bandwidth increases too.

Besides network bandwidth, it is crucial that the monitoring traffic does not affect the

latency of normal traffic. In Figure 3.7, we show the average end-to-end latency for some of the

normal traffic in each CAN bus (reporting the results for all existing traffic is not feasible due

to the large volume of traffic). The increase in latency with network tomography monitoring

traffic is negligible, around 0.4µs and 0.6µs at maximum for central-gateway (Figure 3.5(b)) and

Ethernet-based (Figure 3.5(c)) scenarios, respectively. In contrast, adding OTIDS monitoring

traffic results in increased latency for the existing traffic. This is due to the arbitration process

Chapter 3. In-Vehicle Network Tomography 75

Figure 3.6: Average bandwidth of CAN buses where monitoring traffic exists.
NM : No Monitoring, and NT : with Network Tomography monitoring traffic.

Figure 3.7: Average latency of network traffic where monitoring traffic exists.
NM : No Monitoring, and NT : with Network Tomography monitoring traffic.

Chapter 3. In-Vehicle Network Tomography 76

that CAN nodes engage with, as OTIDS periodically requests remote frames for all CAN IDs

where each ID has different priority levels, giving the response frames a chance to compete with

the normal traffic to access the bus, hence the increased latency in the existing traffic.

Overall, compared with OTIDS, it can be observed that the network tomography approach

achieves better performance for both bandwidth and latency. Network tomography saves up

to 52.2% bandwidth, while it reduces latency by 782.3µs. This improvement is a result of

monitoring a limited number of end-to-end paths as compared with OTIDS which monitors the

whole network.

Next, we evaluate network identifiability based on the number of monitors. The result

is shown in Figure 3.8. As shown, single CAN is identifiable when
∣∣∣Em(G1)

∣∣∣ ≥ 2. This is

aligned with Corollary 3.4.2. On the other hand, all links are identifiable if number of monitors

|Em(G2)| ≥ 4 and |Em(G3)| ≥ 8 in central-gateway and Ethernet-based scenarios, respec-

tively, which confirms that the minimum number of monitors required is
∣∣∣B(G)

∣∣∣ as stated in

Corollary 3.4.3, where B(G) is the set of CAN buses in the in-vehicle network G. For the

central-gateway architecture, it is possible to identify part of the network using three monitors,

as shown in Figure 3.8, 75% of the network can be identified with three monitors. On the other

hand, five monitors can identify 25% of the Ethernet-based network, while six monitors can

identify 50% and 75% can be identified with seven monitors. It is not possible for CAN (or

any other network in this matter that does not allow cyclic routing) to be fully identified using

only one monitor as this monitor alone cannot provide any end-to-end measurements unless a

second monitor exists.

Additionally, we compare the link-level delays inferred by network tomography with the

actual values using absolute error, |xi− x̂i|, where xi is the actual link-level delay and x̂i is the

inferred delay. The results are shown in Figure 3.9 and Figure 3.10 where the link-level delay

for bi is xi, i ∈ {1, . . . , 8} and for ei is xi, i ∈ {9, . . . , 12}.

For the central-gateway scenario (Figure 3.9), the maximum error is 41µs. On the other

hand, the maximum error observed for the Ethernet-based scenario (Figure 3.10) is 174µs. The

reported error is attributed to the fact that monitoring nodes transmit the monitoring traffic

at different times due to the arbitration process. We can argue that these error values are small

and that the inferred delay values would still be falling within the actual range.

Moreover, the reason that different links experience different error values is that each link

is traversed by a different number of measurement paths. For instance, links e2, e4 ∈ E(G2)

Chapter 3. In-Vehicle Network Tomography 77

Figure 3.8: Identifiability ratio of CAN, central-gateway, and Ethernet-based
in-vehicle networks.

Figure 3.9: Absolute error of inferred link-level delay in central-gateway ar-
chitecture. Maximum error is 41µs.

Chapter 3. In-Vehicle Network Tomography 78

in Figure 3.5(b) are traversed by only one path in Pm(G2) while e1, e3 ∈ E(G2) are traversed

by two paths. As the link is measured by more paths the inference accuracy for such a link

increases, hence, the error values for x2 and x4 are larger than those for x1 and x3.

Figure 3.10: Absolute error of inferred link-level delay in Ethernet-based ar-
chitecture. Maximum error is 174µs.

3.6 Summary

In this chapter, we have introduced network tomography in in-vehicle networks as a per-

formance monitoring approach. We theoretically investigated the applicability of network to-

mography on three different in-vehicle network architectures. Our analysis demonstrated that

network tomography can be applied in in-vehicle networks to uniquely identify all links or

a subset of links, given that the topological and monitor placement conditions are satisfied.

We analysed network tomography using delay metrics, other metrics can also be used such as

loss/success packet rate.

One challenge we found is that not all Ethernet-based architectures can be identifiable, as

compared with central-gateway and single CAN in-vehicle networks. It is important for applying

Chapter 3. In-Vehicle Network Tomography 79

network tomography in an Ethernet-based network that the topology is fully identifiable, as

next-generation in-vehicle networking architectures will be heavily relying on Ethernet.

In-vehicle network tomography requires further investigations and in this chapter, we have

built a stepping stone into this field. The following chapter further investigates network iden-

tifiability and proposes new solutions to tackle the identifiability challenges imposed by lack of

measurements or violation of topological conditions.

80

4 DNN-based Partial

Tomography

"The most beautiful thing we can

experience is the mysterious. It is the

source of all true art and science."

Albert Einstein

4.1 Overview

The last chapter discussed the constraints that network tomography imposes in order to

use it to infer the performance of all links in the network. An important constraint is that

the measurement matrix has to be full rank. In this chapter, we devise a partial tomography

algorithm in addition to a deep learning-based solution to tackle the problem of having a rank-

deficient measurement matrix.

Particularly, this chapter proposes a novel approach for inferring link-level and path-segment

as well as end-to-end path-level performance metrics in an accurate and timely fashion, by mea-

suring performance along selected paths. To do so, we combine traditional network tomography

with deep learning. The former is used to infer performance metrics in the network, partially

depending on the availability of passive end-to-end measurements. The latter takes the results

of this partial network tomography as input in order to train a deep neural network which

is then used to estimate values of path-level metrics for the whole network. End-to-end path

metrics can be trivially calculated by aggregating inferred (by partial network tomography) and

estimated (by our trained model) metrics.

This chapter focuses on passive measurements (see Chapter 2.4.3.2). The desire to use

passive measurements is due to multiple reasons: first, for a complicated in-vehicle network,

Chapter 4. DNN-based Partial Tomography 81

inserting a large number of probes might consequently affect the mission-critical network per-

formance. Second, with passive tomography, the existing traffic can provide more realistic and

accurate measurements than the ones with inserted probes, which are different to the actual

traffic. Third, the issues related to placing and minimising the number of monitors [130] are

eliminated with passive tomography. Hence, in this chapter, we employ passive measurements

(assuming that there are traffic with same parameters in the network). In spite of this, the

approach can be extended to active measurements where the measurement matrix is not a

full-rank matrix.

4.2 Introduction

As we know from the last chapter, in order to uniquely solve for x in (3.1), the routing

matrix A used for the measurement should be invertible, and for A to be invertible, it has to

be a full-rank square matrix. Specifically, for our network tomography problem, in order to

identify all link-level metrics, two conditions should be satisfied: (i) the number of end-to-end

measurements should be equal to the number of links in the network (κG = γG), and (ii) the

available end-to-end measurements should be linearly independent (see Definition 3.4.3). The

first condition ensures that A is a square matrix, while the second condition ensures that the

square matrix A is a full-rank matrix with r(A) = γG (see Table 4.1).

Because in this chapter we focus on passive tomography, which is based on measuring the

existing traffic, the available measurements can form a routing matrix that can be either one

of the following cases

1. full-rank matrix with r(A) = γG and κG = γG;

2. rank-deficient matrix with r(A) < γG and κG = γG; and

3. rank-deficient matrix with r(A) < γG and κG < γG.

The first case satisfies both conditions (i) and (ii), and therefore x can be uniquely identified

using (3.1). The second case only satisfies condition (i), while the third case does not satisfy

any of the conditions. Thus, the last two cases cannot use (3.1) to infer all link-level metrics

in the network. In this chapter, we assume that the in-vehicle network falls under either one

of the last two cases, where the available measurements cannot form a full-rank matrix. The

following examples further illustrate these cases.

Chapter 4. DNN-based Partial Tomography 82

v2v1v3

Front camera

v4

Radio interface

v5

Rear camera

v6

Smart sensor

e3 e4

e5

e1

e2

Ethernet switch ECU

Figure 4.1: Example of simple in-vehicle network topology with six nodes -
based on Ethernet-based architecture.

Example 4.2.1. Consider the network shown in Figure 4.1. There are five links, γG = 5,

corresponding to E(G) = {e1, e2, . . . , e5}. In this example, the set of all possible paths is

P(G) = {p1, p2, p3, p4, p5, p6} with

p1 = {e1, e2}, p2 = {e1, e3, e4}, p3 = {e1, e3, e5}

p4 = {e2, e3, e4}, p5 = {e2, e3, e5}, p6 = {e4, e5}.

Now suppose that the traffic going on in this network is passing only through p1, p2, and p6.

Hence, because the measurements are passive, we have Pm(G) = {p1, p2, p6}. And (3.1) can be

written as

y1

y2

y6

 =

1 1 0 0 0

1 0 1 1 0

0 0 0 1 1

x1

x2

x3

x4

x5

. (4.1)

In (4.1), only a limited number of measurements are available (y1, y2, y6), while others for

paths in P(G)\Pm(G) are unknown (i.e., for paths y3, y4, and y5). Thus, κG < γG, which

makes the measurement matrix rank-deficient with r(A) = 3.

Chapter 4. DNN-based Partial Tomography 83

In Example 4.2.1, note that the in-vehicle network topology G is identifiable according to

Theorem 3.4.1. However, the available traffic cannot form a full-rank measurement matrix A.

v2v1v3

Radio interface

v4

Rear camera

v5

Smart sensor

e2 e3

e4

e1

Ethernet switch ECU

Figure 4.2: Example of simple in-vehicle network topology with five nodes -
based on Ethernet-based architecture.

Example 4.2.2. In this example, let us consider the topology shown in Figure 4.2. This topology

has γG = 4 for E(G) = {e1, e2, e3, e4}. The set of all possible paths is P(G) = {p1, p2, p3},

with

p1 = {e1, e2, e3}, p2 = {e1, e2, e4}, p3 = {e3, e4}.

Assuming that the existing traffic uses all these paths, then κG = 3. By writing (3.1) as

y1

y2

y3

 =

1 1 1 0

1 1 0 1

0 0 1 1

x1

x2

x3

x4

. (4.2)

we can see that κG < γG, and the columns of A that correspond to e1 and e2 are identical. This

is because the measurement paths that pass through e1 always pass through e2 too. The reason

for this is that the topology is not identifiable; since d(v1) = 2 < 3 (see Theorem 3.4.1). In

fact, one can immediately know that the measurement matrix is not full-rank by computing the

maximum number of paths
∣∣∣P(G)∣∣∣ using (3.2), which results in

∣∣∣P(G)∣∣∣ = 3 for this example.

Chapter 4. DNN-based Partial Tomography 84

Example 4.2.1 and Example 4.2.2 are two examples of the third case mentioned above, i.e.,

having rank-deficient measurement matrix A with r(A) < γG and κG < γG. The following

shows an example of the second case where r(A) < γG and κG = γG.

v1

v2

Radio interface

v3

Front camera

v4

Rear camera

v5

Smart sensor

v6

Smart sensor

e1

e2

e3

e4

e5

Gateway ECU

Figure 4.3: Example of simple in-vehicle network topology with six nodes -
based on central-gateway architecture.

Example 4.2.3. Consider the topology shown in Figure 4.3. Here, γG = 5 as E(G) =

{e1, e2, . . . , e5} and P(G) = {p1, p2, . . . , p10} where

p1 = {e1, e2}, p2 = {e1, e3}, p3 = {e1, e4}, p4 = {e1, e5}, p5 = {e2, e3}

p6 = {e2, e4}, p7 = {e2, e5}, p8 = {e3, e4}, p9 = {e3, e5}, p10 = {e4, e5}.

Assuming that the available traffic passes through p3, p4, p5, p8, and p9, hence, the set of

measured paths is Pm(G) = {p3, p4, p5, p8, p9}. Then, (3.1) can be written as

y3

y4

y5

y8

y9

=

1 0 0 1 0

1 0 0 0 1

0 1 1 0 0

0 0 1 1 0

0 0 1 0 1

x1

x2

x3

x4

x5

. (4.3)

Here, the number of available measurements is κG = 5 = γG. However, the rank of the

measurement matrix is r(A) = 4 < γG. Therefore, (3.1) cannot uniquely infer xi,∀ei ∈

E(G). The reason for this is that the measured paths in Pm(G) are linearly dependent (see

Chapter 4. DNN-based Partial Tomography 85

Definition 3.4.3), where p9 is a linear combination of p3, p4, and p8. That is,

p9 = p8 + p4 − p3.

When the available end-to-end measurements are dependent, even if κG = γG, the resulting

measurement matrix is rank-deficient with r(A) < γG.

To uniquely solve x in (3.1), γG independent measurements should be available, so that A is a

full-rank matrix with r(A) = γG. However, as seen from the above examples, the measurement

matrix for passive monitoring in an in-vehicle network is unlikely to form a full-rank matrix due

to dependent (as in Example 4.2.3) or inadequate (see Example 4.2.1) end-to-end measurements,

or even an unidentifiable topology (as shown in Example 4.2.2).

Table 4.1: Chapter 4 notations and their descriptions.

Notation Description

Network & Graph Theory

G = (V ,E) Network represented as graph G

V (G) Set of vertices (nodes) in network G

E(G) Set of edges (links) in network G

E(G) ⊂ V (G) Set of edge nodes in G (see Definition 3.3.1)

R(G) ⊂ V (G) Set of intermediate nodes in G (see Definition 3.3.1)

P(G) Set of all possible paths in network G

Pm(G) ⊆ P(G) Set of measured paths in network G

S ⊂ G Partial network of G

B(G) Set of CAN buses in G

d(vi) Degree of node vi ∈ V (G)

pi ∈ P(G) ith path connecting two non-adjacent nodes vi, vj ∈ E(G)

svi,vj Segment connecting two non-adjacent nodes vi, vj ∈ V (G)

with vi ∨ vj ∈ R(G)

ei ∈ E(G) ith link in network G

bi ∈ B(G) The ith CAN bus in G

Chapter 4. DNN-based Partial Tomography 86

Table 4.1: Chapter 4 notations and their descriptions.

Notation Description

Network Tomography

y Vector of end-to-end measurements

x Vector of link-level measurements

A Measurement matrix

yi ∈ y End-to-end measurement of path pi ∈ Pm(G)

xi ∈ x Link-level metric of ithe link ei ∈ E(G)

aij ∈ {0, 1} The element of the measurement matrix A at the ith row

(for pi ∈ Pm(G)) and jth column (for ej ∈ E(G))

r(A) Rank of the measurement matrix A

Deep Neural Network

β Bias vector

W Matrix of weights

hi Vector of ith hidden layer

f(z) Hidden layer activation function

fo(z) Output function

ŷ Vector of estimated end-to-end measurements

x̂ Vector of estimated link-level measurements

L Loss function

α Learning rate

Numbers & Cardinalities

ηG :=
∣∣∣V (G)

∣∣∣ Total number of nodes in network G

γG :=
∣∣∣E(G)∣∣∣ Total number of links in network G

κG :=
∣∣∣Pm(G)∣∣∣ Total number of measured paths in G

ϑ Total number of partial networks

In the following, we show how partial tomography and deep learning can be utilised to tackle

the rank-deficiency problem and infer the overall network performance.

Chapter 4. DNN-based Partial Tomography 87

4.3 Partial Network Tomography

In this section, we describe the proposed partial network tomography approach, where some

link-level (or segment) metrics are inferred using the available end-to-end measurements.

For the network shown in Figure 4.1, consider the case where the measurement matrix A

is rank-deficient, as in (4.1). In such a case, it is not possible to uniquely identify link-level

metrics x for all γG links in G. However, a subset of link-level and/or segment metrics can be

identified using partial network tomography of a partial network S ⊂ G.

The following theorems state the requirements that need to be fulfilled when considering

the use of partial tomography.

Theorem 4.3.1. To perform partial network tomography on a given network G, the selected

partial network S ⊂ G should include at least three edge nodes,
∣∣∣E(S)∣∣∣ ≥ 3.

Proof. From Definition 3.3.1, we know that each edge node vi ∈ E(G) has at most one connected

link, hence d(vi) = 1. And if
∣∣∣E(S)∣∣∣ < 3, e.g.,

∣∣∣E(S)∣∣∣ = 2, there are at least two links in S, i.e.,

γS ≥ 2. Because G is an undirected network and the routing between any pair is deterministic,

then by (3.2), the maximum number of end-to-end measurements of partial network S with∣∣∣E(S)∣∣∣ = 2 is

∣∣∣E(S)∣∣∣(∣∣∣E(S)∣∣∣− 1
)

2 = 1. (4.4)

Thus, κS = 1, which means that κS < γS and hence the measurement matrix A for S is

not full-rank because r(A) = 1, so x for links in S cannot have unique solution.

Theorem 4.3.2. To perform partial network tomography on a partial network S ⊂ G with∣∣∣E(S)∣∣∣ ≥ 3, the number of available end-to-end measurements should be at least three, i.e.,

κS ≥ 3.

Proof. We know from Theorem 4.3.1 that partial network tomography should be performed on

a partial network S with at least
∣∣∣E(S)∣∣∣ = 3, and by Definition 3.3.1, each vi ∈ E(S) is incident

to one link, hence there are at least γS ≥ 3. Now suppose that κS = 2, then the measurement

matrix AS for partial network S is κS × γS with κS < γS . Thus, AS is rank-deficient and

cannot be reduced to a full-rank matrix, consequently x cannot be uniquely solved.

For partial network tomography, the problem is formulated as

Chapter 4. DNN-based Partial Tomography 88

yS = ASxS , (4.5)

where yS , AS , and xS are end-to-end measurements vector, measurement matrix, and link-level

(or segment) measurements vector, respectively, for partial network S ⊂ G. If the topology is

unidentifiable (see Theorem 3.4.1), the system then can be reduced to (4.6) by removing redun-

dant columns. Hence, x̃S corresponds to segment metrics, and the reduced partial tomography

can be formulated as

yS = ÃS x̃S , (4.6)

where
∣∣∣x̃S

∣∣∣ = ∣∣∣yS
∣∣∣.

Algorithm 1: Partial Network Tomography
Inputs : Network G, end-to-end measurement vector y with yi for each path

pi ∈ Pm(G)
Output : A set of inferred link-level metrics (xS) and/or segment metrics (x̃S) for

partial network S
Initialize:
Pm(G)← all measured paths pi ∈ P(G)
κG ←

∣∣∣Pm(G)∣∣∣
A← measurement matrix

1 while r(A) < γG

2 find sub-network S s.t.
∣∣∣E(S)∣∣∣ ≥ 3 and κS ≥ 3

3 if r(AS) < γS then
4 if d(vi) < 3,∃vi ∈ R(S) then
5 reduce AS to ÃS by removing redundant column/s
6 solve for x̃S in (4.6)
7 return x̃S

8 else
9 system is inconsistent

10 go to line 2

11 else
12 solve for xS in (4.5)
13 return xS

The process of the proposed partial network tomography is illustrated in Algorithm 1. The

algorithm starts by finding any partial network S with
∣∣∣E(S)∣∣∣ ≥ 3 and κS ≥ 3 (line 2). For

such partial network S, it checks for the rank of its measurement matrix r(AS). If it is full-

rank, it directly solves xS using (4.5) (line 10-12). Otherwise, if AS < γS due to violation of

Chapter 4. DNN-based Partial Tomography 89

topological condition in Theorem 3.4.1 (topology is unidentifiable), then AS will be reduced

to ÃS by removing redundant columns (line 4-5). The algorithm then solves for x̃S using ÃS

in (4.6). Otherwise, if the system (4.5) is inconsistent due to having dependent measurements,

the algorithm finds another partial network (lines 8-10).

Complexity Analysis For a κG× γG measurement matrix with κG = γG, the time complex-

ity of solving (3.1) using LU decomposition [210] is O(κ2
G). Thus, in the worst-case scenario,

Algorithm 1 runs in O(ϑκ2
G), where ϑ is the total number of partial networks with

∣∣∣E(S)∣∣∣ ≥ 3

and κS ≥ 3.

Example 4.3.1. To further illustrate Algorithm 1, consider a partial network S from the net-

work shown in Figure 4.1 with E(S) = {v3, v4, v6}. In such a partial network, we have γS = 4,

therefore, in order to identify all link-level metrics, we need κS = 4 independent measurements.

However, with
∣∣∣E(S)∣∣∣ = 3, the maximum number of measurements is κS = 3 (see proof of The-

orem 4.3.1). As a result, not all link-level metrics can be uniquely identified, instead, segments

can be identified. The matrix for such partial network with Pm(S) = {p1, p3, p5} is

AS =

1 1 0 0

1 0 1 1

0 1 1 1

 . (4.7)

It is clear that (4.7) has one redundant column. The matrix then can be reduced to (4.8) by

removing the redundant column and assigning the two links e3, e5 ∈ E(G) to a segment sv1,v6 .

ÃS =

1 1 0

1 0 1

0 1 1

 . (4.8)

The complete system then will be

y1

y3

y5

 =

1 1 0

1 0 1

0 1 1

x1

x2

xsv1,v6

 . (4.9)

The system in (4.9) now can be used to uniquely solve for x1, x2, and xsv1,v6
.

Chapter 4. DNN-based Partial Tomography 90

4.4 Delay Estimation with DNN

To further complement the partial network tomography and infer the full path-level per-

formance of the in-vehicle network, we propose to use a DNN approach (see Chapter 2.5) to

estimate the performance of unmeasured paths given the available measurements. Specifically,

we leverage DNN to tackle the problem of rank-deficient matrix A. In particular, we use DNN

to estimate the performance of unmeasured paths P(G)\Pm(G) given only the performance of

the set of measured paths Pm(G).

A neural network is utilised in [165] to estimate path-level performance based on actively

measuring parts of the network. Our approach is different to the one presented in [165] in

that it deals with varying performance characteristics in the network, and does not rely on

active measurements. Moreover, in our proposal, end-to-end measurements are used to extract

link-level performance metrics through partial network tomography, and as a result, training

our neural network-based model is done with both end-to-end and link-level data.

In the following, we explain different approaches that can be used to infer the link-level

performance of the network. These approaches are based on algebraic and pure DNN-based

solutions.

4.4.1 DNN-based Algebraic Tomography

In order to infer the link-level performance xi ∈ x,∀ei ∈ E(G), the DNN-based algebraic

tomography seeks to solve the system in (3.1) by taking advantage of DNN to compensate for

the deficiency of the measurement matrix. This approach can further be categorised into two

approaches: Neural Network Delay Estimation (NNDE) and Neural Network Delay Tomography

(NNDT).

4.4.1.1 Neural Network Delay Estimation (NNDE)

In this type, DNN is utilised to estimate the performance of unmeasured paths P(G)\Pm(G).

In particular, when there are limited end-to-end available measurements (κG < γG), the

DNN takes these measurements as input to estimate the performance of unmeasured paths

P(G)\Pm(G). The DNN structure in this case is shown in Figure 4.4. Specifically, the neural

network is fed with the available κG end-to-end measurements y for paths in Pm(G) to estimate

the performance of the remaining γG − κG unmeasured paths in P(G)\Pm(G). For example,

Chapter 4. DNN-based Partial Tomography 91

y1

yκ
..

.

In
pu

t
la

ye
r

Hidden layers

O
ut

pu
t

la
ye

r

h1
1

h2
1

h3
1

hn1

..
.

h1
m

h2
m

h3
m

hnm

..
.

ŷρ

ŷγ

..
.

. . .

. . .

. . .

. . .

Figure 4.4: DNN structure in NNDE. The input to the DNN is a set of end-
to-end measurements y available from the edge nodes E(G) in the in-vehicle
network G. The output is the set of estimated measurements ŷ for unmoni-

tored paths P(G)\Pm(G). Note that ρ := κG + 1.

for the network shown in Figure 4.1, suppose that Pm(G) = {p1, p2, p5}, the input to the neural

network then will be a vector y = (y1, y2, y5)T . The neural network then outputs estimations

for unmeasured paths in P(G)\Pm(G), in this case, the output will be ŷ4 and ŷ6.

4.4.1.2 Neural Network Delay Tomography (NNDT)

y1

yκ

x1

xj

..
.

..
.

In
pu

t
la

ye
r

Hidden layers
O

ut
pu

t
la

ye
r

h1
1

h2
1

h3
1

hn1

..
.

h1
m

h2
m

h3
m

hnm

..
.

ŷρ

ŷγ

..
.

. . .

. . .

. . .

. . .

Figure 4.5: DNN structure in NNDT. The input to the DNN is a set of end-
to-end measurements y available from the edge nodes E(G) in the in-vehicle
network G, in addition to the set of inferred link-level metrics x obtained from
partial network tomography. The output is the set of estimated measurements

ŷ for unmonitored paths P(G)\Pm(G). Note that ρ := κG + 1.

Using partial network tomography explained in Chapter 4.3, one can infer proportion of

link-level performance. Such inferred metrics can be further combined with NNDE to improve

the estimation accuracy of unmeasured paths. Therefore, the input layer of DNN in this case

Chapter 4. DNN-based Partial Tomography 92

includes y for paths in Pm(G) in addition to the inferred link-level or segment metrics xS .

Figure 4.5 shows the structure of DNN used in this type. As in NNDE, the network estimates

the values for unmeasured paths in P(G)\Pm(G).

4.4.2 DNN-based Tomography

In contrast to DNN-based algebraic tomography, DNN here will be directly used to infer

the set of link-level metrics x from the set of end-to-end measurements y without the need to

solve (3.1). The input for the neural network in this case is y whilst the output is x as depicted

in Figure 4.6.

Using this approach, there is no need to have a full-rank A. Also, there is no condition on

the number of end-to-end measurements. This approach can infer the link-level performance

for all γG links, given that each link is traversed by at least one path in Pm(G).

y1

yκ

..
.

In
pu

t
la

ye
r

Hidden layers

O
ut

pu
t

la
ye

r

h1
1

h2
1

h3
1

hn1

..
.

h1
m

h2
m

h3
m

hnm

..
.

x̂1

x̂γ

..
.

. . .

. . .

. . .

. . .

Figure 4.6: DNN structure in DNN-based tomography. The input to the
DNN is a set of available end-to-end measurements y provided by edge nodes
E(G) in an in-vehicle network G. The output is a set of estimated link-level

performance x̂.

4.5 Performance Evaluation

This section first describes the experiment setup used to evaluate the proposed approaches.

Second, simulation results are discussed, where the proposed approaches are evaluated to infer

the path-level as well as the link-level performances.

Chapter 4. DNN-based Partial Tomography 93

4.5.1 Experiment Setup

The following describes the network simulation setup as well as the setup for the deep neural

network and pre-processing of the dataset. Note that this study focuses on delay tomography.

However, the approach can be applied to other metrics, e.g., packet loss rate.

4.5.1.1 Network Simulation

To evaluate the performance of the proposed approach, we conducted simulations using

OMNeT++ [198] and CoRE4INET [211]. An in-vehicle network topology with an Ethernet

backbone as shown in Figure 4.7 was simulated. Parameters for the simulated network are

summarised in Table 4.2. Different traffic types using TSN standards as well as non-TSN

traffic (BE traffic) (see Chapter 2.1.2.6) were used. The simulated network G consisted of

v1

v2 v3

v4 v5

v6

v7

v8

v9

v10

v11

v12

v13

v14

v15

v16

v17v18

v19 v20

e1 e2

e3 e4

e5

e6

e7

e8

e9

e10

e11

e12

e13

e14

e15
e16e17

e18 e19

Gateway Ethernet switch Ethernet node

CAN node Ethernet link CAN bus

Figure 4.7: Ethernet-backbone in-vehicle network topology used in the simu-
lation to evaluate DNN-based partial tomography.

ηG = 20 total number of nodes with
∣∣∣E(G)∣∣∣ = 11 edge nodes and

∣∣∣R(G)∣∣∣ = 9 intermediate

nodes. The topology had in total γG = 19 links. This topology is based on a synthetic in-

vehicle network topology derived from [212]. The simulation ran for 5000 times with random

switches’ processing delays uniformly distributed in the range
[
10µs, 80µs

]
to ensure that we

have different network measurements.

Chapter 4. DNN-based Partial Tomography 94

Table 4.2: Network parameters used in simulated scenarios for evaluating
partial and DNN-based network tomography in in-vehicle networks.

Parameter Value

Number of nodes (ηG) 20

Number of edge nodes (
∣∣∣E(G)∣∣∣) 11

Number of intermediate nodes (
∣∣∣R(G)∣∣∣) 9

Number of CAN buses (
∣∣∣B∣∣∣) 4

Number of links (γG) 19

CAN bus bandwidth 1 Mbps

Ethernet link bandwidth 100 Mbps

Switch processing delay Uniformly distributed between 10µs

and 80µs

Two types of traffic were used in the simulation based on Ethernet and CAN traffic. For the

Ethernet traffic, different traffic types based on TSN standards, including AVB and IEEE802.1Q

as well as best effort traffic, were used (see Chapter 2.1.2.6 for a detailed description of such

standards). For non-TSN traffic, only BE traffic was used. Simulated traffic passes through

different paths with P(G) = {p1, p2, . . . , p10} as illustrated in Table 4.3.

Table 4.3: Paths and traffic types used in simulating in-vehicle network with
TSN traffic.

Path Source Destination Traffic type Payload

p1 = {e1, e2, e5, e7, e9, e11} v10 v12 CAN, BE 8 Bytes

p2 = {e3, e4, e6, e8, e10, e12} v11 v13 CAN, BE 8 Bytes

p3 = {e1, e14, e17} v18 v15 AVB class A 393 Bytes

p4 = {e3, e14, e18} v19 v15 AVB class A 393 Bytes

p5 = {e13, e14} v15 v14 AVB class B 786 Bytes

p6 = {e1, e4, e15, e19} v16 v20 IEEE 802.1Q 100 Bytes

p7 = {e2, e4, e16, e19} v17 v20
IEEE802.1Q

BE

100 Bytes

46 Bytes

Chapter 4. DNN-based Partial Tomography 95

Table 4.3: Paths and traffic types used in simulating in-vehicle network with
TSN traffic.

Path Source Destination Traffic type Payload

p8 = {e1, e3, e17, e18} v18 v19 BE 46 Bytes

p9 = {e1, e2, e16, e17} v18 v17 BE 46 Bytes

p10 = {e2, e3, e16, e18} v19 v17 BE 46 Bytes

The payload value of CAN traffic is the maximum value which is 8 Bytes (see Chap-

ter 2.1.2.2). As the AVB traffic is used for audio and video applications, its payload value

is higher with 393 Bytes – 786 Bytes. On the other hand, since the IEEE802.1Q traffic is used

for time-sensitive applications (see Chapter 2.1.2.6), it does not require a high payload value

as compared with AVB, whereas the payload for the best effort traffic is 46 Bytes which is the

minimum payload for Ethernet messages [30] as this kind of traffic is mainly used here for the

measurements of the network performance.

Note that path p7 has two different traffics: IEEE802.1Q and BE; to distinguish between the

two types, we denote the path with IEEE802.1Q traffic and the one with BE traffic respectively

by 1p7 and 2p7. For each traffic, we recorded its end-to-end delay to construct the dataset we

used for training the DNN model.

4.5.1.2 Neural Network Model and Data Processing

The structures of the used DNNs for NNDE and NNDT are similar to the ones shown in

Figure 4.4 and Figure 4.5. These DNNs consist of two hidden layers, where the number of

hidden neurons in each layer is 2κG − 1 in case of NNDE and 2(κG +
∣∣∣xS

∣∣∣) − 1 in NNDT.

The model has trained over 1000 epochs. It is worth noting that early stopping [179], with a

patience value of 30 epochs, was utilised to avoid model overfitting. We used the dataset of

5000 samples generated by our simulation, then split it into 60%, 25% and 15% as training,

validation and testing sets, respectively. Moreover, MinMaxScaler [213] was applied to scale all

the data values between 0 and 1. The training data was used to train the model, the validation

data with early stopping was used for cross-validation, and the test set was used to test the

model performance on the new data that the model had not seen before. In addition, we used

Chapter 4. DNN-based Partial Tomography 96

ReLU activation function (2.2) for all hidden layers and linear activation function (4.10) for the

output layer.

f(z) = z. (4.10)

For backpropagation, Adam optimisation function [214] was used to update the weights and

minimise the loss function (2.6). The model was trained using mini-batches of size 40, with a

learning rate of α = 0.001. Summary of the DNNs settings are shown in Table 4.4

Table 4.4: Parameters used for the DNN model.

Parameter Value

Number of hidden layers 2

Number of neurons in each hidden layer NNDE: 2κG − 1, NNDT: 2(κG +
∣∣∣xS

∣∣∣)− 1

Hidden layers activation function (f(z)) ReLU (2.2)

Output layer activation function (fo(z)) Linear (4.10)

Backpropagation optimisation function Adam [214]

Size of training set 60%

Size of validation set 25%

Size of test set 15%

Feature scalar MinMaxScaler

Learning rate (α) 0.001

Patience value 30

4.5.1.3 Partial Network Tomography Settings

To perform partial network tomography for the network shown in Figure 4.7, Algorithm 1

used partial network S with E(S) = {e17, e18, e19, e20} and Pm(S) = {2p7, p8, p9, p10} which

satisfies both of the conditions in Theorem 4.3.1 and Theorem 4.3.2. Using (4.5), the segments’

metrics xS for sv1,v17 , sv1,v18 , sv1,v19 , and sv1,v20 were inferred. The inferred metrics were then

added to the input of the neural network, in addition to the available end-to-end measurements,

in the NNDT case as shown in Figure 4.5.

Chapter 4. DNN-based Partial Tomography 97

4.5.2 Results

This section illustrates the results of applying the proposed approaches to the simulated

environment described above. First, the results for path-level delay estimation are discussed. In

addition, we compare the proposed approach with the one presented in [165]. Next, estimating

the link-level delay performance is evaluated using the proposed algebraic and DNN tomography

approaches discussed in Chapter 4.4.1 and Chapter 4.4.2.

4.5.2.1 Path-Level Estimation Results

The following evaluates the proposed approaches to estimating the end-to-end, path-level,

and delay performance when there is a limited number of available measurements.

Training Results Using cross-validation, we first evaluate the model’s learning performance

to ensure that it is not overfitting. The results are shown in Figure 4.8 and Figure 4.9 for

TSN and non-TSN scenarios, respectively. These results show that in both NNDE and NNDT

cases, training and validation are almost aligned, and the model stops training before it starts

to overfit with maximum number of epochs equal to 300 epochs in case of NNDE for TSN

when κG = 4 as shown in Figure 4.8 and 448 epochs in case of NNDE for non-TSN when the

number of available measurements is κG = 5 as shown in Figure 4.9. We can see that when

the number of measured paths, i.e., κG, increases, the model with TSN learns faster than with

non-TSN traffic as shown in Figure 4.8. The reason behind this is that with TSN, the traffic

characteristics (including the end-to-end delays) are deterministic, therefore, it is easier for

the DNN to learn such characteristics than with non-TSN traffic which has non-deterministic

behaviour.

In addition, in all different values of κG, the number of epochs in NNDT is less than in

NNDE. This means that the more information added from the partial network tomography in

the NNDT case, allowed the model to learn quicker than when the only available information

is the path-level measurements (which is the case with NNDE).

Testing Results After training our model, we evaluate its performance on new data points1

that the model has never seen before using the test set. In Table 4.5 and Table 4.6, we show the

Mean Absolute Percentage Error (MAPE) values for model estimations on the test set (here,
1In machine and deep learning, a data point refers to an entry of the dataset.

Chapter 4. DNN-based Partial Tomography 98

Figure 4.8: Training performance with cross-validation in TSN scenario. T:
training, V: validation. The y-axis represents the MSE (used as a loss function

for training).

Figure 4.9: Training performance with cross-validation in non-TSN scenario.
T: training, V: validation. The y-axis represents the MSE (used as a loss

function for training).

we report the best performance results, see Appendix B for more results). MAPE is computed

as

Chapter 4. DNN-based Partial Tomography 99

MAPE = 100
(

1
N

N∑
i=1

∣∣∣∣∣yi − ŷiyi

∣∣∣∣∣
)

. (4.11)

In the presented scenario, partial network tomography is performed when 40% or more of

the network is measured with Pm(G) = {2p7, p8, p9, p10}, hence κG = 4 > 3 which satisfies the

condition that the number of end-to-end measurements should be at least 3 (see Theorem 4.3.2).

As seen in Table 4.5 and Table 4.6, for both TSN and non-TSN scenarios, the error rates of both

models, NNDE and NNDT, decrease when the number of available measurements increases,

reaching up to 99% accuracy when 50% or more of the network is measured. Moreover, both

NNDE and NNDT have similar performance in estimating the unmeasured paths, sometimes

with slight improvement when using NNDT.

Table 4.5: MAPE values for test results in TSN scenario.

Measured ratio (%) Measured paths (Pm(G)) NNDE (%) NNDT (%)

10 Pm = {1p7} 10.009 N/A

20 Pm = {p8, 2p7} 8.225 N/A

30 Pm = {1p7, p8, p10} 4.854 N/A

40 Pm = {2p7, p8, p9, p10} 2.522 2.395

50 Pm = {p5, 2p7, p8, p9, p10} 1.176 1.162

60 Pm = {p5, p6, 2p7, p8, p9, p10} 0.780 0.819

70 Pm = {p3, p5, p6, 2p7, p8, p9, p10} 0.665 0.606

Table 4.6: MAPE values for test results in non-TSN scenario.

Measured ratio (%) Measured paths (Pm) NNDE (%) NNDT (%)

10 Pm = {1p7} 10.244 N/A

20 Pm = {p8, 2p7} 8.881 N/A

30 Pm = {1p7, p8, p10} 5.292 N/A

40 Pm = {2p7, p8, p9, p10} 2.806 1.886

50 Pm = {p5, 2p7, p8, p9, p10} 0.934 0.492

60 Pm = {p5, p6, 2p7, p8, p9, p10} 0.389 0.562

Chapter 4. DNN-based Partial Tomography 100

Table 4.6: MAPE values for test results in non-TSN scenario.

Measured ratio (%) Measured paths (Pm) NNDE (%) NNDT (%)

70 Pm = {p3, p5, p6, 2p7, p8, p9, p10} 0.143 0.155

Figure 4.10: PDF of NNDT in case 40% of the network is measured.

Figure 4.10 and Figure 4.11 further show the Probability Density Function (PDF) of the

estimated paths’ delays in NNDT when 40% and 70% of the network is measured, respectively,

for the TSN scenario. We can see in Figure 4.10 that the estimated and actual delays are very

close to each other except for y5 and ŷ5 where there is a marginal difference. This is because

the available measurements are for paths in Pm(G) that do not share any common link with

path p5 ∈ P(G)\Pm(G), as compared with other paths where they share one or more links with

at least one path in Pm(G). On the other hand, when more paths are measured, as shown in

Figure 4.11 (70% of the network is measured), the distribution of actual and estimated values

are nearly overlapped. Note that in both cases, ŷ7 is accurately estimated for 1p7 due to the

available measurement of the same path but different traffic type (i.e., 2p7 for best effort traffic).

Chapter 4. DNN-based Partial Tomography 101

Figure 4.11: PDF of NNDT in case of 70% of the network is measured.

To further evaluate the contribution of each path’s measurement in estimating the overall

network delay performance, we show in Figure 4.12 the MAPE value for each measured path

in Pm(G) when only 10% of the network is measured, i.e., κG = 1. As shown, when Pm(G) =

{p7}, the MAPE is at its lowest value for both TSN and non-TSN. In contrast, the highest

MAPE value for TSN and non-TSN was achieved when Pm(G) = {p5} and Pm(G) = {p4},

respectively. This is because, e.g., p5 has only one link that is shared with two paths only in

the network (i.e., link e14 is shared with p3 and p4). While p7 has two segments (sv1,v17 and

sv1,v20) shared with p6, p9 and p10, in addition to two more links (e2 and e4) that are shared

with p1 and p2.

Additionally, we compare the proposed approach with NeuTomography [165]. The neural

network used in [165] is depicted in Figure 4.13; it takes as input a vector of binary entries

corresponding to the set of nodes in the network. The input is a one-hot vector indicating the

source and destination of the measured path (with 1 in corresponding source and destination

positions, and 0 elsewhere), while the output of this neural network is the delay estimation of

this path.

Table 4.7 shows the MAPE results using the approach proposed in [165] on the simulated

Chapter 4. DNN-based Partial Tomography 102

Figure 4.12: MAPE values on test set for NNDE when only 10% of the network
is measured (i.e., κG = 1).

1

0

1

0

..
.

..
.

In
pu

t
ve

ct
or

wi
th

tw
o

on
es

Hidden layers
O

ut
pu

t
la

ye
r

h1
1

h2
1

h3
1

hn1

..
.

h1
m

h2
m

h3
m

hlm

..
.

ŷi

. . .

. . .

. . .

. . .

Figure 4.13: Neural network structure used in [165].

in-vehicle network shown in Figure 4.7. Here, like in [165], we evaluate the performance when

20%, 25%, and 30% of the network is measured. As shown in Table 4.7, NeuTomography yields

large error values compared with the approach proposed in this thesis. The main reason for

this is that NeuTomography only uses information about the source and destination. Such

information cannot provide much useful information in the case of dynamic traffic features such

Chapter 4. DNN-based Partial Tomography 103

as the ones used in automotive networks. In comparison, our approach uses the measured end-

to-end performance across selected paths to help the neural network estimate the performances

of unmeasured ones. In addition, the estimation performance can be further improved using

the proposed partial tomography approach, which provides even more useful information about

the delay performance in the network. Hence, better results are achieved using the approach

proposed in this thesis.

Table 4.7: MAPE values using the neural network tomography approach pro-
posed in [165].

Measured ratio (%) MAPE (%)

20 102.6

25 56.4

30 34.4

4.5.2.2 Link-Level Estimation Results

Here, the proposed approach is evaluated to infer the link-level delay metrics of the simu-

lated in-vehicle network. In particular, we evaluate the two types of tomographic approaches

discussed earlier, i.e., DNN-based Algebraic Tomography and DNN-based Tomography. The for-

mer uses the DNN structure as the one shown in Figure 4.4, while the latter uses the structure

shown in Figure 4.6.

DNN-based Algebraic Tomography Results We compare the results obtained using the

actual end-to-end delays with the ones obtained using the estimated end-to-end delays in the

DNN-based algebraic tomography approach.

In Figure 4.14, we show the absolute error value of actual and inferred delay, |xi − x̂i|,

in case TSN traffic is used. We observe that as the number of measured paths (i.e., κG)

increases, the performance appears to improve. For instance, when only one path is measured

and the remaining were estimated using DNN, the maximum error is about 23.0µs as shown

in Figure 4.14(a). The performance slightly improved when the number of measured paths

increased to κG = 2 as shown in Figure 4.14(b) where the maximum error value is 14.9µs.

Chapter 4. DNN-based Partial Tomography 104

In Figure 4.14(c), the performance improved even further as the number of measured paths

increased to κG = 3, in such case the maximum error is only 10.1µs.

(a) κG = 1 (b) κG = 2

(c) κG = 3

Figure 4.14: Absolute error value averaged over 50 data points for DNN-
based algebraic tomography approach. Scenario with TSN traffic. Here xi

represents |xi − x̂i| for link ei ∈ E(G).

A similar observation was noted for the scenario with no TSN traffic, as shown in Figure 4.15.

DNN-based Tomography Results In this approach, only two paths were chosen to be

measured to infer the link-level delays, i.e., Pm(G) = {p7, p8} (see Table 4.3). In Figure 4.16,

the absolute error values of actual and inferred delays are depicted. The maximum error

observed for the scenario with TSN traffic (see Figure 4.16(a)) is 19.4µs which corresponds to

x2, while the scenario with non-TSN traffic (see Figure 4.16(b)) has a maximum error of 22.5µs

corresponding to x4. As noted, the error value for the case with non-TSN traffic is larger than

the case with TSN traffic. As mentioned earlier, this is because most TSN traffic has bounded

delays, hence deterministic behaviour, which makes it easier for the neural network to predict

the behaviour of such traffic.

Chapter 4. DNN-based Partial Tomography 105

(a) κG = 1 (b) κG = 2

(c) κG = 3

Figure 4.15: Absolute error value averaged over 50 data points for DNN-based
algebraic tomography approach. Scenario with non-TSN traffic. Here xi

represents |xi − x̂i| for link ei ∈ E(G).

(a) With TSN traffic (b) With no TSN traffic

Figure 4.16: Absolute error value averaged over 50 data points for DNN-based
tomography approach.

Discussion Comparing the results of both approaches (DNN-based algebraic tomography

and DNN-based tomography), we found that the DNN-based algebraic tomography approach

performed better than the DNN-based tomography approach in terms of estimation accuracy.

As the DNN-based tomography approach in our scenario only measured two paths to predict

Chapter 4. DNN-based Partial Tomography 106

the link-level delays, one can compare it with DNN-based algebraic tomography when κG = 2.

Therefore, it can be observed that DNN-based algebraic tomography outperforms DNN-based

tomography by about 4.5µs less estimation error. Because the DNN-based algebraic tomogra-

phy approach needs at least γG number of end-to-end measurements to uniquely solve for x in

(3.1), it uses more end-to-end measurements (either measured or estimated) than DNN-based

tomography approach. As the number of end-to-end measurements increases, the uncertainty of

the inferred link-level delay decreases. Hence, the DNN-based algebraic tomography approach

yields more accurate results than the DNN-based tomography approach.

The comparison between the two proposed approaches to infer the link-level metrics presents

a trade-off between inference accuracy and computational overhead. If devices in in-vehicle

networks are powerful enough to perform intensive computation, then one should opt for a

DNN-based algebraic tomography approach. Otherwise, the DNN-based tomography approach

can be used, bearing in mind that it sacrifices accuracy with marginal error.

4.6 Summary

In this chapter, we have proposed a partial network tomography approach to infer link-level

and/or path-segment metrics of partial networks using only the available end-to-end measure-

ments. Moreover, we have proposed a deep neural network delay estimation approach to es-

timate the unmeasured end-to-end delay of an in-vehicle network. In the proposed approach,

we have used a subset of measured paths as input to train the model and estimate the delay

of remaining paths in the network. Additionally, we have used the inferred metrics from the

partial tomography to estimate the performance of unmeasured paths. The results showed

that by only measuring the end-to-end subset of the network, the overall performance can be

accurately estimated with up to 99% accuracy. We believe that our approach is suitable for

networks with variable traffic such as in-vehicle networks where direct monitoring of the full

network is not desirable as such monitoring traffic may overwhelm the network.

The following chapter examines the proposed approaches in anomaly detection and locali-

sation applications for in-vehicle networks.

107

5 Anomaly Detection and

Localisation using Network

Tomography

"I am one of those who think, like Nobel,

that humanity will draw more good than

evil from new discoveries."

Marie Curie

5.1 Overview

This chapter examines the proposed monitoring approaches, based on network tomography

and deep neural networks, to an anomaly detection and localisation for in-vehicle networks

that is based on central-gateway architecture. Any anomalous behaviour is defined as the

behaviour that deviates from the normal behaviour of the network by exceeding some threshold

values. In particular, this chapter investigates three types of proposed monitoring approaches:

Delay Network Tomography (DNT), Binary Network Tomography (BNT), and Deep Neural

Network (DNN).

5.2 Anomaly Detection and Localisation Problem

In this chapter, we focus on one of the new E/E architectures that are based on a central-

gateway. Such architectures often divide the vehicle’s components into multiple domains. Each

domain is defined as follows (refer to Table 5.1 for the notations used in this chapter):

Chapter 5. Anomaly Detection and Localisation using Network Tomography 108

Table 5.1: Chapter 5 notations and their descriptions.

Notation Description

Network & Graph Theory

G = (V ,E) Network represented as graph G

V (G) Set of vertices (nodes) in network G

E(G) Set of edges (links) in network G

E(G) ⊂ V (G) Set of edge nodes in G (see Definition 3.3.1)

R(G) ⊂ V (G) Set of intermediate nodes in G (see Definition 3.3.1)

P(G) Set of all possible paths in network G

Pm(G) ⊆ P(G) Set of measured paths in network G

D(G) Set of domains in in-vehicle network G

pi ∈ P(G) ith path connecting two non-adjacent nodes vi, vj ∈ E(G)

ej ∈ E(G) jth link in network G

di ∈ D(G) ith domain in network G

Network Tomography

y Vector of end-to-end measurements

ym Vector of end-to-end measurements for paths in Pm(G)

x Vector of link-level measurements

A Measurement matrix

yi ∈ y End-to-end measurement of ithe path pi ∈ Pm(G)

xj ∈ x Link-level metric of jthe link ej ∈ E(G)

r(A) Rank of the measurement matrix A

S(G) ∈ {0, 1} Status of network G, 0 is normal and 1 is anomalous

S(pi) ∈ {0, 1} Status of ith path pi ∈ P(G), 0 is normal and 1 is anomalous

S(ej) ∈ {0, 1} Status of jth link ej ∈ E(G), 0 is normal and 1 is anomalous

Deep Neural Network

β Bias vector

W Matrix of weights

hi Vector of ith hidden layer

f(z) Hidden layer activation function

Chapter 5. Anomaly Detection and Localisation using Network Tomography 109

Table 5.1: Chapter 5 notations and their descriptions.

Notation Description

Deep Neural Network

fo(z) Output function

ŷu Vector of estimated end-to-end measurements for paths in

P(G)\Pm(G)

x̂ Vector of estimated link-level measurements

L Loss function

α Learning rate

Numbers & Cardinalities

γG :=
∣∣∣E(G)∣∣∣ Total number of links in network G

κG :=
∣∣∣Pm(G)∣∣∣ Total number of measured paths in G

api Minimum path-level delay of ith path pi ∈ P(G)

bpi Maximum path-level delay of ith path pi ∈ P(G)

aej Minimum link-level delay of jth link ej ∈ E(G)

bej Maximum link-level delay of jth link ej ∈ E(G)

ci ∈ Z+ Priority level of CAN node vi ∈ E(G)

Definition 5.2.1. A domain di ∈ D(G), i ∈ {1, 2, . . . ,
∣∣∣D(G)∣∣∣} is a subnetwork of in-vehicle

network G that includes at least one intermediate node vi ∈ R(G) and two edge nodes vj , vk ∈

E(G) where vj , vk are connected to vi through links in E(G). Multiple domains can share nodes

in R(G).

The in-vehicle network we focus on in this study is the one with multiple domains intercon-

nected with each other through a central-gateway, as shown in Figure 5.1. In this network, there

are four domains, D(G) = {d1, d2, d3, d4}, that correspond to chassis, telematics, powertrain

and body domains.

Definition 5.2.2. We refer to a non-empty in-vehicle network G ̸= (∅, ∅) with at least two

domains (see Definition 5.2.1), i.e.,
∣∣∣D(G)∣∣∣ ≥ 2, as a central-gateway in-vehicle network.

Chapter 5. Anomaly Detection and Localisation using Network Tomography 110

Gateway

ECU1

ECU2

ECU3 ECU7

ECU8ECU5

ECU4

ECU6

Chassis Telematics Powertrain Body

Figure 5.1: Example of in-vehicle network with four domains, based on central-
gateway architecture.

Given an in-vehicle network G, let S(G) ∈ {0, 1} be the status of such network, then our first

objective is to detect if G is anomalous or normal, that is S(G) = 1 or S(G) = 0, respectively.

To detect the status of G, its components have to be examined. Let S(pi) ∈ {0, 1} be the

status of path pi ∈ P(G), then we say that S(G) = 1 if there is at least one anomalous path pi

with S(pi) = 1. Similarly, we say that S(G) = 0 if the status of all paths in P(G) is normal.

Formally,

S(G) =

0, if S(pi) = 0, ∀pi ∈ P(G)

1, if S(pi) = 1, ∃pi ∈ P(G)
, (5.1)

where the status of each path can be determined by measuring the status of each link it passes

through, i.e., S(ej) ∈ {0, 1}. The status of pi is given by

S(pi) =

0, if S(ej) = 0, ∀ej ∈ pi

1, if S(ej) = 1, ∃ej ∈ pi
, (5.2)

i ∈ {1, . . . ,
∣∣∣P(G)∣∣∣}, j ∈ {1, . . . , γG},

and

S(ej) =

0, if aej ≤ xj ≤ bej

1, if xj < aej or xj > bej

, (5.3)

Chapter 5. Anomaly Detection and Localisation using Network Tomography 111

where aej and bej are threshold values for the minimum and maximum link-level delay, respec-

tively, of link ej ∈ E(G) in the normal network behaviour, and xj is the link-level delay of link

ej ∈ E(G).

Our main goal here is to determine the status of G, S(G), as either normal (S(G) = 0)

or anomalous (S(G) = 1). And in case S(G) = 1, the next goal is to locate the anomalous

link/node within the network. To classify G based on (5.1), which in turn uses (5.2), all paths

and links in P(G) and E(G), respectively, have to be monitored. This monitoring overhead

incurs an extra burden on the network. Therefore, inspired by the network tomography-based

monitoring approach described in previous chapters, in this chapter, we propose to monitor a

limited number of paths in P(G) in order to infer the overall network status S(G). Hence,

reducing the monitoring and measurement overheads.

However, in order to uniquely identify all link-level metrics, the measurement matrix A has

to be of full rank (recall the conditions stated in Remark 3.4.1). To compensate for the rank

deficiency, we leverage the DNN-based approach proposed in the last chapter.

5.3 Network Tomography and DNN-based Anomaly De-

tection and Localisation

The subsequent sections explain three types of tomographic approaches that can be used to

monitor the in-vehicle network. The first (i.e., Delay Network Tomography (DNT)) uses actual

delay measurements, while the second (i.e., Binary Network Tomography (BNT)) uses binary

measurements, and the third (i.e., Deep Neural Network (DNN)-based Tomography) uses DNN

to improve the rank deficiency of the measurement matrix. The first two approaches (i.e., DNT

and BNT) assume that the measurement matrix is full rank, i.e., r(A) = γG, while the third

(i.e., DNN-based tomography) assumes that the measurement matrix is rank-deficient with

r(A) < γG. The main difference between DNT and BNT is that the former uses delay metrics

(see Chapter 2.4.4.1) to measure the network performance, while the latter uses binary status

(see Chapter 2.4.4.3). If the goal is to infer the exact link-level delay then DNT can be used,

whereas BNT can be used if the goal is to identify the link-level status. Both DNT and BNT

can be used to detect and locate the anomalous link, they only differ in the process in which

each one achieves this goal as will be discussed next. DNN-based tomography can be used to

Chapter 5. Anomaly Detection and Localisation using Network Tomography 112

compensate for the rank deficiency of the measurement matrix A, hence it can be used for both

DNT (DNN for DNT) and BNT (DNN for BNT).

5.3.1 Delay Network Tomography (DNT)

This type of tomography uses delay metric to monitor the network and infer the link-level

delays using (3.1). In this type, the operation ⊗ is for matrix multiplication, since the problem

involves actual values for the delay measurements.

The only measurements that need to take place in this kind of network tomography are

the end-to-end delay measurements. The end-to-end delay can be measured using timestamps

[215], [216] as

ydelayi = trecv − ttrans, (5.4)

where trecv is the time when a monitoring message is received and ttrans is the transmission

time of the same message. Then, by solving (3.1) for vector x (assuming r(A) = γG), one can

determine the status of the network. In particular, by comparing the inferred delay value xj of

link ej with the value of normal behaviour using (5.3).

The exact steps of this approach are as follows:

1. Using (5.4), collect path-level delay measurements y for paths in Pm(G).

2. Solve (3.1) to infer the link-level delays x.

3. Using (5.3), determine the status for the inferred value of xj , if S(ej) = 1, then S(G) = 1

and link ej is anomalous link.

5.3.2 Binary Network Tomography (BNT)

A branch of network tomography that is used to infer links’ states from path-level states

is called Binary1 network tomography [146], [147] (see Chapter 2.4.4.3). For binary network

tomograph, ⊗ in (3.1) is for boolean matrix multiplication, i.e., yi = ∨j(aij ∧ xj).
1Sometimes also called Boolean.

Chapter 5. Anomaly Detection and Localisation using Network Tomography 113

This approach only requires knowing the normal delay behaviour of paths in Pm(G) which

then will be used to compare against the obtained measurements using

yi =

0, if api ≤ y

delay
i ≤ bpi

1, if ydelayi < api or ydelayi > bpi

, (5.5)

where api and bpi are threshold values for the minimum and maximum path-level delays of path

pi ∈ Pm(G) in the normal network behaviour, and ydelayi is the measured path-level delay of

pi ∈ Pm(G) obtained by computing (5.4). Then, the status of each link ej ∈ E(G), xj ∈ x,

can be determined following below steps:

1. Using (5.4), collect path-level delay measurements ydelaypi ,∀pi ∈ Pm(G).

2. Determine the path-level status yi,∀pi ∈ Pm(G) using (5.5).

3. If yi = 1,∃pi ∈ Pm(G), then S(G) = 1.

4. If S(G) = 1, then solve (3.1) for x to obtain the status xj ,∀ej ∈ E(G).

5. The anomalous link ej is the one with xj = 1.

5.3.3 Deep Neural Network (DNN)-based Tomography

Recall that the first condition in Remark 3.4.1 requires that κG = γG, usually, in-vehicle

networks do not guarantee the satisfiability of this condition [208], [217]. Also, it is uncertain

that the end-to-end measurements would be linearly independent. To tackle this, we adopt the

deep-learning-based approach using a deep neural network as proposed in the last chapter (see

Chapter 4.4). In particular, this approach assumes that there are a limited number of end-to-

end measurements so that the measurement matrix A is rank-deficient (i.e., r(A) < γG). Then,

the deep neural network can be used to improve such a matrix so that it becomes a full-rank

matrix. The deep neural network shown in Figure 4.4 is used here, where the output of such

network is a set of estimated end-to-end measurements for paths in P(G)\Pm(G). Let such

measurements be ŷu, then based on (2.5), the output is

ŷu = fo(W
T
m+1hm + βm). (5.6)

Chapter 5. Anomaly Detection and Localisation using Network Tomography 114

And the input is the set of end-to-end measurements for measured paths in Pm(G). Let such

measurements be ym, then one can achieve

∣∣∣ym∣∣∣+ ∣∣∣ŷu∣∣∣ = γG, (5.7)

From (5.7), it can be seen that after using DNN to estimate ŷu, the total number of measure-

ments can reach γG. If such measurements’ paths are linearly independent, then they can be

used to infer the link-level delays of the network by solving (3.1).

Remark 5.3.1. In order to use the DNN-based tomography approach, the only condition that

should be satisfied is that the measurements should cover all links in E(G). That is, each link

ej ∈ E(G) should appear at least once in Pm(G).

The condition stated in the above remark is necessary to ensure that all links’ existence is

recognised by the DNN. Otherwise, the DNN cannot estimate the performance for those paths

that traverse uncovered links.

5.3.4 Discussion

It is worth mentioning that in DNT, both the detection phase and localisation phase are

performed in the same step (i.e., step 3), while in BNT, the detection phase occurs before the

localisation phase. In other words, in BNT, only if an anomaly is detected, S(G) = 1, then

the localisation phase would take place by solving (3.1). Unlike BNT, with DNT, the system

has first to solve for x in (3.1) to detect and locate the anomaly. For an in-vehicle network

with its limited capacity and resources, periodically solving (3.1) in DNT adds unnecessary

computational overhead. Thus, BNT is favoured over DNT for this matter as it only needs to

solve (3.1) once an anomaly has been detected. Moreover, the findings, as will be shown later,

of BNT yield more accurate results than DNT.

5.4 Performance Evaluation

This section evaluates the proposed monitoring approaches for detecting and locating anoma-

lies in in-vehicle networks that are based on central-gateway architecture. Note that the ap-

proach can be applied to any architecture with
∣∣∣E(G)∣∣∣ ≥ 3 and

∣∣∣R(G)∣∣∣ ≥ 1. The experiment

Chapter 5. Anomaly Detection and Localisation using Network Tomography 115

settings for the simulated in-vehicle network are first described. Then, the evaluation results of

all three types of tomography approaches are discussed.

5.4.1 Experiment Setup

We used a framework provided by CoRE project [218] based on OMNeT++ simulator [198]

to simulate the in-vehicle network shown in Figure 5.1. Nodes in each subsystem are connected

using a CAN bus, while all the subsystems are connected through a central-gateway. Table 5.2

shows the traffic details used for the normal network behaviour. Note that v1, v5 ∈ E(G) are

edge nodes in the chassis domain, v2, v6 ∈ E(G) in the telematics domain, v3, v7 ∈ E(G) in

the body domain and v4, v8 ∈ E(G) in the powertrain domain. In particular, in Figure 5.1,

ECU1= v1, ECU2= v5, ECU5= v2, ECU6= v6, ECU3= v3, ECU4= v7, ECU7= v4, and

ECU8= v8.

Since nodes v3 and v4 are in different domains, the start transmission times for the traffic

transmitted by such nodes can be the same as they cannot contend to access the CAN bus.

Hence, the same t0 values for these source nodes as shown in Table 5.2. In the new E/E

architectures, communication between different domains becomes common. For instance, ADAS

applications can involve intense interaction between different vehicle domains [43]. Therefore,

some entries shown in Table 5.2 allow cross-traffic communications.

Table 5.2: Normal traffic details used for network shown in Figure 5.1. t0 is
the start time.

Source Destination Priority (ci) t0 (s) Frequency (s) Payload

v1 v2, v3, v4, v5 2 0.50 0.60 8 Bytes

v2 v4, v6 3 0.9 0.05 5 Bytes

v3 v7 4 0.005 0.06 3 Bytes

v4 v8 5 0.005 0.08 8 Bytes

The measured paths in case of DNT and BNT are Pm(G) = {p1, p2, p3, p4}, where p1 =

{e1, e2}, p2 = {e1, e3}, p3 = {e1, e4} and p4 = {e3, e4} (e1 corresponds to the CAN bus in the

chassis domain, e2 in the telematics domain, e3 in the body domain and e4 in the powertrain

domain). Table 5.3 shows the characteristics of the monitoring traffic used to measure paths

Chapter 5. Anomaly Detection and Localisation using Network Tomography 116

in Pm(G). The monitoring traffic has no payload, its header size is 47 bits, and it is sent

periodically every 1 second. As the source node is the same for the first three paths shown in

Table 5.3, the priority level and start of transmission time are the same.

Table 5.3: Monitoring traffic details. t0 is the start time.

Measured path (pi ∈ Pm(G)) Source Destination Priority (ci) t0 (s)

p1 = {e1, e2} v1 v2 20 1

p2 = {e1, e3} v1 v3 20 1

p3 = {e1, e4} v1 v4 20 1

p4 = {e3, e4} v3 v4 21 1.05

5.4.1.1 Anomalous Behaviour (DoS Attack)

As discussed in Chapter 2.3.2 of this thesis, DoS attack is one of the critical attacks that

needs to be properly detected and located in order to minimise any harm it may cause. There-

fore, for the anomalous behaviour, we simulated four DoS attacks, each originating from one

of the four domains. The frequency of the attack is every 0.5 millisecond with a payload size

of 8 bytes. The priority of the DoS attack is 1, i.e., the highest priority among other normal

messages (see Table 5.2). As we assume that only one anomalous link can exist at a time, the

attack in this scenario targets a single CAN bus.

5.4.1.2 DNN Setup

We used a deep neural network structure as depicted in Figure 4.4 with two hidden layers

in addition to the input and output layers. Each hidden layer consists of 2κG − 1 neurons. We

used the ReLU activation function (2.2) for the hidden layers and linear function (4.10) for the

output layer. To avoid model overfitting, early stopping [179] was utilised. For optimisation

during backpropagation, the Adam optimisation function was used [214] to minimise (2.6). The

set of measured paths here is Pm(G) = {p1, p4}, while the DNN estimates the performance for

P(G)\Pm(G) = {p2, p3}. Note that p1 and p4 satisfy the condition in Remark 5.3.1 that all

links in E(G) are covered by these two paths.

Chapter 5. Anomaly Detection and Localisation using Network Tomography 117

We simulated five different scenarios, one for normal behaviour, an attack behaviour tar-

geting the chassis domain, an attack behaviour targeting the telematics domain, an attack

behaviour targeting the powertrain domain, and an attack behaviour targeting the body do-

main. Each simulation lasted for 120 seconds.

5.4.2 Results

In the following, we show the results of the proposed monitoring approaches to detect

and locate anomalies in the simulated in-vehicle network. We note that all approaches could

accurately detect the anomalies. Hence, in the following, we show the results for the localisation

phase.

Let TP be true positive, TN true negative, FP false positive and FN false negative, then

the following metrics are used to evaluate the status xj ∈ x of each link ej ∈ E(G).

• Precision: It measures the ability to correctly classify anomalous links out of all positive

predictions. Precision is calculated as

Precision =
TP

TP + FP
.

• Recall: It measures the ability to correctly classify anomalous links out of all actual

anomalous links. It is calculated as

Recall = TP

TP + FN
.

• F1-measure: It measures the harmonic mean between precision and recall. It is calcu-

lated as

F1-measure = 2× Precision×Recall
Precision + Recall .

• Accuracy: It measures the ability to correctly classify normal and anomalous links.

Accuracy is calculated as

Accuracy =
TP + TN

TP + TN + FP + FN
.

We compare the inference results using DNT, BNT, DNN-based tomography for DNT (DNN

for DNT), and DNN-based tomography for BNT (DNN for BNT). Additionally, we compare

Chapter 5. Anomaly Detection and Localisation using Network Tomography 118

with a baseline solution (BL) that uses threshold values to determine the status of each link

using (5.3).

All the results are shown in Table 5.4 — Table 5.7. It is worth noting that BNT achieved

the best performance for all metrics. It correctly located all the anomalous links, with no false

positives or false negatives. This is due to the fact that BNT can detect if an anomaly occurred

by measuring the deviations from the normal network behaviour. In addition, it uses binary

values to determine the link status, hence accurately locating the anomalous link without the

need to infer the exact link-level delay value. For DNT, it achieved 100% recall for correctly

detecting all anomalous links. However, it sometimes misclassified normal links as anomalous.

This means that it cannot uniquely locate the anomalous link. Compared with the baseline

solution, BNT yielded better results while DNT performed worse (for all metrics except for

recall).

On the other hand, when the DNN-based tomography approach is used, DNN for BNT

performed worse than DNN for DNT. Especially, it could not detect when link e2 is anomalous.

This is clear from the precision, recall, and F1-measure results shown in Table 5.4, Table 5.5,

and Table 5.6, respectively as 00.00%. However, we observed that DNN for BNT can sometimes

correctly classify e2 when it is normal. This is reflected in the accuracy score shown in Table 5.7

as 40.00%. Moreover, it correctly detected anomalies when links other than e2 were anomalous,

but it could not uniquely locate the anomalous link. On the contrary, DNN for DNT could

detect all anomalous links but could not uniquely determine the abnormal one. As compared

with the baseline solution, both DNN-based approaches performed worse than the baseline

solution in all metrics except for recall where DNN for DNT performed better. With DNN,

the measurement results for paths in P(G)\Pm(G) are estimation values and not exact values

like the case with BNT and DNT. This means that the estimated values can deviate from the

actual exact measurements. Therefore, this affects the performance of DNN-based tomography

in that it results in a higher number of false positives and/or false negatives than with BNT

and DNT.

Table 5.4: Results of detecting and locating anomalies in centralised in-vehicle
networks - Precision (%).

Link Baseline DNT BNT DNN for DNT DNN for BNT

e1 100.0 50.00 100.0 20.00 25.00

Chapter 5. Anomaly Detection and Localisation using Network Tomography 119

Table 5.4: Results of detecting and locating anomalies in centralised in-vehicle
networks - Precision (%).

Link Baseline DNT BNT DNN for DNT DNN for BNT

e2 50.00 20.00 100.0 20.00 00.00

e3 100.0 50.00 100.0 20.00 50.00

e4 50.00 33.30 100.0 20.00 50.00

Table 5.5: Results of detecting and locating anomalies in centralised in-vehicle
networks - Recall (%).

Link Baseline DNT BNT DNN for DNT DNN for BNT

e1 100.0 100.0 100.0 100.0 100.0

e2 100.0 100.0 100.0 100.0 00.00

e3 100.0 100.0 100.0 100.0 100.0

e4 100.0 100.0 100.0 100.0 100.0

Table 5.6: Results of detecting and locating anomalies in centralised in-vehicle
networks - F1-measure (%).

Link Baseline DNT BNT DNN for DNT DNN for BNT

e1 100.0 66.70 100.0 33.30 40.00

e2 66.70 33.30 100.0 33.30 00.00

e3 100.0 66.70 100.0 33.30 66.70

e4 66.70 50.00 100.0 33.30 66.70

Chapter 5. Anomaly Detection and Localisation using Network Tomography 120

Table 5.7: Results of detecting and locating anomalies in centralised in-vehicle
networks - Accuracy (%).

Link Baseline DNT BNT DNN for DNT DNN for BNT

e1 100.0 80.00 100.0 20.00 40.00

e2 80.00 20.00 100.0 20.00 40.00

e3 100.0 80.00 100.0 20.00 80.00

e4 80.00 60.00 100.0 20.00 80.00

In addition, Figure 5.2 shows the Receiver Operating Characteristic (ROC) curve results. As

seen, BNT outperforms the other solutions in uniquely and accurately locating the anomalous

links. On the other hand, the performance of DNT is somehow comparable with the DNN-

based solution. For e1 and e3, the baseline solution achieved a 100% true positive rate (see

Figure 5.2(a) and Figure 5.2(c)) as for these two links, the baseline solution could accurately

locate when these links are anomalous. This is also reflected in the previous tables where the

baseline solution achieves 100% in all metrics for links e1, e3 ∈ E(G)). In contrast, for links

e2 and e4 (see Figure 5.2(b) and Figure 5.2(d)), the baseline solution did not perform as well

as for e1 and e3. The DNT approach, on the other hand, achieved the same true positive rate

for both links e1 and e3. Again, this is because the inference results for these two links are the

same as shown in the precision and recall metrics. For link e2, the true positive rate is worse

than for other links. This is also clear from the precision and F1-measure results. The DNN for

BNT approach resulted in a high false positive rate for link e2 as shown in Figure 5.2(b). This

is because DNN for BNT approach could not locate when link e2 is anomalous as discussed

earlier. On the other hand, the DNN for DNT approach achieved similar true positive rates

for all links in G. This has also been shown in the precision and recall results in Table 5.4 and

Table 5.5.

Compared with other monitoring approaches, our network tomography approach with BNT

achieves the best results as shown in Table 5.8, where the performance of the proposed ap-

proaches is compared against the performance reported in [96] for CANTransfer [96] and OTIDS

[79] (see Chapter 2.3.4).

Chapter 5. Anomaly Detection and Localisation using Network Tomography 121

(a) Link metric x1 for e1 ∈ E(G) (b) Link metric x2 for e2 ∈ E(G)

(c) Link metric x3 for e3 ∈ E(G) (d) Link metric x4 for e4 ∈ E(G)

Figure 5.2: ROC curve results for each link-level status xj ∈ x.

Table 5.8: Comparison results of network tomography-based monitoring ap-
proach with CANTransfer [96] and OTIDS [79].

Monitoring approach Precision (%) Recall (%) F1-Measure (%)

Baseline 75.00 100.0 83.35

DNT 38.33 100.0 54.18

BNT 100.0 100.0 100.0

DNN for DNT 20.00 100.0 33.30

DNN for BNT 31.25 75.00 43.35

CANTransfer 94.93 95.57 95.25

OTIDS 99.82 71.68 83.44

Chapter 5. Anomaly Detection and Localisation using Network Tomography 122

5.4.3 Discussion

The above results show that BNT can be used to accurately detect and locate anomalies

within the in-vehicle network. DNT, however, cannot uniquely locate the anomalous links. This

is due to the fact that message priority in CAN affects the performance of DNT. Particularly,

if, for example, two nodes vi and vj with priorities ci = 53 and cj = 52, are transmitting

simultaneously, then node vj will win the arbitration and access the bus before vi because vj

has higher priority than vi, thus the delay of the message transmitted by vi is larger than that

transmitted by vj . As mentioned in [208], this can result in asymmetric behaviour, which can

perturb the actual delay measurements. Hence, DNT cannot accurately locate the anomaly.

On the other hand, BNT does not rely on the delay measurements to locate the anomalies.

Instead, it uses the path-level binary performance which, due to the deterministic behaviour of

in-vehicle networks, can accurately classify paths’ states. Hence, uniquely locates the anomalous

links.

The results of DNN-based tomography solutions show that they are not very reliable, es-

pecially in locating the anomalies. Therefore, it is advisable to use a more reliable solution

such as BNT which, due to its algebraic nature, requires satisfying the topological conditions,

but once the conditions are satisfied, BNT is the best choice to detect and locate anomalies in

in-vehicle networks.

5.5 Summary

This chapter proposed leveraging a network tomography monitoring approach to detect and

locate anomalies in an in-vehicle network with centralised architecture. Moreover, if the mea-

surement matrix does not meet the rank requirements, a deep neural network-based approach

is used to compensate for the rank deficiency. In addition to the baseline solution, two types

of network tomography have been evaluated: BNT and DNT. The evaluation results show

that, by monitoring only a subset of the network, BNT can achieve the best performance in

correctly detecting the anomaly and locating the anomalous link in the network, while DNT

and deep neural network-based tomography approaches did not perform well in locating all the

anomalous links. These results indicate that to accurately detect and locate anomalies, BNT

is the choice to be used. However, the rank requirement of the measurement matrix should be

Chapter 5. Anomaly Detection and Localisation using Network Tomography 123

satisfied to obtain accurate results. Hence, it is important to ensure that the topology is iden-

tifiable (satisfies topological conditions stated in Theorem 3.4.1). The next chapter proposes a

new in-vehicle network topology that supports this property.

One aspect of our approach that can be seen as a limitation is that it cannot detect attacks

that result in behaviour that conforms to the normal performance of the network, as it highly

depends on measuring how the network performance deviates from the normal behaviour. How-

ever, we argue that most anomalies should yield some deviations from the normal behaviour,

otherwise, the network operation would not be affected. In addition, the proposed approach re-

quires that the threshold values for the normal behaviour are accurately determined, otherwise,

the classification results might not be precise. Therefore, it is important to accurately define

the normal behaviour of the in-vehicle network in order to determine the threshold values that

can be used in the anomaly detection and localisation process.

Another limitation of network tomography is that the collection of end-to-end measurements

and computation of link-level metrics require a powerful and central unit to perform these tasks.

Such a unit can be facilitated by the central architecture of the in-vehicle network. For instance,

the central-gateway can be part of a SDN controller that is responsible for inferring the results

and taking actions to mitigate the anomalies effect. This is also discussed in the new proposed

topology presented in the following chapter.

124

6 A New SDN-enabled

In-Vehicle Network Topology

"The wonders of yesterday are today

common occurrences."

Nikola Tesla

6.1 Overview

The promising results of BNT proposed in the last chapter are strong drivers to propose a

new topology. Specifically, algebraic approaches used to monitor the in-vehicle networks often

result in more accurate performance than the DNN counterparts. However, to fully benefit

from algebraic network tomography, the in-vehicle network topology should satisfy certain con-

ditions, as mentioned in Chapter 3 where we briefly shed light on one important challenge

we faced when analysing network identifiability for different E/E in-vehicle network architec-

tures. In particular, the findings showed that the Ethernet-based architecture is not always

identifiable. To this end, this chapter seeks to investigate possible solutions to achieve a fully-

identifiable in-vehicle network topology. Additionally, this chapter aims to propose an overall

monitoring approach that is capable of performing all three tasks that any robust monitoring

approach should support. These tasks are anomaly detection, localisation and mitigation (see

Chapter 2.3.3).

An overall view of the main contributions in this chapter is demonstrated in Figure 6.1.

Chapter 6. A New SDN-enabled In-Vehicle Network Topology 125

Figure 6.1: Overall view of the main contributions in this chapter.

6.2 Introduction and Motivation

As shown in the last chapter, algebraic network tomography can achieve the best results

in detecting and locating anomalies in in-vehicle networks. Typically, to use algebraic network

tomography, the network topology has to be identifiable [20], [117]. In Chapter 3, it has been

shown that not all in-vehicle network architectures satisfy this property. Therefore, in this

chapter, we formalise the topological requirements for in-vehicle networks so that they satisfy

the identifiability conditions. Further, current in-vehicle network architectures were designed to

be fail-safe and not fail-operational, which means they are not robust enough against failures,

especially for autonomous vehicles of level 4 and 5 [21]. For instance, if a failure occurs in the

network due to, for example, an attack, the impact can extend to the whole network. This

can, not only affect the network performance, but it can also endanger lives, if no proper action

is taken to stop the malicious behaviour or at least allow the operation of critical subsystems

Chapter 6. A New SDN-enabled In-Vehicle Network Topology 126

under such behaviour to ensure having a fail-operational mechanism. A solution to this problem

is to have a redundant network that can be activated once the original one is at risk.

The main contribution of this chapter is to propose a novel in-vehicle network topology

that has three important properties. First, it is identifiable based on the topological condition

defined in Chapter 3. Second, it supports redundancy, in which the redundant paths can be used

in case of any occurrences of failure in the network. Third, it is enabled with SDN capabilities.

Furthermore, the topological conditions required to achieve identifiable and redundant in-vehicle

networks are studied. These conditions can be very useful in the design stage of any in-vehicle

network. Additionally, based on the theoretical analysis, a number of algorithms to transform

any existing in-vehicle network topology into an identifiable and redundant topology are devised.

Such algorithms can further assist in the modification of existing in-vehicle networks’ topologies

rather than building the network from scratch, thus, saving time and resources that otherwise

will be costly [21].

The first property of the new topology (identifiable topology) is to ensure that every element

of the network will be monitored using only end-devices, E(G), and without the need to access

internal networking elements. The second (redundant topology) and third (SDN-enabled topol-

ogy) properties play significant roles in facilitating the monitoring of the network that involves

detecting, locating, and mitigating anomalies. For instance, if part of the network fails, e.g.,

due to an attack, the safety-critical traffic can still be transmitted using the redundant paths.

On the other hand, the benefits of enabling the in-vehicle network with SDN capabilities are

numerous. First, SDN can aid in the network tomography-based monitoring process, where

the SDN controller can set the measurement paths and collect their performance metrics from

end devices. In addition, SDN is well-suited for the new E/E architecture (see Chapter 2.2)

that is based on utilising a cross-domain, centralised architecture rather than domain-specific

architecture [48]. So, instead of a large number of ECUs, fewer number of powerful devices will

be adopted by the new E/E architectures. Such powerful devices are called High-Performance

Computing Platforms (HPCPs) [21], [59]. Therefore, by hosting the SDN controller in one of

these platforms, it should be able to perform the necessary network tomography computations.

Moreover, if a failure is detected within the network, the SDN controller can mitigate its effect

by instructing the underlying devices to activate the redundant paths, reroute the normal traffic

and drop the malicious one.

Chapter 6. A New SDN-enabled In-Vehicle Network Topology 127

6.3 Centralised In-Vehicle Networking Architectures

The issue with the decentralised conventional E/E architectures is that they are not robust

enough against malicious behaviours [43]. Centralised architectures, on the other hand, can

help in achieving more secure in-vehicle systems [43], [48]. In addition, they have the benefit

of reduced latency compared with decentralised architectures. This is due to two main rea-

sons: first, the coordination between different ECUs is done in a single ECU in the centralised

architecture, which results in zero control latency. The second reason is the reduced number

of different CAN messages in the centralised architecture because messages that were sent by

different ECUs in the decentralised architecture are now transmitted by the same ECU in the

centralised one. This minimises bus contention, which in turn reduces latency [43]. Other

benefits of centralised architectures include reduced wiring length, reduced data volume and

minimised bus utilisation [43]. Hence, for these benefits, next-generation automotive networks

tend to employ centralised architectures.

6.4 Redundancy in In-Vehicle Networks

To cope with failures, redundancy should be supported for all new E/E architectures [219].

Due to their low weight cost, conventional in-vehicle networks follow star-based topologies [220].

However, such topologies do not support redundancy. To have a redundant network, the network

topology should follow a ring-based topology [22], [23]. Therefore, the topology proposed in

this chapter is also ring-based, in addition to being fully identifiable to allow monitoring of all

network components using only edge devices as monitors.

6.5 Software-Defined Network (SDN)

SDN is a new networking paradigm that supports the shift towards programmable networks

[221] where the control plane is decoupled from the data plane, allowing for more flexible man-

agement. Generally, SDN architecture is divided into three main layers as shown in Figure 6.2.

The first layer includes physical network devices such as routers, gateways, switches, etc. This

layer is called data plane layer. The second layer, called control layer, includes an SDN controller

which is a central entity in the network that can handle the decision-making of the forwarding

devices at the data plane layer. There are multiple SDN controllers available nowadays, e.g.,

Chapter 6. A New SDN-enabled In-Vehicle Network Topology 128

Ryu, OpenDaylight, and POX. The communication between the data plane and control plane

is done through an interface called Southbound Interface (SBI), e.g., OpenFlow protocol [222].

The third layer is the applications layer1. This layer hosts networking applications which can be

used to manage and control the underlying network through the control plane layer. Examples

of such applications include network monitoring [223], [224], network slicing [225], [226], firewall

[227], etc. Communication between the control plane and the application plane can utilise a

Northbound Interface (NBI) such as REST API [228].

Figure 6.2: SDN layered architecture.

There are two types of flows in SDN: proactive and reactive [24]. In proactive flows, the

SDN application presets these flows so that if a packet arrives, the receiving device has the

destination address for such packet set in its flow table. This is also called static flow. On the

contrary, reactive flows respond to the packet by sending it to the SDN controller. The SDN

application then instructs the controller on how to handle such a packet.

Employing SDN in in-vehicle networks has several benefits. First, the SDN paradigm with

the centralisation feature is the perfect fit for the new E/E architectures that are shifting

more towards centralisation [43], [48]. Second, incorporating SDN into the in-vehicle network
1Sometimes it is also called management layer.

Chapter 6. A New SDN-enabled In-Vehicle Network Topology 129

can drastically minimise the number of ECUs in which hardware-specific functions can be

replaced by software components. This provides robustness to design changes where additional

functionalities can easily be added as software applications to the central control unit, e.g., the

SDN controller [43]. In addition, the SDN concept can be combined with network tomography

[169]. For instance, an SDN controller can set up the measurement paths between monitors

more efficiently so that the estimation accuracy is improved as compared with vanilla network

tomography [229]. In addition, the collection of end-to-end measurements can be done by the

controller, which can also perform network tomography-related computations. Moreover, with

its overall view of the underlying network architecture, the SDN controller can assist in the

decision-making process when part of the network experiences any failure. In particular, it can

reroute the traffic to the redundant paths/links.

Recently, researchers started to propose using SDN in vehicular communications [230]–[233].

Our focus in this thesis is on the intra-vehicle networking. Employing SDN in this domain is

still in its infancy with limited contributions. For instance, [50] proposed a flexible SDN-

based architecture for automotive Ethernet networks with the goal of meeting high bandwidth

requirements for multimedia applications while also maintaining the necessary bandwidth for

time-critical applications. Furthermore, SDN enhances the security aspect of the network using

network slicing, which requires the SDN concept to isolate different slices [231]. On the other

hand, authors in [234] discussed various strategies for integrating control flows in automotive

Ethernet networks. They transformed a traditional in-vehicle network into an SDN-controlled

Ethernet network and evaluated these strategies. They found that, with SDN, the attack

surfaces on cars can significantly be reduced.

In this chapter, we combine network tomography and SDN into an in-vehicle network, where

the former is a monitoring mechanism and the latter can significantly aid in the monitoring

process as well as management of the overall network. In addition, we propose a complete

monitoring framework leveraging such a combination.

6.6 Problem Statement and Assumptions

6.6.1 Problem Statement

Table 6.1 describe the notations used throughout this chapter.

Chapter 6. A New SDN-enabled In-Vehicle Network Topology 130

Table 6.1: Chapter 6 notations and their descriptions.

Notation Description

Network & Graph Theory

G = (V ,E) Network represented as graph G

V (G), E(G) Set of vertices (nodes) and edges (links) in network G

E(G) ⊂ V (G) Set of edge nodes in G (see Definition 3.3.1)

R(G) ⊂ V (G) Set of intermediate nodes in G (see Definition 3.3.1)

R3+ ⊆ R(G) Set of internal nodes having node degree larger than three

(see Definition 6.7.2)

R3− ⊆ R(G) Set of internal nodes having node degree less than three

(see Definition 6.7.2)

P(G) Set of all possible paths in network G

Pm(G) ⊆ P(G) Set of measured paths in network G

B(G) Set of bridges in G (see Definition 6.8.2)

I(G), T (G) ⊂ E(G) Set of internal and externallinks in G (see Definition 6.7.1)

W(G) Set of internal nodes in G having node degree larger than

three and are neighbours to more than one internal node

N (vi) Set of neighbours directly connected to node vi ∈ V (G)

NR(vi) ⊆ N (vi) Set of internal neighbours in R(G) directly connected to

node vi ∈ V (G)

G+ {vivj} Adding link vivj to network G

d(vi, vj) Distance between nodes vi, vj ∈ V (G)

C(G) Set of graph components in G

vh(ei), vt(ei) Endpoints (head and tail) of ith link ei ∈ E(G)

gB ⊂ g Subgraph of g that only contains bridges of g, B(g)

d(vi) Degree of node vi ∈ V (G)

pi ∈ P(G) ith path connecting two non-adjacent nodes vi, vj ∈ E(G)

ei ∈ E(G) ith link in network G

vivj ∈ E(G) A link connecting nodes vi and vj

Chapter 6. A New SDN-enabled In-Vehicle Network Topology 131

Table 6.1: Chapter 6 notations and their descriptions.

Notation Description

Network Tomography

y Vector of end-to-end measurements

x Vector of link-level measurements

A Measurement matrix

yi ∈ y End-to-end measurement of path pi ∈ Pm(G)

xi ∈ x Link-level metric of ithe link ei ∈ E(G)

aij ∈ {0, 1} The element of the measurement matrix A at the ith row

(for pi ∈ Pm(G)) and jth column (for ej ∈ E(G))

r(A) Rank of the measurement matrix A

Sd(G) ∈ {false, true} Identifiability status of network G, false means unidentifi-

able and true means identifiable

Sr(G) ∈ {false, true} Redundancy status of network G, false means non-

redundant and true means redundant

Numbers & Cardinalities

ηG, γG Total number of nodes and links in network G

κG :=
∣∣∣Pm(G)∣∣∣ Total number of measured paths in G

λG :=
∣∣∣R(G)∣∣∣ Total number of intermediate nodes in network G

σ :=
∣∣∣R3−

∣∣∣ Total number of internal nodes having node degree less than

three

ζvi :=
∣∣∣NR(vi)

∣∣∣ Total number of internal nodes that are neighbours to vi ∈

R3+

ψ :=
∣∣∣R3+

∣∣∣ Number of internal nodes with node degree larger than

three

φvi := d(vi)− 3 Number of remaining links incident to vi when disconnect-

ing it from three links

ω :=
∣∣∣W∣∣∣ Total number of internal nodes having node degree larger

than three and are neighbours to more than one internal

node

Chapter 6. A New SDN-enabled In-Vehicle Network Topology 132

Table 6.1: Chapter 6 notations and their descriptions.

Notation Description

Numbers & Cardinalities

Nvi,vj Total number of internally disjoint paths between vi, vj ∈

E(G)

Hpi :=
∣∣∣ȳi − yi∣∣∣ Difference between measured and actual performance of ith

path pi ∈ Pm(G)

Hei :=
∣∣∣x̄i − xi∣∣∣ Difference between measured and actual performance of ith

link ei ∈ E(G)

δpi Predefined threshold value for ith path pi ∈ Pm(G)

δei Predefined threshold value for ith link ei ∈ E(G)

χη Number of added nodes in the transformed topology

χγ Number of added links in the transformed topology

Given an in-vehicle network G, the aim is to decide whether it is identifiable or not (i.e.,

Sd(G) ∈ {false, true}). If Sd(G) = false, the goal is to transform G into an identifiable topology

Gi (i.e., G −→ Gi) where Sd(Gi) = true. Similarly, the second aim is to check for the redun-

dancy status of G, Sr(G) ∈ {false, true}. If Sr(G) = false, then the goal is to transform G into

redundant topology Gr (i.e., G −→ Gr) such that Sr(Gr) = true. The ultimate goal is to have

a minimum number of links γGi
, γGr in the transformed topologies Gi and Gr, respectively.

The final topology Gir should satisfy both states of identifiability and redundancy with

Sd(Gir) = true and Sr(Gir) = true.

6.6.2 Assumptions

Throughout this chapter, we adopt the following assumptions:

1. Only internal links can fail (a link ei is internal if its both endpoints are intermediate

nodes, see Definition 6.7.1 for a formal definition).

2. Communication between any node pair vi, vj ∈ E(G) should go through a simple path.

Paths with cycles are not allowed.

Chapter 6. A New SDN-enabled In-Vehicle Network Topology 133

3. All nodes in E(G) can communicate with each other.

4. Links in G are symmetric.

5. The in-vehicle network G is a connected network. The same principle, however, can be

applied to individual disconnected components.

6. Only edge nodes in E(G) can be used as monitors.

6.7 Identifiable Topology

In this section, the focus is on networks forming only acyclic graphs. In a later section

(Chapter 6.8), we discuss network identifiability for in-vehicle networks with cycles.

Recall the identifiability definition for network G in Definition 3.4.2, the aim here is to have

a fully identifiable network topology2.

6.7.1 Topological Conditions

The focus of this chapter is on achieving a topology that is fully identifiable, hence, we

need to study the topological conditions needed to transform an unidentifiable topology into

an identifiable one.

Definition 6.7.1. Given an in-vehicle network G = (V ,E), sets of internal and external links

(I(G) ⊂ E(G) and T (G) ⊆ E(G)) are defined as:

• I(G) = {ei ∈ E(G) : vh(ei) ∈ R(G), vt(ei) ∈ R(G)};

• T (G) = {ei ∈ E(G) : vh(ei) ∈ E(G), vt(ei) ∈ R(G)}

where I(G)∪T (G) = E(G) and I(G)∩T (G) = ∅. We denote a set of internal links that node

vi is incident to by I(vi).

The following lemma states the condition required to have an acyclic-connected graph G.

Lemma 6.7.1. Any connected graph G is acyclic if and only if it has η − 1 links, where

η :=
∣∣∣V (G)

∣∣∣.
Proof. See proof of Corollary 1.5.3 in [196].

2In the remaining of this chapter, we simply use the term identifiable topology to refer to a fully identifiable
topology. For unidentifiable or l-identifiable topology, we simply say unidentifiable topology.

Chapter 6. A New SDN-enabled In-Vehicle Network Topology 134

From the assumption that an in-vehicle network is a connected graph, we derive the following

theorem that is necessary for designing the transformation algorithm.

Theorem 6.7.1. Any acyclic connected graph G with λG ≥ 2 implies that I(vi) ̸= ∅,∀vi ∈

R(G), where λG :=
∣∣∣R(G)∣∣∣.

Proof. For a connected graph G, let assume that I(vi) = ∅,∃vi ∈ R(G). By constructing a

graph with λG = 2 corresponding to v1 ∈ R(G) and v2 ∈ R(G) with I(v1) = ∅, it implies

that I(v2) = ∅, hence γ < η − 1. Then d(v1, v2) = ∞ and by Lemma 6.7.1, the graph is

disconnected, which is a contradiction.

The above theorem indicates that all internal nodes, in any connected acyclic graph with

λG ≥ 2, should be connected to at least one internal link. In addition, the necessary and

sufficient condition for G to be identifiable is defined in Theorem 3.4.1.

sg1

g2

g3

g4

v1

v2

v3

v4

e1

e2

e3

e4

e5

e6

e7

e8

Figure 6.3: Unidentifiable Ethernet-based topology.

The Ethernet-based topology shown in Figure 6.3 is unidentifiable. This is due to the

violation of the topological condition stated in Theorem 3.4.1. According to this theorem, in

order to make the topology identifiable, the node degree for all vi ∈ R(G) should be increased

by at least 1 (the current degree of internal nodes, i.e., gateways g1, g2, . . . , g4, is 2). However,

in automotive networks, where the wiring adds up to the total weight and complexity of the

vehicle, it is desirable to minimise the number of links. The following theorem characterizes

the minimum number of links required to achieve identifiable topology.

Theorem 6.7.2. The minimum number of links that can exist in an identifiable topology G

with λG internal nodes is

2λG + 1. (6.1)

Chapter 6. A New SDN-enabled In-Vehicle Network Topology 135

Proof. From Lemma 6.7.1, we know that we need to have at least η − 1 links in G, otherwise,

the topology would be disconnected. However, Lemma 6.7.1 ensures connectivity, but it does

not ensure identifiability. To ensure having a topology that is identifiable, the condition in

Theorem 3.4.1 has to be satisfied.

Without loss of generality, we can assume a topology with internal nodes only. Because each

vi ∈ R(G) should have at least d(vi) = 3 to satisfy the identifiability condition, 3λG links are

needed, including the λG− 1 links required to have a connected graph. Therefore, the minimum

possible number of links that can exist in identifiable topology is

3λG − (λG − 1) = 2λG + 1.

Note that (6.1) is just the minimum number of links in an identifiable topology. In practice,

the total number of links can be larger. Thus, any network topology with fewer number of links

implies that the topology is unidentifiable.

Based on the above theoretical analysis, we derive a procedure (i.e., Procedure 1) to check

for the topological identifiability condition for any in-vehicle network G.

Procedure 1: isIdentifiable(G)
Output : Sd(G)
Initialize:
Sd(G)← true
R(G)← {vi : d(vi) ≥ 2}

1 foreach vi ∈ R(G) do
2 if d(vi) < 3 then
3 Sd(G)← false
4 break

5 return Sd(G)

Procedure 1 takes a network G and decides whether it is identifiable Sd(G) = true or not

Sd(G) = false.

6.7.2 Transformation into Identifiable Topology

By transforming an unidentifiable topology G into an identifiable topology Gi, only the

number of internal nodes can be preserved, i.e., λG = λGi
, while preserving the number of edge

Chapter 6. A New SDN-enabled In-Vehicle Network Topology 136

nodes is not guaranteed as in some cases we need to add more links, which in turn requires

adding more edge nodes in case the topology is acyclic, hence ηGi
≥ ηG.

Any unidentifiable topology G can be classified as either one of the following two cases:

• Case 1: There is at least one internal node vi ∈ R(G) with d(vi) < 3 while d(vj) = 3,

∀vj ∈ R(G)\vi, where i ̸= j and i, j ∈ {1, . . . , η}.

• Case 2: There is at least one internal node vi ∈ R(G) with d(vi) < 3 while d(vj) ≥ 3,

∀vj ∈ R(G)\vi with at least one node vk ∈ R(G)\vi having d(vk) > 3, where i ̸= j ̸= k

and i, j, k ∈ {1, . . . , η}.

Figure 6.4 shows examples of such cases. Figure 6.4(a) shows an example of case 1 with

d(v5) = 3 while d(v6) = d(v7) = d(v8) = 2 < 3. On the other hand, Figure 6.4(b) shows a

case 2 example with d(v5) = 4 > 3 while d(v6) = d(v7) = d(v8) = d(v9) = 2 < 3.

v5v6

v7

v8

v1

v2

v3

e4

e5
e6

e1

e2

e3

(a) Case 1

v5v6

v7

v8

v9

v1

v2

v3

v4

e5

e6
e7

e8

e1

e2

e3

e4

(b) Case 2

Figure 6.4: Topology examples of case 1 and case 2 topologies.

In the following, we will describe how to transform the unidentifiable topology G into an

identifiable topology Gi considering each one of the above cases. But first, the following two

sets are necessary to define.

Definition 6.7.2. Given an in-vehicle network G with a set of internal nodes R(G) defined as

in Definition 3.3.1, let R3− ⊆ R(G) and R3+ ⊆ R(G) be two sets of internal nodes with node

degree less than and larger than three, respectively. These sets are formally defined as

• R3− = {vi ∈ R(G) : d(vi) < 3};

• R3+ = {vi ∈ R(G) : d(vi) > 3}.

Chapter 6. A New SDN-enabled In-Vehicle Network Topology 137

6.7.2.1 Transforming Case 1 Topologies

Let σ :=
∣∣∣R3−

∣∣∣ be the number of internal nodes with node degree less than three, then, to

transform the topology G to an identifiable topology Gi, for the first case mentioned above, σ

number of links and edge nodes need to be added and connected to the internal nodes with

degree < 3 so that the condition in Theorem 3.4.1 is met. In this case, the total number of

links in the identifiable topology Gi will be

γGi
= γG + σ, (6.2)

where γGi
and γG are the total number of links in Gi and G, respectively. Procedure 2 is used

to transform the topology of this case into an identifiable one.

Procedure 2: Case1(G,R3−)
Output: Gi

1 foreach vi ∈ R3− do
2 E(G)← E(G) ∪ {vj}
3 G← G+ {vivj}
4 Gi ← G
5 return Gi

6.7.2.2 Transforming Case 2 Topologies

Unlike case 1, transforming a topology of case 2 is not straightforward. For topologies of

this case, in order to keep the number of links to a minimum, instead of adding more links,

existing links can be restructured. This is because in case 2 there is at least one internal node vi

with d(vi) > 3. So we can disconnect some links incident to vi and connect them to other nodes

in R3− while maintaining node degree of at least three for all internal nodes, hence satisfying

Theorem 3.4.1. And, if needed, extra links will be added, as described next.

There are, however, certain assertions that need to be taken care of when restructuring the

topology to ensure that the resulting topology is connected and acyclic.

Remark 6.7.1. Let G′ be a resulting topology after restructuring any link in unidentifiable

topology G, then G
′ should satisfy the following conditions

1. it is a connected graph;

2. it has no self-loops;

Chapter 6. A New SDN-enabled In-Vehicle Network Topology 138

3. it is not multigraph; and

4. it has no cycles.

To restructure the unidentifiable topology, two types of links can be used: Partially Restruc-

turable Links (PRLs) and Fully Restructurable Links (FRLs). Figure 6.5 shows an example of

the difference between the two. In the following, we will describe each one of these links and

show how they can be used to transform the topology towards an identifiable one.

v5v6

v7

v8

v9

v1

v2

v3

v4

e5

e6
e7

e8

e1

e2

e3

e4

(a) e5, . . . , e8 are PRLs

v7v8

v9

v10

v11

v12

v1

v2

v3 v4

v5

v6

e5
e6

e7

e8

e10

e1

e2

e3 e4

e9

e11

(b) e5 is FRL

v5v6

v7

v8

v9

v1

v2

v3

v4

e5 e6
e7

e8

e1

e2

e3

e4

(c) Topology after restructuring PRL e5

v7v8

v9

v10

v11

v12

v1

v2

v3 v4

v5

v6

e5

e6

e7

e8

e10

e1

e2

e3 e4

e9

e11

(d) Topology after restructuring FRL e5

Figure 6.5: Difference between PRLs and FRLs.

Transformation using PRLs Figure 6.5(a) and Figure 6.5(c) show examples of PRLs and

how to restructure them. In addition, the following definition formally defines PRL.

Definition 6.7.3. For a node vi ∈ R3+ , a PRL is an internal link, ei ∈ I(G), i ∈ {1, 2, . . . , γ},

that is incident to vi, i ∈ {1, 2, . . . , η} such that it can be disconnected from it while keeping

d(vi) ≥ 3.

Let N (vi) be a set of neighbours directly connected to vi ∈ V (G) and let NR(vi) ⊆ N (vi)

be a set of internal nodes in R(G) directly connected to vi ∈ V (G), then because PRL ei

is an internal link, and according to Definition 6.7.1, its both end-points are internal nodes.

Chapter 6. A New SDN-enabled In-Vehicle Network Topology 139

Hence, the number of PRL incident to vi can be computed by counting the number of internal

nodes that are neighbours to vi, let ζvi :=
∣∣∣NR(vi)

∣∣∣ be this number and let φvi := d(vi)− 3

:= d(vi)− 3 be the number of remaining links incident to node vi ∈ V (G) after disconnecting it

from any three links. For identifiable topologies, φvi ≥ 0, ∀vi ∈ R(G), otherwise if the topology

is unidentifiable, then φvi < 0,∃vi ∈ R(G). Further, let ψ :=
∣∣∣R3+

∣∣∣, then the following theorem

quantifies the maximum number of links that can be restructured in G.

Theorem 6.7.3. For unidentifiable topology G of case 2, if ψ ≥ 1, then the maximum number

of PRLs, γPRL, such that d(vi) ≥ 3, ∀vi ∈ R(G), is

γPRL =

ψ∑
i=1

γPRL(vi), (6.3)

where

γPRL(vi) =

φvi , if ζvi > φvi

ζvi − 1, otherwise
. (6.4)

Proof. Based on Theorem 3.4.1, at least three links should be incident to vi, ∀vi ∈ R(G). Hence,

for ψ = 1, no more than φvi links can be restructured in G. This means that disconnecting φvi

links from vi would leave d(vi) = 3

d(vi)−φvi = d(vi)−
(
d(vi)− 3

)
= 3.

However, disconnecting φvi links can only guarantee d(vi) = 3 but cannot ensure that discon-

necting any of φvi links would keep the topology connected. For this, Theorem 6.7.1 requires

that for each internal node, vi ∈ R(G), it should be incident to at least one link in I(G). There-

fore, such a link cannot be used as PRL. From Theorem 6.7.1, we know that it is necessary for

each vi ∈ R(G) to be connected to at least one link in I(G), therefore, only if ζvi > φvi , we

can restructure all φvi links. Otherwise, if ζvi ≤ φvi , restructuring all φvi links will result in∣∣∣I(vi)∣∣∣ < 1 which violates the connectivity condition in Theorem 6.7.1. Therefore, to ensure

satisfiability of Theorem 6.7.1 in this case, only up to ζvi − 1 can be restructured, which proves

(6.4).

For ψ > 1, the same argument applies for individual nodes in R3+ for which (6.3) is proven.

To use PRLs, it is important to consider the conditions in Remark 6.7.1. Let W(G) :=

Chapter 6. A New SDN-enabled In-Vehicle Network Topology 140

{vi ∈ R3+ : ζvi > 1} be a set of internal nodes having node degree larger than three and

are neighbours to more than one internal node, and let ω :=
∣∣∣W∣∣∣. The following proposition

ensures that G′ is not multigraph and does not have self-loops.

Proposition 6.7.1. To ensure that G′ is a simple graph, restructuring PRL link ei = vivj ,

in unidentifiable topology G, into e
′
i = vjvk, where vi ∈ W, vj ∈ N (vi) and vk ∈ R3− , is the

mapping between ei and e′
i, that is, ei ∈ E(G)→ e

′
i ∈ E(G

′
) such that the following conditions

are met

1. vj ̸= vk,

2. vk /∈ N (vj) (or vj /∈ N (vk)).

Proof. Let G′ be a resulting topology after restructuring any link, then such topology has to

be a simple graph.

Condition 1: assume that vj = vk in G
′ , then connecting vj and vk, which form link e′

i, will

result in self-loop with vh(e
′
i) = vt(e

′
i). This contradicts that G′ is acyclic.

Condition 2: now assume that vk ∈ N (vj) (or vj ∈ N (vk)), then connecting vk and vj will

result in multigraph where vk and vj share two links. Again, this contradicts that G′ is acyclic.

The conditions defined in Proposition 6.7.1 are the necessary conditions to obtain a simple

graph. These conditions, however, do not ensure that the resulting graph is connected. To

ensure connectivity, Theorem 6.7.1 states that I(vi) ̸= ∅,∀vi ∈ R(G). Therefore, ζvi ≥ 1,∀vi ∈

R(G). To restructure any PRL, it is important to ensure that this is satisfied for all internal

nodes in the resulting graph G
′ .

Assuming that W ̸= ∅, and σ ≥ 1, then the following is the sufficient condition to have

acyclic and connected topology satisfying all conditions in Remark 6.7.1.

Proposition 6.7.2. Any PRL ei = vivj in G can be disconnected from its end-point vi ∈ W and

connected to vk ∈ R3− such that the resulting graph G′
= G∗ + vjvk is acyclic and connected iff

vj ∈ c1 and vk ∈ c2 (or vj ∈ c2 and vk ∈ c1) in G∗, where G∗ = G− {vivj} and e1, e2 ∈ C(G∗).

Proof. → Provided that vjvk /∈ E(G), we assume G′
= G∗ + {vjvk}, where G∗ = G− {vivj},

is acyclic and connected graph, and prove that vj ∈ c1 and vk ∈ c2 (or vj ∈ c2 and vk ∈ c1).

We prove this by contradiction, assuming that G′ is not acyclic and not connected.

Chapter 6. A New SDN-enabled In-Vehicle Network Topology 141

We know that the original graph G is acyclic and connected with a number of links γG =

ηG− 1, then for G∗ = G−{vivj}, the number of links decreases by one. Hence, γG∗ < ηG∗ − 1.

Then if vj ∈ c1 and vk ∈ c2 (or if vj ∈ c2 and vk ∈ c1), the resulting graph G
′
= G∗ + {vjvk}

would have γG′ = ηG′ − 1 and according to Lemma 6.7.1, G′ is acyclic and connected graph,

which contradicts the assumption.

← We assume for G∗ that vj ∈ c1 and vk ∈ c2 (or vj ∈ c2 and vk ∈ c1) and prove that

the resulting graph G
′
= G∗ + {vjvk} is an acyclic connected graph. For this, we prove the

contrapositive that if both vj , vk ∈ c1 (or vj , vk ∈ c2), then G∗ + {vjvk} is neither acyclic nor

connected graph.

SinceG is maximally acyclic (see acyclic graph definition in Chapter 2.6), then c1, c2 ∈ C(G∗)

must also be maximally acyclic. Thus, c1 + vjvk (or c2 + vjvk) results in having a cycle in c1

(or c2) while the graph is still disconnected.

Procedure 3 shows how PRLs are used to transform an unidentifiable topology towards an

identifiable one.

While both σ and ω are larger than 0, the procedure starts by looping through elements of

W and checking their neighbours. If a neighbour vj ∈ N (vi) is not an internal node, it will be

skipped (lines 1-6). Otherwise, the link between vi ∈ W and vj ∈ N (vi) will be disconnected

(G− {vivj}), and the resulting two components c1, c2 will be added to C (lines 7-9). If a node

vk ∈ R3− is in a different component than vj , a link between these nodes will be added, then

ω and σ get updated (lines 10-14).

Transformation using FRLs In some cases, a link can be completely disconnected from

both end-points to connect other two end-points. We call such link Fully Restructurable Link

(FRL).

Definition 6.7.4. A FRL is an internal link, ei ∈ I(G), i ∈ {1, 2, . . . , γ}, with ei = vivj such

that both vi ∈ R3+ , i ∈ {1, 2, . . . , η} and vj ∈ R3+ , j ∈ {1, 2, . . . , η}, and the number of internal

links they are incident to is larger than 1, i.e.,
∣∣∣I(vi)∣∣∣ > 1 and

∣∣∣I(vj)∣∣∣ > 1. Therefore, fully

restructurable links can only exist in scenarios where ω > 1.

An example of FRL and how it can be restructured is shown in Figure 6.5(b) and Fig-

ure 6.5(d).

Using FRLs instead of PRLs can speed up the transformation process by reducing σ by a

factor of 2. This is because FRLs can be disconnected from their end-points and used to connect

Chapter 6. A New SDN-enabled In-Vehicle Network Topology 142

Procedure 3: PRL(G, R3− , W)
Output : GPRL
Initialize:
GPRL ← G

σ ←
∣∣∣R3−

∣∣∣
ω ←

∣∣∣W∣∣∣
R(G)← {vi ∈ V (G) : d(vi) ≥ 2}
C ← ∅

1 while σ > 0 and ω > 0 do
2 for i = 1 : ω do
3 vi =W [i]
4 for each vj ∈ N (vi) do
5 if vj /∈ R(G) then
6 continue
7 else
8 G← G− {vivj}
9 C ← C ∪ {c1, c2}

10 for k = 1 : σ do
11 vk = R3− [k]
12 if (vj ∈ c1 and vk ∈ c2) or (vj ∈ c2 and vk ∈ c1) then
13 G← G+ {vjvk}
14 update ω and σ

15 else
16 continue

17 GPRL ← G
18 return GPRL

other two nodes in R3− . However, as in the case of partially restructurable links, reconnecting

fully restructurable links should satisfy the conditions in Remark 6.7.1. Thus, similar to PRLs,

the following conditions are necessary for G′ to be acyclic.

Proposition 6.7.3. To ensure that G′ is a simple graph, restructuring FRL link ei = vivj , in

unidentifiable topology G, into e′
i = vkvm, where vi, vj ∈ W with vj ∈ N (vi) and vk, vm ∈ R3− ,

is the mapping between ei and e
′
i, i.e., ei ∈ E(G) → e

′
i ∈ E(G

′
) such that the following

conditions are met

1. vk ̸= vm,

2. vk /∈ N (vm) (or vm /∈ N (vk)).

Proof. Replacing vk by vj and vm by vk, then the proof is similar to the one for Proposition 6.7.1

Chapter 6. A New SDN-enabled In-Vehicle Network Topology 143

Assuming that ω ≥ 2 and there are at least two nodes in W that are neighbours, then the

following is the sufficient condition to ensure having acyclic and connected topology G′ .

Proposition 6.7.4. Any FRL in unidentifiable topology G can be disconnected from their end-

points, vi ∈ R3+ and vj ∈ R3+ , and reconnected to other end-points vk ∈ R3− and vm ∈ R3− ,

such that the resulting graph G′ is acyclic and connected iff for G−{vivj}, vk ∈ c1 (or vk ∈ c2)

and vm ∈ c2 (or vm ∈ c1), where c1, c2 ∈ C(G∗) and G∗ = G− {vivj}.

Proof. Replacing vk with vj and vm with vk in Proposition 6.7.2 then the proof is similar to

that of Proposition 6.7.2.

Based on the above theoretical analysis, Procedure 4 is derived, illustrating how FRLs can

be used to transform an unidentifiable topology towards an identifiable one. This procedure is

similar to Procedure 3 except that it uses FRL when ω ≥ 2 and σ ≥ 2. It finds two neighbouring

nodes in W and disconnects them, then it checks if two nodes vk, vm ∈ R3− are in different

components, if so a link will be added between them.

Transforming an unidentifiable topology G into an identifiable one, Gi, by restructuring

links using either PRLs or FRLs results in the total number of links γGi
in Gi being

γGi
=

γG, if φvi ≥ σ and φvi < ζvi

γG, if ζvi − 1 ≥ σ and φvi ≥ ζvi

γG + (σ−φvi), if φvi < σ and φvi < ζvi

γG + (σ− ζvi + 1), if ζvi − 1 < σ and φvi ≥ ζvi

. (6.5)

6.7.2.3 Example

Figure 6.6 shows two possibilities of improving the unidentifiable topology shown in Fig-

ure 6.3 by transforming it into an identifiable one. Note that the original topology shown in

Figure 6.3 falls under case 23. Therefore, we can restructure and add links as discussed above.

Figure 6.3 has ω = 1, thus there is no FRL, instead, PRL can be used according to Proce-

dure 3. The resulting topology is shown in Figure 6.6(b). On the other hand, the identifiable

topology shown in Figure 6.6(a) is achieved by simply adding more links to the gateways using

Procedure 2.
3Notice that node d(s) = 4 while the degree of the other internal nodes is 2 < 3.

Chapter 6. A New SDN-enabled In-Vehicle Network Topology 144

Procedure 4: FRL(G, R3− , W)
Output : GFRL
Initialize:
GFRL ← G
C ← ∅
σ ← |R3− |
ω ← |W|

1 while ω ≥ 2 and σ ≥ 2 do
2 for i = 1 : ω do
3 vi = R3+ [i]
4 for j = i+ 1 : ω do
5 vj = R3+ [j]
6 if vj ∈ N (vi) then
7 G← G− {vivj}
8 C ← C ∪ {c1, c2}
9 for k = 1 : σ do

10 vk = R3− [k]
11 for m = k+ 1 : σ do
12 vm = R3− [m]
13 if (vk ∈ c1 and vm ∈ c2) or (vm ∈ c1 and vk ∈ c2) then
14 G← G+ {vkvm}
15 update ω and σ

16 else
17 continue

18 GFRL ← G
19 return GFRL

It is clear that following Procedure 3 is more efficient, in terms of the number of total

links in the resulting topology, than adding more links to the internal nodes that have node

degree of less than three (using Procedure 2). According to (6.5) and (6.2), for this example,

γ+ (σ−φvi) < γ+ σ. In fact, the total number of links in the topology shown in Figure 6.6(b)

(using PRLs) is the minimum number of links. This can be confirmed by applying (6.1).

6.7.2.4 Transformation Algorithm

In this part, we propose a transformation algorithm that takes an unidentifiable in-vehicle

network G and transforms it into an identifiable network Gi by restructuring the existing links,

and/or, if necessary, adding more additional links.

Algorithm 2 starts by checking if ω > 0, if so it checks if both ω ≥ 2 and σ ≥ 2. In this case,

it uses FRL for the transformation using Procedure 4. If the resulting topology is identifiable,

it returns it and stops the algorithm (lines 4-6). Otherwise, it updates the values for ω and

Chapter 6. A New SDN-enabled In-Vehicle Network Topology 145

sg1

g2

g3

g4

v1

v2

v3

v4

v5

v6

v7

v8

e1

e2
e3

e4

c1

c2

c3

c4

c5

c6

c7

c8

(a) Achieving identifiable topology using Procedure 2, γ = 12

sg1

g2

g3

g4

v1

v2

v3

v4

v5

v6

v7

e1
e2

e3

e4

c1

c2

c3

c4

c5

c6

c7

(b) Achieving identifiable topology using Procedure 3, γ = 11

Figure 6.6: Identifiable topology versions of Ethernet-based topology shown
in Figure 6.3. Red link and nodes represent added nodes and links, blue link

represents a restructured link.

σ, and uses the transformation with PRL using Procedure 3 (line 7-9). Again, it checks if the

resulting topology is identifiable or not. If it is unidentifiable, it uses the transformation for

case 1 using Procedure 2 after updating ω and σ (lines 13-16). If ω = σ = 1, then the algorithm

uses Procedure 3, checks for identifiability, and uses Procedure 2 if the resulting topology is

unidentifiable (line 17-28).

In general, an unidentifiable topology is not guaranteed to have FRL for which Procedure 4

might be used, in this case, PRL, if existed, will be used (Procedure 3). Otherwise, the problem

will be reduced to case 1 transformation (Procedure 2). A flowchart summary of how the overall

transformation algorithm works is depicted in Figure 6.7. Note that Procedure 2, Procedure 3,

and Procedure 4 will not be used in case Sd(G) = true, in other words, if the network topology

G is already identifiable. An example of this is the central-gateway architecture shown in

Figure 5.1.

Chapter 6. A New SDN-enabled In-Vehicle Network Topology 146

Algorithm 2: Transform to identifiable topology
Inputs : G
Output : Gi
Initialize:
R3− ← {vi ∈ R(G) : d(vi) < 3}
R3+ ← {vi ∈ R(G) : d(vi) > 3}
W ← {vi ∈ R3+ : ζvi > 1}
ω ← |W|
σ ← |R3− |

1 if ω > 0 then
2 if ω ≥ 2 and σ ≥ 2 then
3 GFRL ← FRL(G,R3− ,W)
4 if Sd(GFRL) = true then
5 Gi ← GFRL
6 go to line 28
7 else
8 update ω and σ
9 GPRL ← PRL(GFRL,R3− ,W)

10 if Sd(GPRL) = true then
11 Gi ← GPRL
12 go to line 28
13 else
14 update ω and σ
15 Gi ← Case1(GPRL,R3−)
16 go to line 28

17 else
18 GPRL ← PRL(G,R3− ,W)
19 if Sd(GPRL) = true then
20 Gi ← GPRL
21 go to line 28
22 else
23 update R3−

24 update W
25 Gi ← Case1(GPRL,R3−)
26 go to line 28

27 Gi ← Case1(G,R3−)
28 return Gi

Complexity Analysis The time complexity of checking for identifiability condition in Pro-

cedure 1 is O(ηG + λG) where ηG is the total number of nodes and λG is the total number of

internal nodes in G. Procedure 2 takes O(σ), while restructuring links takes O(ω · d(vi) · σ)

using PRL (Procedure 3) and O(ω2 ·σ2) using FRL (Procedure 4), where ω := |W| and vi ∈ W.

Thus, the complexity of the overall transformation algorithm is

Chapter 6. A New SDN-enabled In-Vehicle Network Topology 147

Complexity =

O(ηG + λG + ω2σ2), if ω ≥ 2 and σ ≥ 2

O(ω · d(vi) + η+λG
σ), if ω = 1 or σ = 1

O(σ), if ω = 0

. (6.6)

From (6.6), it is clear that the worst case scenario is when ω,σ ≥ 2, in which the algorithm

takes O(ηG+λG+ω2σ2), which is a quadratic time complexity, whereas in the other two cases,

it takes linear time complexity.

Start

Input:G

Use Procedure 1

Output: Sd(G)

Sd(G) = true? Gi = G End

ω > 0?

ω ≥ 2 and σ ≥ 2?

Use Procedure 2

Use Procedure 3

Use Procedure 4

Output: G′

yes

no
no

yes

no

yes

Figure 6.7: A flowchart illustrating the transformation algorithm of unidenti-
fiable topology G into identifiable topology Gi.

Chapter 6. A New SDN-enabled In-Vehicle Network Topology 148

Note that up to this point, this work is dealing with acyclic graphs. In the following, we

need to have redundancy to ensure proper functionality of the vehicle under failure. As we will

see, the topologies discussed next contain cycles.

6.8 Redundant Topology

The identifiable topologies discussed earlier do not have any redundant paths. In other

words, there is only one single path between any communicating nodes in the network. This

is particularly crucial for mission-critical traffic, which means that if there is any failure in

the network, the network traffic might be disrupted. For example, suppose there is safety-

related traffic between v1 and v2 in Figure 6.6(b), and the Ethernet link e1 has failed. Because

there are no other paths between v1 and v2, failure of link e1 can result in disconnecting the

communication between v1 and v2. This might cause serious issues in the network, which in

turn could endanger lives. To tackle this, in-vehicle networks should have redundant paths that

can be used in case there is any failure in the network. In this section, we further investigate

topology identifiability and redundancy support at the same time. First, we address redundancy,

then revisit identifiability under redundant topologies.

Adding a redundant link for each link in the topology is not efficient and can increase the

weight cost and complexity of the vehicle. Therefore, like in the identifiability case, we focus on

adding the minimum possible number of links while ensuring there are at least two internally

disjoint paths (see definition of internally disjoint paths in Chapter 2.6) between any two edge

nodes vi, vj ∈ E(G). In other words, the goal is to have Nvi,vj ≥ 2 internally disjoint paths

while keeping γ to a minimum, where Nvi,vj represents the total number of internally disjoint

paths between vi and vj .

Let pi(vi, vj) ∈ P(G) be the ith path connecting edge nodes vi, vj ∈ E(G), then the following

defines redundancy for in-vehicle network G.

Definition 6.8.1. An in-vehicle network G is redundant, if for any pair of edge nodes vi, vj ∈

E(G) such thatN (vi)∩N (vj) = ∅, there are at least two internally disjoint paths between them.

Formally, we say that G is redundant if ∀vi, vj ∈ E(G) : N (vi)∩N (vj) = ∅ there are Nvi,vj ≥ 2

paths between vi and vj : p1(vi, vj) and p2(vi, vj), such that p1(vi, vj) ∩ p2(vi, vj) = {ek, el},

where ek, el ∈ T (G).

Based on our assumption that only internal links can fail, we claim the following.

Chapter 6. A New SDN-enabled In-Vehicle Network Topology 149

Claim 6.8.1. For communicating nodes vi, vj ∈ E(G) in an in-vehicle network G, if N (vi) ∩

N (vj) ̸= ∅, then even though there can be Nvi,vj ≥ 2, it is sufficient and more efficient to use

one path that goes through links only in T (G).

This claim indicates that if there is common internal node(s) connected to both vi ∈ E(G)

and vj ∈ E(G), then vi and vj are only incident to links in T (G) (external links). Therefore, the

communication between vi and vj can go through these external links without passing through

any internal links in I(G). In fact, paths that pass through links in T (G) only are shorter than

those that also pass through I(G) links. Hence, because we assume that links in T (G) do not

fail, the path between vi and vj does not need another redundant path. As a result, although

there still can be two or more paths between vi and vj , having one path between such node-pair

would suffice.

6.8.1 Topological Conditions

In order for an in-vehicle network G to be redundant, the following theorem states the

necessary topological conditions.

Theorem 6.8.1 (necessary conditions). An in-vehicle network G is redundant if the following

are satisfied

1. number of internal nodes in G is at least three, i.e., λG ≥ 3;

2. each internal node in G is incident to at least two internal links, i.e., |I(vi)| ≥ 2, ∀vi ∈

R(G).

Proof. We prove the necessity of both conditions by contradiction.

For the first condition, assume that G is redundant (Nvi,vj ≥ 2,∀vi, vj ∈ E(G)) while having

λG < 3 internal nodes. There are two cases for the values of λG: λG = 2 or λG = 1.

For λG = 2, let R(G) = {vi, vj} and vk, vm ∈ E(G) where vk ∈ N (vi) and vm ∈ N (vj).

Then, according to Theorem 6.7.1, vi and vj must be connected. Hence, only when G allows

multigraph (see definition of multigraph in Chapter 2.6) then Nvk,vm ≥ 2. However, G has to

be a simple graph, therefore, Nvk,vm = 1,∀vk, vm ∈ E(G) which contradicts the assumption

that it is redundant.

For the second case when λG = 1, let R(G) = {vi} and E(G) = {vj , vk} where vj , vk ∈

N (vi). In this case, T (G) = E(G) where all links are external links, then Nvj ,vk
= 1,∀vj , vk ∈

E(G). This, again, contradicts that G is redundant.

Chapter 6. A New SDN-enabled In-Vehicle Network Topology 150

For the second condition, assume that G is redundant and
∣∣∣I(vi)∣∣∣ < 2,∃vi ∈ R(G). Accord-

ing to the first condition, λG ≥ 3, then for λG = 3, let R(G) = {v1, v2, v3} where
∣∣∣I(v1)

∣∣∣ = 2

and
∣∣∣I(v2)

∣∣∣ = ∣∣∣I(v3)
∣∣∣ = 1. In addition, let E(G) = {v4, v5, v6} with v4 ∈ N (v1), v5 ∈ N (v2)

and v6 ∈ N (v3). Then, Nvj ,vk
= 1,∀vj , vk ∈ E(G) which contradicts that G is redundant.

Let g ⊂ G be an internal subgraph of an in-vehicle network G, that is g = (V (g),E(g)),

such that V (g) = R(G) and E(g) = I(G), where R(G) and I(G) are the sets of internal nodes

and internal links in G, respectively. Then the following theorem states the sufficient condition

for G to be redundant.

Theorem 6.8.2 (sufficient condition). An in-vehicle network G is redundant iff g ⊂ G is

k-edge-connected with k ≥ 2.

Proof. We prove that a redundant topology G implies that g ⊂ G is k-edge-connected with at

least k ≥ 2 and vice versa.

→ Let us assume that G is redundant. Then according to Definition 6.8.1, for any node-pair

vi, vj ∈ E(G) there are at least two internally disjoint paths between them. Let such paths

be p1(vi, vj) and p2(vi, vj), then by definition, only internal links in such paths are disjoint

while the external links are the same in both paths. Since all nodes in g are internal nodes

in G, V (g) = R(G), then there are at least two disjoint paths (p1(vi, vj) and p2(vi, vj) where

p1∩p2 = ∅) between any node-pair vi, vj ∈ V (g). Therefore, removing any link ei ∈ E(g), keeps

the internal graph g connected, hence by definition of k-edge-connectivity (see Chapter 2.6), g

is at least 2-edge-connected.

← Assume g ⊂ G is 2-edge-connected, then there are at least two disjoint paths (p1(vi, vj)

and p2(vi, vj) where p1 ∩ p2 = ∅) between any node-pair vi, vj ∈ V (g). Because V (g) = R(G),

there are at least two disjoint internal paths between any node-pair in E(G). By Definition 6.8.1,

G in this case is redundant.

6.8.2 Transformation into Redundant Topology

Based on the aforementioned conditions, we propose a transformation algorithm which con-

verts an existing in-vehicle network topology G that is non-redundant into a redundant topology

Gr. To achieve this, the following definition is needed.

Chapter 6. A New SDN-enabled In-Vehicle Network Topology 151

Definition 6.8.2. A bridge4 ei ∈ E(G), i ∈ {1, 2, . . . , γ} is a link in a connected network G such

that its removal, E(G)− {ei}, results in having more than one component, i.e., disconnected

topology with
∣∣∣C(G)∣∣∣ = 2 (see graph connectivity definition in Chapter 2.6).

Let B(G) be the set of bridges in G, then Theorem 6.8.2 can be translated into a condition

of not having bridges in the internal graph g ⊂ G. In other words, B(g) = ∅.

Theorem 6.8.3. A k-edge-connected subgraph g ⊂ G with k ≥ 2 implies that B(g) = ∅.

Proof. We prove the contrapositive that k-edge-connected subgraph g ⊂ G with k < 2 implies

that B(g) ̸= ∅.

Assuming g ⊂ G is 1-edge-connected, then by definition of k-edge-connectivity (see Chap-

ter 2.6), removing some link ei ∈ E(g) results in g being disconnected. Hence, by Defini-

tion 6.8.2, ei ∈ B(g). Therefore, B(g) ̸= ∅.

The above theorem provides the basis in which we can check for redundancy of a given

topology G as shown in Procedure 6. Recall that the condition in Theorem 6.8.3 is to be

satisfied for the internal network g ⊂ G, Procedure 5 is then needed to extract g out of G,

which then will be used as input to Procedure 6.

Procedure 5: extractInternalGraph(G)
Output : g
Initialize:
g ← (∅, ∅)
V (g)← ∅
E(g)← ∅
R(G)← {vi ∈ V (G) : d(vi) ≥ 2}
I(G)← {ei ∈ E(G) : vh(ei), vt(ei) ∈ R(G)}

1 foreach vi ∈ R(G) do
2 V (g)← V (g) ∪ {vi}
3 foreach ei ∈ I(G) do
4 E(g)← E(g) ∪ {ei}
5 g ← (V (g),E(g))
6 return g

Finding bridges can be done using the algorithm in [235], where it takes O(λG +
∣∣∣I(G)∣∣∣),

and it can be used to check for redundancy condition in Procedure 6. However, we use a more

efficient one that is based on Definition 6.8.2 and takes only O(
∣∣∣I(G)∣∣∣) (see Appendix C.2).

4Sometimes also called cut-edge.

Chapter 6. A New SDN-enabled In-Vehicle Network Topology 152

Procedure 6: isRedundant(G)
Output : Sr(G)
Initialize:
g ← extractInternalGraph(G)
B(g)← findBridges(g)

1 if B(g) ̸= ∅ then
2 Sr(G)← false

3 else
4 Sr(G)← true

5 return Sr(G)

6.8.2.1 Transformation Algorithm

Let E(g) := {vi ∈ V (g) : d(vi)g = 1} (where d(vi)g is degree of vi in the extracted subgraph

g ⊂ G) be the set of leaves in g, and let gB ⊂ g be a subgraph of g that only contains bridges of

g. Then the transformation algorithm connects such leaves if
∣∣∣E(g)∣∣∣ > 1. In particular, if

∣∣∣E(g)∣∣∣
is even, it will connect nodes in E(g) together until Sr(G) = true. Otherwise, if

∣∣∣E(g)∣∣∣ is odd, it

will connect
∣∣∣E(g)∣∣∣− 1 nodes from E(g) together while the last node in E(g) will be connected

to any internal node in V (g). This transformation is illustrated in Algorithm 3. If there is

only one bridge, the algorithm connects any of its end-points to any internal node that satisfies

the conditions in Proposition 6.7.1, then Gr will be returned as redundant topology (line 1-7).

Otherwise, all leaves of gB will be stored in E(g) (line 8-10). Next, for each two leaves, the

algorithm connects them together, provided that they satisfy the required conditions, then if

the topology is redundant, it will be returned and the algorithm will stop, or else it will reinvoke

itself (lines 11-21).

Complexity Analysis Extracting internal subgraph g ⊂ G using Procedure 5 takes O(ηG+

γG + λG + |I(G)|). The complexity of finding bridges in g is O(
∣∣∣I(G)∣∣∣). Checking for redun-

dancy condition using Procedure 6 takes O(ηG + λG +
∣∣∣I(G)∣∣∣). Therefore, the complexity of

the overall transformation algorithm is

Complexity =

O(ηG + γG + λG +

∣∣∣I(G)∣∣∣+ λG

∣∣∣V (gB)
∣∣∣), if

∣∣∣B(G)∣∣∣ = 1

O(
∣∣∣B(G)∣∣∣(ηG + γG + λG +

∣∣∣E(g)∣∣∣2 + ∣∣∣V (gB)
∣∣∣)), if

∣∣∣B(G)∣∣∣ > 1
. (6.7)

The worst case scenario according to (6.7) is, thus, when
∣∣∣B(G)∣∣∣ > 1 for which Algorithm 3

takes O(
∣∣∣B(G)∣∣∣(ηG + λG +

∣∣∣E(g)∣∣∣2 + ∣∣∣V (gB)
∣∣∣)).

Chapter 6. A New SDN-enabled In-Vehicle Network Topology 153

Algorithm 3: Transform to redundant topology
Inputs : G
Output : Gr
Initialize:
g ← extractInternalGraph(G)
B(G)← findBridges(g)
gB ← bridges graph of g
E(g)← ∅

1 if
∣∣∣B(G)∣∣∣ = 1 then

2 foreach vi ∈ V (g) do
3 for vj ∈ V (gB) do
4 if vi ̸= vj and vi /∈ N (vj) then
5 G← G+ {vivj}
6 Gr ← G
7 go to line 22

8 for vj ∈ V (gB) do
9 if d(vj)gB = 1 then

10 E(g)← E(g) ∪ {vj}

11 for i = 1 :
∣∣∣E(g)∣∣∣ do

12 vi ← E(g)[i]
13 for j = i+ 1 :

∣∣∣E(g)∣∣∣ do
14 vj ← E(g)[j]
15 if vi /∈ N (vj) then
16 G← G+ {vivj}
17 if Sr(G) = true then
18 Gr ← G
19 go to line 22
20 else
21 go to line 1

22 return Gr

6.8.3 Revisiting Identifiability for Redundant Topology

Based on our assumption that only edge nodes can monitor the in-vehicle network, satisfying

the above conditions only ensures redundancy but does not guarantee an identifiable topology.

Given that only nodes in E(G) can act as monitors, like in the identifiability case, the topological

condition in Theorem 3.4.1 has to be satisfied.

It is worth noting that [19] and [20] have studied the topological conditions for graphs with

cycles to achieve identifiability under the assumption that monitors can be placed in internal

nodes (nodes inR(G)). However, the requirements for in-vehicle networks are different in which

only nodes in E(G) can be used as monitors, hence the conditions defined in [19] and [20] can

Chapter 6. A New SDN-enabled In-Vehicle Network Topology 154

not be applied in in-vehicle network scenarios.

Generally, if the topology is unidentifiable, there are two methods to do the transformation

in terms of which order to follow: Redundancy then Identifiability Transformation (RIT) or

Identifiability then Redundancy Transformation (IRT). The following describes how each one

of these methods will be used to transform the unidentifiable and non-redundant topology into

an identifiable and redundant one.

6.8.3.1 Redundancy then Identifiability Transformation (RIT)

In this method, the topology will be checked for redundancy first using Procedure 6. If

Sr(G) = false, then Algorithm 3 is used to transform G into redundant topology Gr. Next,

Procedure 1 will be used to check if Gr is identifiable or not (Sd(Gr) = true or Sd(Gr) = false),

if Sd(Gr) = false, then Algorithm 2 will be used to transform Gr to identifiable topology Gir

as discussed in Chapter 6.7.2.

6.8.3.2 Identifiability then Redundancy Transformation (IRT)

Here, Procedure 1 will be used first to check if G is identifiable or not. If Sd(G) = false,

then G will be transformed into identifiable topology Gi using Algorithm 2. Then, it will be

converted into redundant topology Gir using Algorithm 3.

Having these two methods, the natural question then is which one is more efficient. By

efficient here we mean that results in a minimum number of added links. The next proposition

clears this doubt.

Proposition 6.8.1. Given an in-vehicle network topology G that is unidentifiable and non-

redundant, if ∃vi ∈ E(g), with d(vi)G < 3, then using RIT yields fewer number of links than

IRT.

Proof. Transforming a non-redundant topology G into redundant topology Gr results in total

number of links γGr as

γGr =

γG + 1, if

∣∣∣B(G)∣∣∣ = 1

γG +
⌊∣∣∣E(g)∣∣∣

2

⌋
, if

∣∣∣B(G)∣∣∣ > 1
. (6.8)

Chapter 6. A New SDN-enabled In-Vehicle Network Topology 155

So only one link will be added if
∣∣∣B(G)∣∣∣ = 1 and

⌊∣∣∣E(g)∣∣∣
2

⌋
otherwise. Assuming ω = 0, then

Procedure 2 will be used to transform the topology into an identifiable one, which results in

adding σ links.

If RIT is used, then G will be first transformed into redundant topology Gr which results

in adding
⌊∣∣∣E(g)∣∣∣

2

⌋
links (or one link if

∣∣∣B(G)∣∣∣ = 1). Since there is at least one node vi ∈ V (g)

with d(vi) < 3 and by definition all internal nodes in R(G) have a degree of at least two, then

d(vi) = 2. If vi ∈ E(g), transforming into redundant topology then will increase the degree of

this node, which in turn reduces σ by at least one. Then transforming into identifiable topology

will add σ− 1 links at maximum. By (6.8), in the worst-case scenario, the total number of links

in the transformed topology using RIT is

γRITGir
=

γG + σ, if |B(G)| = 1

γG +
⌊∣∣∣E(g)∣∣∣

2

⌋
+ σ− 1, if

∣∣∣B(G)∣∣∣ > 1
. (6.9)

On the contrary, if IRT is used, then G will be first transformed into identifiable topology

Gi which results in adding σ links (assuming worst case scenario where ω = 0). Next, it will

be transformed into redundant topology which, again, adds one link if
∣∣∣B(G)∣∣∣ = 1 and

⌊∣∣∣E(g)∣∣∣
2

⌋
otherwise. Thus, the total number of links in the transformed topology using IRT is

γIRTGir
=

γG + σ+ 1, if |B(G)| = 1

γG +
⌊∣∣∣E(g)∣∣∣

2

⌋
+ σ, if

∣∣∣B(G)∣∣∣ > 1
. (6.10)

From (6.9) and (6.10) it is clear that

γG + σ < γG + σ+ 1, (6.11)

and

γG +
⌊∣∣∣E(g)∣∣∣

2

⌋
+ σ− 1 < γG +

⌊∣∣∣E(g)∣∣∣
2

⌋
+ σ. (6.12)

Hence, using RIT results in fewer number of links than IRT.

Chapter 6. A New SDN-enabled In-Vehicle Network Topology 156

sg1

g2

g3

g4

v1

v2

v3

v4

e1

e2
e3

e4

e5

e6

e7

e8

e9

e10

(a) Topology achieved using RIT, γRIT
Gir

= 10

sg1

g2

g3

g4

v1

v2

v3

v4

v5

v6

v7

e1
e2

e3

e4

e5

e6

e7

e8

e9

e10

e11

e12

e13

(b) Topology achieved using IRT, γIRT
Gir

= 13

Figure 6.8: Redundant and identifiable topologies. Blue represents restruc-
tured link while red represent added links and nodes.

6.8.3.3 Example

Consider the original topology shown in Figure 6.3. This topology is unidentifiable and

non-redundant with E(g) = {g1, g2, g3, g4} and d(g1)G = d(g2)G = d(g3)G = d(g4)G = 2 < 3.

Figure 6.8(a) and Figure 6.8(b) show two transformed versions of this topology. Both versions

are identifiable and redundant. Figure 6.8(a) is achieved using RIT, while Figure 6.8(b) is

achieved using IRT. As shown, RIT results in identifiable and redundant topology Gir with

γRITGir
= 10, while IRT results in more links with γIRTGir

= 13. Thus, Proposition 6.8.1 is true for

this example.

Chapter 6. A New SDN-enabled In-Vehicle Network Topology 157

6.9 SDN-enabled Topology

Incorporating SDN into the in-vehicle network can significantly facilitate the network tomography-

based monitoring approach. For instance, in the new topology with redundancy feature, there

can be multiple paths between edge nodes in E(G). SDN controller can coordinate these paths,

in which it can distinguish between the path used in normal operation from the path that has

to be activated only in case there is a failure in the original one. In addition, the SDN con-

troller (which is a powerful unit, e.g., HPCP) can carry all the heavy work incurred by network

tomography computations. For example, it can collect the end-to-end measurements from edge

nodes, perform network tomography to infer the link-level performance, and then feedback to

the underlying network to, e.g., deactivate the abnormal link and use the redundant one instead.

Not only that network tomography can benefit from the advantages of SDN, but the opposite

is also true. In fact, with network tomography being adopted as a monitoring approach for

SDN-enabled networks, such networks can take advantage of the reduction in computational

and monitoring traffic overhead that network tomography offers [169].

Given that the in-vehicle network topology is identifiable and redundant, we can discuss

how to leverage network tomography and SDN to monitor the network. In the following, we

show the final topology incorporating SDN. In addition, we propose a monitoring framework

that leverages network tomography to detect, locate and mitigate anomalies in the network.

Hence, achieving a complete monitoring system.

6.9.1 Proposed In-Vehicle Network Topology

Figure 6.9 shows an example of the final proposed topology that is SDN-enabled and at the

same time, it supports both identifiability and redundancy properties as discussed in Chapter 6.7

and Chapter 6.8, respectively. In particular, d(vi) ≥ 3,∀vi ∈ R(G) (identifiability condition

is satisfied) and Nvi,vj ≥ 2,∀vi, vj ∈ E(G) (topology is redundant). In addition, the proposed

topology can support the new E/E architectures: either domain- or zonal-based architectures

with domain/zonal controllers (see Chapter 2.2). Note that the domain/zonal controllers should

support gateway as well as switching functionalities.

Chapter 6. A New SDN-enabled In-Vehicle Network Topology 158

Figure 6.9: An example of the proposed SDN-enabled topology that is also
identifiable and redundant.

6.9.2 Proposed Monitoring Framework

The proposed monitoring framework that takes advantage of the SDN paradigm and network

tomography is shown in Figure 6.10. The main components reside at the application layer, which

consists of Monitoring Application and NT (Network Tomography) Module. Note that other

network management and monitoring applications can also be deployed in this layer.

The monitoring framework shown in Figure 6.10 follows three main steps: anomaly detection,

anomaly localisation and anomaly mitigation. Each is explained in the following.

6.9.2.1 Anomaly Detection

Any anomaly in the in-vehicle network can be detected as follows:

• Edge nodes in E(G) measure the monitoring traffic along the measurement paths in

Pm(G). For example, they can measure the end-to-end delay, end-to-end packet loss,

etc.

• Each edge node vi ∈ E(G), i ∈ {1, 2, . . . ,
∣∣∣E(G)∣∣∣} compares the end-to-end measurement

yi, i ∈ {1, 2, . . . ,κG} for the monitored path pi ∈ Pm(G), i ∈ {1, 2, . . . ,
∣∣∣P(G)∣∣∣} with the

normal behaviour (predetermined) value ȳi.

• If Hpi > δpi , where Hpi :=
∣∣∣ȳi − yi∣∣∣ and δpi is a predefined threshold value, then vi

informs the monitoring application about an anomaly it detected in pi (step 1 as shown

in Figure 6.10).

Chapter 6. A New SDN-enabled In-Vehicle Network Topology 159

6.9.2.2 Anomaly Localisation

While Hpi > δpi ,∃pi ∈ Pm(G), locating the anomalous link can be achieved as follows:

• The monitoring application activates the NT module (step 2 in Figure 6.10).

• The NT module activates the NT agents at all nodes in E(G) (step 3 in Figure 6.10).

• Nodes in E(G) send their latest end-to-end measurements y to the NT module (step 4 in

Figure 6.10).

• After solving (3.1), the NT module informs the monitoring application that ei is the

anomalous link (step 5 in Figure 6.10) such that Hei > δei where Hei :=
∣∣∣x̄i − xi∣∣∣, x̄i is

the normal behaviour (predetermined) value for link ei ∈ E(G), and δei is a predefined

threshold value. Note that if binary network tomography is used, the anomalous link ei

is the one with xi = 1.

Figure 6.10: Proposed monitoring framework with SDN and network tomog-
raphy. NT: Network Tomography.

Chapter 6. A New SDN-enabled In-Vehicle Network Topology 160

6.9.2.3 Anomaly Mitigation

Once the anomalous link has been located using the anomaly localisation step, the mitigation

step takes place as follows:

• The monitoring application instructs the SDN controller to mitigate the anomaly effect

by specifying the anomalous link (step 6 in Figure 6.10).

• In turn, the SDN controller performs the anomaly mitigation by instructing the underlying

network nodes to update their flow tables to use the redundant path(s) pj ∈ P(G) such

that ei /∈ pj where ei is the anomalous link, (step 7 in Figure 6.10).

6.10 Performance Evaluation

In this section, we evaluate our transformation algorithms for both identifiability and re-

dundancy. We first evaluate Procedure 3 that transforms a given unidentifiable topology into

an identifiable one using PRLs. Then compare it with Procedure 4, where FRLs (if existed) can

be used. Next, we evaluate Algorithm 3 to transform non-redundant topologies into redundant

ones and compare the results of both methods, RIT and IRT, discussed in Chapter 6.8.3.1 and

Chapter 6.8.3.2, respectively. Additionally, we perform an experiment that integrates network

tomography and SDN, where SDN is used to set up the monitoring paths. The performance of

such integration is evaluated on inferring delay and loss metrics.

6.10.1 Transformation Algorithms

We evaluated the proposed transformation algorithms by simulating random topologies with

different numbers of nodes in the range [10, 100]. We used MATLAB R2022b to simulate these

topologies. Because topologies are generated randomly, they are neither guaranteed to be

connected nor acyclic. Therefore, we checked each topology for these conditions to be met. We

removed cycles if existed (see Appendix C.3), and connected the topology (see Appendix C.4)

if it had more than one component (i.e., disconnected).

Let χη and χγ be the number of added nodes and links, respectively, in the transformed

topology, then in the following, we discuss the results for identifiability and redundancy trans-

formation algorithms. In addition, the results comparing the use of RIT and IRT for topologies

that are originally unidentifiable and non-redundant are further discussed.

Chapter 6. A New SDN-enabled In-Vehicle Network Topology 161

6.10.1.1 Transformation to Identifiable Topology (G −→ Gi)

Figure 6.11 shows identifiability results. The number of additional nodes and links are

shown in Figure 6.11(a). We evaluated the transformation using PRLs, FRLs, and the basic

method of adding more σ links and nodes as illustrated in Procedure 2.

As shown, the additional number of nodes and the additional number of links are the same

in each scenario, this is because adding any node requires adding a link to connect it to the

network. In addition, using either PRL or FRL results in the same number of added links and

nodes. On the other hand, using Procedure 2 (ηG + σ and γG + σ), results in more nodes and

links than FRL and PRL.

(a) Number of added nodes and links after transformation

(b) Values of σ when using FRL and PRL

Figure 6.11: Identifiability results (G −→ Gi).

Chapter 6. A New SDN-enabled In-Vehicle Network Topology 162

Although, the number of added nodes and links for PRL and FRL are exactly the same, we

highlight the benefit of using FRL over PRL in terms of speed. This can be seen in Figure 6.11(b)

where we show the average (over the number of topologies that had FRL links) value of σ during

each iteration of the transformation. As seen, the σ value in the case of PRL is larger than

that of FRL. This is because FRL reduces σ by 2 in a single iteration, while PRL reduces it by

1 in each iteration. Therefore, FRL can transform the topology much faster than PRL.

6.10.1.2 Transformation to Redundant Topology (G −→ Gr)

Figure 6.12 shows the redundancy results of transforming topologies that are non-redundant

to redundant topologies using Algorithm 3. The results show that after the transformation, the

number of added nodes ηGr , stays the same as in the original topology. However, the number

of links in the transformed topologies, γGr , increases. This is expected as the algorithm tries

to satisfy the redundancy conditions in Theorem 6.8.1. Specifically, the second condition in

Theorem 6.8.1, implies that it is necessary to add more links for internal nodes with
∣∣∣I(vi)∣∣∣ < 2,

hence the increased number of links.

Figure 6.12: Redundancy results (G −→ Gr).

6.10.1.3 Transformation to Identifiable and Redundant Topology (G −→ Gir)

Figure 6.13 shows the results of transforming unidentifiable and non-redundant topologies

into identifiable and redundant ones using the methods discussed in Chapter 6.8.3: RIT and

IRT. As observed in Figure 6.13(a), transforming unidentifiable and non-redundant topology

Chapter 6. A New SDN-enabled In-Vehicle Network Topology 163

G into identifiable and redundant topology Gir using RIT method results in fewer number of

nodes and links as compared with IRT method. This is consistent with the theoretical result

mentioned in Proposition 6.8.1.

(a) Number of added nodes and links after transformation

(b) Ratio of added number of nodes and links in the transformed topology

Figure 6.13: Results of transforming topology into identifiable and redundant
(G −→ Gir).

In addition, to quantify the added weight of the newly transformed topology, we show

in Figure 6.13(b) the ratio of added nodes and links in the transformed topology Gir as a

percentage of the original topology before transformation i.e., G. This result is consistent with

the theoretical analysis as stated in Proposition 6.8.1, where transforming unidentifiable and

non-redundant topology into a topology that is both identifiable and redundant using RIT incur

adding fewer number of nodes and links than using IRT. This is because RIT first (during the

Chapter 6. A New SDN-enabled In-Vehicle Network Topology 164

transformation into redundant topology) adds more links between internal nodes, then when it

comes to the next step (transforming into identifiable topology), some (or all) of the internal

nodes’ degrees have already been increased including those with d(vi) < 3, hence no additional

nodes/links would be required in the second step, or at least only fewer than σ would be

required.

Moreover, it is important to choose a transformation approach that results in minimal

weight, and as expected, the maximum weight added is when IRT is used where it reaches

31.56% of added nodes and 48.03% of added links, whereas using RIT results in only 17.17%

and 31.40% nodes and links, respectively.

6.10.2 SDN and Network Tomography Integration

In this part, we evaluate network tomography while integrated with SDN. We used Mininet

2.3.05 to simulate the network topology shown in Figure 6.14. Note that this topology satisfies

all three properties defined for the new topology proposed in this chapter, i.e., identifiable,

redundant, and SDN-enabled. For the SDN controller, we opted for Ryu controller6. Table 6.2

illustrates the network parameters used for the simulated in-vehicle network.

Figure 6.14: Simulated identifiable, redundant and SDN-enabled in-vehicle
network topology.

5http://mininet.org
6https://ryu-sdn.org

http://mininet.org
https://ryu-sdn.org

Chapter 6. A New SDN-enabled In-Vehicle Network Topology 165

Table 6.2: Network parameters for the simulated in-vehicle network shown in
Figure 6.14.

Parameter Value

Number of nodes (ηG) 14

Number of edge nodes (
∣∣∣E(G)∣∣∣) 10

Number of monitors (
∣∣∣Em(G)∣∣∣) 10

Number of links (γG) 14

Number of all paths (
∣∣∣P(G)∣∣∣) 45

Number of measured paths (κG) 14

In addition, Table 6.3 shows the measurement paths for the simulated topology. These

paths are independent and form a full-rank measurement matrix A, see Appendix C.1 for code

snippet used to construct such independent paths. We developed a monitoring application that

proactively installs the flows for these paths. It also measures the end-to-end delay and loss

rate between edge nodes in E(G) across the measurement paths Pm(G) defined in Table 6.3. A

total of 100 probes were sent across these measurement paths. Note that the developed codes

are available in our GitHub repository7.

Table 6.3: Measurement paths used for the simulated topology shown in Fig-
ure 6.14.

Source Destination Path pi ∈ P(G)m

v1 v4 p1 = {e2, e3, e6, e7, e10}

v1 v6 p2 = {e1, e3, e9}

v2 v7 p3 = {e1, e4, e6, e10, e11}

v2 v8 p4 = {e2, e4, e12}

v2 v9 p5 = {e1, e4, e6, e13}

v2 v10 p6 = {e2, e4, e10, e14}

v3 v4 p7 = {e1, e5, e7}

v3 v6 p8 = {e2, e5, e6, e9, e10}

v3 v7 p9 = {e2, e5, e11}

7https://gitfront.io/r/AmaniIbraheem/YPVrPAEk8KHm/New-IVN-Topology/

https://gitfront.io/r/AmaniIbraheem/YPVrPAEk8KHm/New-IVN-Topology/

Chapter 6. A New SDN-enabled In-Vehicle Network Topology 166

Table 6.3: Measurement paths used for the simulated topology shown in Fig-
ure 6.14.

Source Destination Path pi ∈ P(G)m

v4 v6 p10 = {e7, e9}

v5 v9 p11 = {e1, e2, e8, e10, e13}

v5 v10 p12 = {e6, e8, e14}

v8 v9 p13 = {e10, e12, e13}

v8 v10 p14 = {e1, e2, e6, e12, e14}

For delay tomography, we simulated three scenarios with different worst-case link-level delays

(see Appendix D.1). Similarly, for loss tomography, we simulated three scenarios with different

loss rates (see Appendix D.2).

In the following, we report the results of the developed SDN-based network tomography

monitoring application to infer delay and loss metrics of links in the simulated network.

6.10.2.1 Delay Tomography

Figure 6.15 shows the delay tomography results for when the worst-case link-level delay

is 10ms (Figure 6.15(a)), 100ms (Figure 6.15(b)), and 1000ms (Figure 6.15(c)). As shown,

the inferred link-level delay x̂i for all scenarios is close to the actual link-level delay xi. The

maximum error is for link e14 when the worst-case delay is 10ms for which the error is ≈ 14.27%,

as shown in Figure 6.15(d). For link e14, the inferred delay is x̂14 = 7.4ms while the actual

delay is x14 = 6ms, hence the error value is relatively small, i.e., only 1.4ms. On the other

hand, the maximum error for when the worst-case delay is either 100ms or 1000ms does not

exceed 3%; the maximum error for when the worst-case delay is 100ms is ≈ 0.66% for link e3,

while when it is 1000ms, the error is ≈ 2.26% for link e8.

These are promising results that show the potential of the proposed approach in inferring

the delay metrics of the overall network by only monitoring the end-to-end delay performance.

Chapter 6. A New SDN-enabled In-Vehicle Network Topology 167

(a) xi ≤ 10ms (b) xi ≤ 100ms

(c) xi ≤ 1000ms (d) Error percentage

Figure 6.15: Delay tomography results for the proposed in-vehicle network
topology when the worst-case delay is: (a) 10ms, (b) 100ms, and (c) 1000ms.

.

6.10.2.2 Loss Tomography

The end-to-end loss of each path pi ∈ Pm(G) is given by

yi =
∏

ej∈E(pi)

xej . (6.13)

Thus, because the end-to-end loss is not additive, we take the natural log of both sides of (6.13)

as

ln(yi) =
∑

ej∈E(pi)

ln(xei). (6.14)

Now (6.14) is in an additive form and (3.1) can be used to infer the link-level loss rate.

Loss tomography results are shown in Figure 6.16. We report the results for when the

worst-case link-level loss rate is ≤ 5% (Figure 6.16(a)), ≤ 10% (Figure 6.16(b)), and ≤ 55%

(Figure 6.16(c)). As seen, there is an apparent contrast between actual, xi, and inferred loss

rate, x̂i, especially when the worst-case loss is ≤ 5% as shown in Figure 6.16(a). In addition,

Chapter 6. A New SDN-enabled In-Vehicle Network Topology 168

(a) xi ≤ 5% (b) xi ≤ 10%

(c) xi ≤ 55% (d) Error percentage

Figure 6.16: Loss tomography results for the proposed SDN-enabled in-vehicle
network topology when the worst-case loss rate is: (a) 5%, (b) 10%, and (c)

55%.

Figure 6.16(d) shows the percentage of the absolute error value of inferred link loss over the loss

value in the worst-case scenario. It can be observed that as the loss rate increases, the inference

error decreases as shown in Figure 6.16(d). Moreover, the maximum error is ≈ 28.36% for e10

in the scenario where the maximum loss is 5%. This can be attributed to the measurement

noise that is caused by the stochastic nature of end-to-end loss rate when assigning different

loss rates to the links with high variance. Moreover, the maximum errors when the worst-case

loss rates are ≤ 10% and ≤ 55% are around 11.96% and 1.59%, respectively for link e1. The

error values in these two cases are considered small, and arguably, in a real-world scenario,

not all links are lossy. In addition, failures caused by attacks, e.g., DoS (Denial of Service)

attacks, usually increase the loss rates per link, and from these results, it is clear that network

tomography can accurately locate the anomalous link(s) affected by such attack.

The above results indicate that the integration of SDN with a network tomography-based

monitoring approach is effective in inferring the internal network performance. For instance, in

case of an anomaly and by monitoring the delay or loss metrics, one can locate such anomaly

Chapter 6. A New SDN-enabled In-Vehicle Network Topology 169

using the proposed approach.

6.11 Summary

In this chapter, we have proposed a new in-vehicle network topology that satisfies three

properties: identifiable, redundant and SDN-enabled. The topology is designed towards efficient

monitoring of the in-vehicle network using network tomography and SDN. The first property

of the topology ensures that network tomography can infer the performance of all the link-level

metrics, the second property helps in achieving a fail-operational behaviour, while the third

property facilitates the monitoring process in terms of deploying the monitoring applications

at the central entity that has an overall view and control of the underlying network topology.

Furthermore, the proposed topology can act as a driver for the next-generation centralised E/E

architectures.

Topological conditions to satisfy identifiability and redundancy properties have been exten-

sively studied. Additionally, based on the derived theoretical results, we have proposed trans-

formation algorithms to transform an existing topology that is unidentifiable or non-redundant

into an identifiable and redundant topology while keeping the number of links to a minimum

to avoid adding unnecessary weight to the vehicle. These algorithms allow the rewiring of ex-

isting in-vehicle network topologies. In addition, they support the gradual transformation of

the existing in-vehicle network topologies, where designing new topologies from scratch can be

extremely costly. Evaluation of the proposed transformation algorithms showed that the results

are consistent with the theoretical analysis.

Moreover, leveraging the SDN paradigm, a complete monitoring framework has been pro-

posed. Such a framework supports the three main tasks that should be provided in any robust

monitoring system. These tasks are anomaly detection, localisation and mitigation. The in-

tegration of SDN with network tomography has further been examined and found that such

integration is suitable to infer the delay and loss metrics of the network.

170

7 Conclusion

"I have good news and bad news: the bad

news is you are fired, the good news is you

get to spend more time with us."

Mohannad Alalmaei

This chapter concludes our thesis, and it is divided into two parts. The first part summarises

all the research work and results presented in this thesis, whereas the second part focuses on

future research directions and open questions that can be further investigated in future works.

7.1 Research Summary

Due to the nature of the environment, today’s vehicles are involved with, in which nowadays

they are exposed to the outside world, it is more crucial than ever that the network inside the

vehicle is robust against any malicious behaviours that may put users’ lives in danger. Therefore,

to ensure proper functionality of the vehicle, which is then reflected on users’ safety, one of the

critical tasks is monitoring the in-vehicle network.

Only recently, researchers have started looking into monitoring solutions for in-vehicle net-

works. The main reason for the lack of monitoring approaches for in-vehicle networks is that,

in the past, the vehicle was only connected internally, with no outside communications, and

hackers would need to physically access the vehicle to launch their attacks. Today, this has

dramatically changed, with adversaries being able to remotely launch different types of attacks

without the need to physically access the vehicle. And for the same reason, traditional automo-

tive networks, that many of which are still used in today’s vehicles, do not support any means

of securing the vehicle, or providing fail-operational behaviour.

Although many research efforts are focusing on this issue, the existing proposals focus on

traditional networking architectures where the proposed monitoring approach can only handle

a single subsystem, e.g., one connected by CAN. In particular, current solutions neglect the

Chapter 7. Conclusion 171

fact that the in-vehicle network is a large system with different subsystems that need to be

monitored as a whole. Additionally, most proposals entirely use machine and deep learning-

based solutions, ignoring the fact that components in in-vehicle networks are limited in both

computation and storage capacities. Another limitation in the monitoring approaches that

exist in the current literature is that they entail some sort of accessing the internal network

components in order to modify them to perform the monitoring process, disregarding the fact

that it is not always feasible to access the internal elements of the in-vehicle network. In

addition, most existing approaches are only concerned with detecting anomalies, resulting from

attacks on the vehicle, with no consideration of countermeasures or mitigation solutions.

This thesis presented a novel and complete monitoring approach for in-vehicle networks,

including next-generation networks, where there is no need to access any internal element of

the network. This monitoring feature leveraged a network tomography-based solution that has

just been studied, in this thesis, for the first time as a vehicular monitoring application. The

proposed approach is lightweight and does not incur heavy monitoring overhead. In addition,

it supports three main tasks of robust monitoring systems, in which it can detect, locate and

mitigate anomalies in in-vehicle networks.

Network tomography has been considered for other applications, such as computer networks

and the Internet. By studying network tomography applications for in-vehicle networks, as

reported in Chapter 3, we found that not all in-vehicle networking architectures, including

the new ones that are based on modern E/E architectures, are identifiable, hence network

tomography cannot infer the performance of all networking elements. The main issue with this

is that the measurement matrix used in network tomography cannot form a full-rank matrix.

To tackle the rank-deficiency problem of the measurement matrix, we have proposed to

use partial network tomography and leveraged the advances in deep learning, hence, achieving

a full-rank measurement matrix where network tomography can be used to infer the overall

network performance. Presented in Chapter 4, the results confirmed the suitability of the

proposed tomography algorithm as well as the deep learning-based solution. Additionally, using

the proposed approach to infer the link-level performance of all links in in-vehicle networks,

we found that network tomography, specifically algebraic tomography, was able to accurately

determine the link-level metric.

Furthermore, as shown in Chapter 5, the presented monitoring approach could detect and

locate anomalies in in-vehicle networks. Three different tomographic approaches have been

Chapter 7. Conclusion 172

evaluated to detect and locate DoS attacks: DNT, BNT, and DNN-based network tomography.

Evaluation results have shown that BNT achieved promising results with no false positive or

false negative.

Inspired by the promising results achieved from applying algebraic BNT to detect and locate

anomalies, in Chapter 6, we have proposed a novel in-vehicle network topology. The main reason

is to allow for algebraic network tomography approaches to be applied in in-vehicle networks.

Such application requires, however, a full-rank measurement matrix. This feature thus can be

satisfied by having a fully-identifiable topology. Therefore, one of the properties of the proposed

topology is that it is identifiable. In addition, it is redundant and SDN-enabled topology. The

redundancy and SDN properties can greatly facilitate the monitoring process. Specifically, the

redundant topology can be used in case there is an anomaly in the network, hence, ensuring

fail-operational behaviour. On the other hand, SDN can make this happen dynamically and

intelligently without the need for human intervention. Moreover, to support the gradual transi-

tion into new in-vehicle architectures, instead of creating identifiable and redundant topologies

from scratch, this thesis proposed different algorithms to transform any existing topology into

identifiable and redundant ones. Finally, a complete monitoring framework based on the pro-

posed approach has been devised. The proposed framework supports all three monitoring tasks:

detection, localisation, and mitigation. With this framework, the in-vehicle network becomes

self-reactive and more intelligent when faced with malicious behaviours.

7.2 Future Work

This thesis has set the stepping stone for a new monitoring approach for in-vehicle networks

that is based on network tomography. This approach can further be built upon to improve the

overall monitoring system. In addition, the advances of SDNs have been exploited in this thesis

to facilitate the monitoring process. In the following, we discuss some of the intriguing research

directions for network tomography and SDN applications in vehicular communications, that

can further be investigated.

7.2.1 Network Tomography for Vehicular Communications

The following lists some of the future directions for applying network tomography to vehic-

ular communications:

Chapter 7. Conclusion 173

• This thesis mostly focussed on using delay metrics when applying network tomography

to detect anomalies on the network. Other metrics can be used, such as loss/success rate,

bandwidth consumption, and throughput.

• As has been found that using CAN traffic in monitoring the network can result in having

asymmetric behaviour (an attribute that hinders the accurate performance of network

tomography), especially when relying on delay metric, such asymmetric behaviour can

be avoided if CAN messages do not compete to access the CAN bus. This is achieved

by setting proper parameters for transmission times of CAN messages transmitted by

different ECUs. Benefiting from the advances in artificial intelligence, one can design a

reinforcement learning model that allows the agent to set these parameters with the aim

of preventing collisions in the CAN bus.

• The partial network tomography algorithm presented in Algorithm 1 can be improved by

selectively choosing the optimal partial network such that the result leads to the maximum

possible identifiability.

• Using network tomography to detect anomalies in the in-vehicle network shows that all

approaches (BNT, DNT, DNN for BNT, and DNN for DNT) could accurately detect

the anomaly, however, the detection time was not analysed. This aspect can further

be investigated to help understand and validate the appropriate network tomography

monitoring approach that can detect anomalies in real-time (or near real-time).

• The proposed monitoring approach in this thesis can detect and locate anomalies that

lead to deviation from the normal behaviour of the network. This thesis proved that the

proposed approach could detect and locate anomalies resulting from attacks, such as DoS

attack on CAN. The proposal can further be examined to detect other types of attacks,

such as fuzzy and replay attacks. Different types of attacks might need measuring different

metrics, including delay and loss rate. And some other attacks can be accurately detected

and located by measuring more than one metric.

• The proposed network tomography approach presented in this thesis has been investigated

to detect and locate anomalies where only one link can fail at a time. It would be

another interesting direction to further examine the approach to detect and locate multiple

anomalous links that occur simultaneously.

Chapter 7. Conclusion 174

• This thesis focussed on anomaly detection and localisation with network tomography. In

addition to this, network tomography can be used for other different applications such as

load-balancing and network optimisation applications.

• On a larger scale, beyond the in-vehicle network, an interesting research direction is to

apply network tomography as a monitoring approach for VANETs. Vehicles in VANETs

are dynamic where they constantly join and leave the network, hence, it is important to

inspect the performance of network tomography for such a dynamic environment. One

crucial question is how to discover such dynamic topology to be used for the measurement

matrix. Moreover, finding a set of independent measurement paths is another interesting

direction which is considered challenging to apply in a highly dynamic environment such

as VANET.

7.2.2 Software-Defined Networks (SDNs) for Vehicular Communica-

tions

Leveraging SDN for the in-vehicle network is the starting point to fully incorporate the

concept of Software-Defined Vehicle (SDV). Being an SDN-enabled vehicle allows the vehicle

to be part of this system. In the following, we list a few of the interesting research directions

considering SDN:

• The algorithm proposed in this thesis to transform any existing topology (with a constraint

that only edge nodes are accessible) into an identifiable topology often results in adding

more weight to the vehicle network. Additional effort for optimising the topology to

reduce this weight is another desirable direction that is worth investigating especially

for in-vehicle networks. For this, the SDN paradigm can be highly beneficial in that it

can help to replace some of the hardware-based functionalities with software ones and

consolidate multiple similar ECUs into a single powerful unit.

• One of the essential tasks in implementing the proposed monitoring framework in this

thesis is that, if there is any anomaly that has been detected and located, the SDN con-

troller is responsible for mitigating its effect by instructing the network to use redundant

path(s) that do not traverse the anomalous link. This process requires that the SDN

controller quickly and intelligently assign the new paths, and drop the anomalous traffic.

This task can be achieved by applying machine and deep learning techniques.

Chapter 7. Conclusion 175

• With the SDN-enabled in-vehicle network, the inference result of network tomography can

further be enhanced by using FlowStats messages provided by OpenFlow protocol. These

are per-flow statics that can be leveraged to minimise the uncertainty of the inference

results provided by network tomography, hence, reducing the link-level inference error.

• Equipping the vehicle with SDN functionality is of great benefit, not only internally for

the in-vehicle system, but externally as well. For instance, the SDN functionality can be

applied on a larger scale of a fleet of vehicles, e.g., in IoVs. With network tomography

and SDN, attacks on vehicular communications can be detected and located so that

the compromised vehicle can be excluded. Network tomography can help detect attacks

and locate anomalous vehicles, while SDN can exclude such anomalous vehicles from the

network so that they will not compromise other vehicles in the fleet.

• As one of the aims of incorporating the in-vehicle network with SDN capabilities is to

improve the overall vehicle weight by replacing the hardware-based components with

software-based alternatives, it is important to note that not all vehicle components can

be replaced with software-based components; the physical hardware-based components

would still need to co-exist in conjunction with software components. Therefore, it is

mandatory to properly define the delimiters for which hardware-based components versus

software-based ones should be adopted.

• Although the SDN capabilities cannot be overlooked, the centralisation aspect of the SDN

controller can be seen as a limitation in that it presents a single point of failure. For this

reason, it is essential to have appropriate countermeasures in place for the SDN controller.

Such measures may include:

– Enhancing the SDN controller with the highest level of security protection.

– The SDN controller may experience performance degradation due to system failure.

Thus, it is important to have a redundant controller entity that can take over if the

original controller has failed.

– The SDN controller tasks can be distributed among several controllers as it is possible

to have more than one SDN controller. For instance, in an in-vehicle network with

multiple domains, the domain controller can also act as a local SDN controller.

Chapter 7. Conclusion 176

For a larger scale application such as in IoVs, a vehicle can act as an SDN controller for a

group of vehicles that are in close proximity. If such a vehicle has been compromised, one

can investigate the solutions to overcome the effect of this failure and assign an alternative

vehicle to act as the SDN controller.

177

A Appendix: Traffic

Characteristics for Applying

Network Tomography in

In-Vehicle Networks

A.1 Traffic Characteristics in Single CAN Architecture

The simulated topology for a single CAN network is shown below.

ECU1 ECU2 ECU3

ECU4 ECU5 ECU6

b1

CAN bus

Figure A.1: Simulated single CAN network.

Traffic characteristics for this scenario are shown in the following table. All traffic has a

payload of 64 bits = 8 bytes. Each CAN message is of length 111 bits.

Appendix A. Appendix: Traffic Characteristics for Applying Network Tomography in

In-Vehicle Networks
178

Table A.1: Traffic characteristics for single CAN.

CAN ID Frequency (s) CAN ID Frequency (s)

1 0.009887 15 0.008334

2 0.009776 16 0.018222

3 0.009665 17 0.008104

4 0.009554 18 0.007993

5 0.009443 19 0.007898

6 0.099249 20 0.097778

7 0.099138 21 0.007659

8 0.009103 22 0.007557

9 0.008992 23 0.017445

10 0.008881 24 0.017335

11 0.008775 25 0.996339

12 0.008667 26 0.996227

13 0.008548 27 0.047113

14 0.018444 - -

A.2 Traffic Characteristics in Central-Gateway Architec-

ture

The simulated topology for this scenario is shown in the following figure. Each CAN network

consists of 30 ECUs.

Appendix A. Appendix: Traffic Characteristics for Applying Network Tomography in

In-Vehicle Networks
179

GatewayECUs ECUs

ECUs

ECUs

b1 b2

b3

b4

CAN bus

Figure A.2: Simulated central-gateway network.

Traffic within a single CAN is the same as in the above scenario. Cross-traffic between

different CANs is shown in the following table.

Table A.2: Cross-traffic between different CANs in central-gateway network.

CAN ID Frequency (s)

28 0.047113

29 0.047113

A.3 Traffic Characteristics in Ethernet-based Architec-

ture

The simulated scenario for this case is shown in the below figure. As in other cases, the

number of ECUs in each CAN is 30.

Appendix A. Appendix: Traffic Characteristics for Applying Network Tomography in

In-Vehicle Networks
180

SwitchGW1 GW2

GW3

GW4

ECUs

ECUs

ECUs

ECUs

ECUs ECUs

ECUs ECUs

e1 e2
e3

e4

b1

b2

b3

b4

b5 b6

b7 b8

CAN bus Ethernet link

Figure A.3: Ethernet-based in-vehicle network

For this scenario, the traffic characteristics are shown in the following.

A.3.1 Cross-traffic between different CANs

Table A.3: Cross-traffic between different CANs in Ethernet-based network.

CAN ID Frequency (s)

28 0.047113

29 0.047113

A.3.2 Cross-traffic between different gateways

Table A.4: Cross-traffic between different gateways in Ethernet-based network.

CAN ID Frequency (s)

28 0.047113

29 0.047113

30 0.047113

31 0.047113

32 0.01

33 0.01

34 0.01

Appendix A. Appendix: Traffic Characteristics for Applying Network Tomography in

In-Vehicle Networks
181

Table A.4: Cross-traffic between different gateways in Ethernet-based network.

CAN ID Frequency (s)

35 0.01

182

B Appendix: Evaluation of

DNN-based Partial Tomography

In the following, more evaluation results are shown when measuring different ratios of the

network simulated in Chapter 4.

B.1 When 50% of the network is measured

Table B.1: DNN results when 50% of the network is measured.

Measured paths (Pm) NNDE (MAPE (%)) NNDT (MAPE (%))

Pm = {p3, 2p7, p8, p9, p10} 1.711 1.575

Pm = {p4, 2p7, p8, p9, p10} 2.481 1.515

Pm = {p6, 2p7, p8, p9, p10} 2.540 2.468

Pm = {p7, 2p7, p8, p9, p10} 2.955 2.771

Pm = {p5, 2p7, p8, p9, p10} 1.176 1.162

B.2 When 60% of the network is measured

Table B.2: DNN results when 60% of the network is measured.

Measured paths (Pm) NNDE (MAPE (%)) NNDT (MAPE (%))

Pm = {p3, p4, 2p7, p8, p9, p10} 1.119 1.094

Pm = {p3, p6, 2p7, p8, p9, p10} 1.170 1.255

Pm = {p3, 1p7, 2p7, p8, p9, p10} 1.786 1.726

Pm = {p3, p5, 2p7, p8, p9, p10} 0.896 0.900

Appendix B. Appendix: Evaluation of DNN-based Partial Tomography 183

Table B.2: DNN results when 60% of the network is measured.

Measured paths (Pm) NNDE (MAPE (%)) NNDT (MAPE (%))

Pm = {p4, p6, 2p7, p8, p9, p10} 1.249 1.210

Pm = {p4, 1p7, 2p7, p8, p9, p10} 1.754 1.733

Pm = {p4, p5, 2p7, p8, p9, p10} 1.110 1.157

Pm = {p6, 1p7, 2p7, p8, p9, p10} 2.975 2.804

Pm = {p5, p6, 2p7, p8, p9, p10} 0.780 0.819

Pm = {p5, 1p7, 2p7, p8, p9, p10} 1.343 1.463

B.3 When 70% of the network is measured

Table B.3: DNN results when 70% of the network is measured.

Measured paths (Pm) NNDE (MAPE (%)) NNDT (MAPE (%))

Pm = {p3, p4, p6, 1p7, p8, p9, p10} 0.940 1.058

Pm = {p3, p4, 1p7, 2p7p8, p9, p10} 1.263 1.262

Pm = {p3, p4, p5, 1p7, p8, p9, p10} 0.758 0.707

Pm = {p3, p6, 1p7, 2p7, p8, p9, p10} 1.428 1.635

Pm = {p3, p5, p6, 2p7, p8, p9, p10} 0.665 0.606

Pm = {p3, p5, 1p7, 2p7, p8, p9, p10} 1.024 1.049

Pm = {p4, p6, 1p7, 2p7, p8, p9, p10} 1.405 1.429

Pm = {p4, p5, p6, 2p7, p8, p9, p10} 0.672 0.655

Pm = {p6, p7, 1p7, 2p7, p8, p9, p10} 0.970 1.029

184

C Appendix: Procedures and

Code Snippets

C.1 Constructing independent paths in network G

1 clc;

2 %Draw eaxmple topology with source s and target t

3 G = graph (s,t, [], names);

4 edges = G. Edges ;

5 vertices = G. Nodes ;

6 s = size(vertices);

7 end_nodes = zeros (s(1) ,1);

8 internal_nodes = zeros (s(1) ,1);

9 vertices_t = transpose (table2array (vertices));

10 for i = vertices_t (:, :)

11 if degree (G, i) == 1

12 end_nodes = [end_nodes ; i];

13 else

14 internal_nodes = [internal_nodes , i];

15 end

16 end

17 paths_list = {};

18 for vi = transpose (end_nodes (2: end , 1))

19 for vj = transpose (end_nodes (2: end , 1))

20 if strcmp (vi ,vj)==0

21 fprintf (’path between %s and %s\n’, vi {1} , vj {1});

22 [paths , edgepaths] = allpaths (G,vi {1} , vj {1} , ’MaxNumPaths ’ ,3);

23 for p=size(edgepaths)

24 paths_list = [paths_list ; edgepaths {p}];

25 end

26 end

Appendix C. Appendix: Procedures and Code Snippets 185

27 end

28 end

29 s_paths = size(paths_list ,1);

30 s_links = size(edges ,1);

31 links = [];

32 for a= transpose (paths_list)

33 disp(a{1});

34 for b=a{1}

35 if ismember (b, links)

36 else

37 links = [links ; b];

38 end

39 end

40 end

41 links = sort(links);

42 measurement_matrix = [];

43 for path= transpose (paths_list)

44 for link = links

45 measurement_matrix = [measurement_matrix ; ismember (link , path {1}) ’];

46 end

47 end

48 [Xsub ,idx]= licols (measurement_matrix ’,1e -10);

49 A = Xsub ’;

C.2 Finding bridges in network G

Procedure 7: findBridges(G)
Output : B(G)

Initialize:

B(G)← ∅

1 foreach ei ∈ E(G) do

2 G← G− {ei}

3 if isConnected(G)=false then

4 B ← B ∪ {ei}

5 G← G+ {ei}

6 return B(G)

Appendix C. Appendix: Procedures and Code Snippets 186

C.3 Removing cycles in generated random graph G

1 function G = removeCycles (G)

2 cycles = allcycles (G);

3 for c = 1: length (cycles)

4 for r = cycles {c}

5 for m = cycles {c}

6 if(strcmp (r,m)==0)

7 G = rmedge (G, r, m);

8 flag = 1;

9 break

10 end

11 end

12 if flag ==1

13 break

14 end

15 end

16 end

17 end

C.4 Connecting graph G of multiple components

1 function G = connect_graph (G)

2 [bins , binsSizes] = conncomp (G);

3 idx = binsSizes (bins) == max(binsSizes);

4 SG = subgraph (G, idx);

5 anynode = SG. Nodes ;

6 anynode = table2array (anynode);

7 anynode = char(anynode (1));

8 idx_other = binsSizes (bins) ~= max(binsSizes);

9 for i = 1: length (idx_other)

10 if (idx_other (i)==1)

11 SG_other = subgraph (G, i);

12 for node = SG_other . Nodes

13 node = table2array (node);

14 node = char(node);

15 G = addedge (G, anynode , node);

16 G = connect_graph (G);

17 break

18 end

Appendix C. Appendix: Procedures and Code Snippets 187

19 break

20 end

21 end

22 end

188

D Appendix: Simulation

Parameters for SDN-enabled

In-Vehicle Network

D.1 Delay Tomography Parameters

D.1.1 When the worst-case delay is 10ms

Table D.1: Link parameters when the worst-case delay is 10ms.

Link (ei ∈ E(G)) Bandwidth (bps) Delay (ms)

e1 10 10

e2 10 9

e3 10 2

e4 10 5

e5 10 8

e6 10 10

e7 10 3

e8 10 5

e9 10 5

e10 10 5

e11 10 2

e12 10 10

e13 10 7

Appendix D. Appendix: Simulation Parameters for SDN-enabled In-Vehicle Network 189

Table D.1: Link parameters when the worst-case delay is 10ms.

Link (ei ∈ E(G)) Bandwidth (bps) Delay (ms)

e14 10 6

D.1.2 When the worst-case delay is 100ms

Table D.2: Link parameters when the worst-case delay is 100ms.

Link (ei ∈ E(G)) Bandwidth (bps) Delay (ms)

e1 10 100

e2 10 95

e3 10 27

e4 10 56

e5 10 80

e6 10 99

e7 10 35

e8 10 55

e9 10 57

e10 10 50

e11 10 25

e12 10 75

e13 10 95

e14 10 64

D.1.3 When the worst-case delay is 1000ms

Appendix D. Appendix: Simulation Parameters for SDN-enabled In-Vehicle Network 190

Table D.3: Link parameters when the worst-case delay is 1000ms.

Link (ei ∈ E(G)) Bandwidth (bps) Delay (ms)

e1 10 500

e2 10 550

e3 10 1000

e4 10 750

e5 10 800

e6 10 800

e7 10 600

e8 10 755

e9 10 657

e10 10 1000

e11 10 425

e12 10 375

e13 10 295

e14 10 864

D.2 Loss Tomography Parameters

D.2.1 When the worst-case loss rate is 5%

Table D.4: Link parameters when the worst-case loss rate is 5%.

Link (ei ∈ E(G)) Bandwidth (bps) Loss (%)

e1 10 1

e2 10 1

e3 10 5

e4 10 3

e5 10 1

e6 10 3

Appendix D. Appendix: Simulation Parameters for SDN-enabled In-Vehicle Network 191

Table D.4: Link parameters when the worst-case loss rate is 5%.

Link (ei ∈ E(G)) Bandwidth (bps) Loss (%)

e7 10 2

e8 10 2

e9 10 4

e10 10 5

e11 10 5

e12 10 3

e13 10 4

e14 10 5

D.2.2 When the worst-case loss rate is 10%

Table D.5: Link parameters when the worst-case loss rate is 10%.

Link (ei ∈ E(G)) Bandwidth (bps) Loss (%)

e1 10 10

e2 10 8

e3 10 9

e4 10 8

e5 10 7

e6 10 5

e7 10 10

e8 10 5

e9 10 3

e10 10 5

e11 10 10

e12 10 7

e13 10 9

Appendix D. Appendix: Simulation Parameters for SDN-enabled In-Vehicle Network 192

Table D.5: Link parameters when the worst-case loss rate is 10%.

Link (ei ∈ E(G)) Bandwidth (bps) Loss (%)

e14 10 4

D.2.3 When the worst-case loss rate is 55%

Table D.6: Link parameters when the worst-case loss rate is 55%.

Link (ei ∈ E(G)) Bandwidth (bps) Loss (%)

e1 10 10

e2 10 38

e3 10 25

e4 10 10

e5 10 50

e6 10 50

e7 10 50

e8 10 55

e9 10 30

e10 10 40

e11 10 28

e12 10 47

e13 10 50

e14 10 45

193

Bibliography

[1] J. Contreras-Castillo, S. Zeadally, and J. A. Guerrero-Ibañez, “Internet of vehicles: archi-

tecture, protocols, and security,” IEEE internet of things Journal, vol. 5, no. 5, pp. 3701–

3709, 2017.

[2] Sichitiu, Mihail L and Kihl, Maria, “Inter-vehicle communication systems: A survey,”

IEEE Communications Surveys & Tutorials, vol. 10, no. 2, pp. 88–105, 2008.

[3] Tuohy, Shane and Glavin, Martin and Hughes, Ciarán and Jones, Edward and Trivedi,

Mohan and Kilmartin, Liam, “Intra-vehicle networks: A review,” IEEE Transactions on

Intelligent Transportation Systems, vol. 16, no. 2, pp. 534–545, 2014.

[4] C. Miller and C. Valasek, “A survey of remote automotive attack surfaces,” black hat

USA, vol. 2014, p. 94, 2014.

[5] S. Checkoway, D. McCoy, B. Kantor, et al., “Comprehensive experimental analyses of

automotive attack surfaces.,” in USENIX security symposium, San Francisco, vol. 4,

2011, p. 2021.

[6] M. Ring, D. Frkat, and M. Schmiedecker, “Cybersecurity evaluation of automotive e/e

architectures,” in ACM Computer Science In Cars Symposium (CSCS 2018), 2018.

[7] Longari, Stefano and Penco, Matteo and Carminati, Michele and Zanero, Stefano, “Copy-

can: An error-handling protocol based intrusion detection system for controller area

network,” in Proceedings of the ACM Workshop on Cyber-Physical Systems Security &

Privacy, 2019, pp. 39–50.

[8] S. C. HPL, “Introduction to the controller area network (CAN),” Application Report

SLOA101, pp. 1–17, 2002.

[9] W. Voss, A comprehensible guide to controller area network. Copperhill Media, 2008.

[10] Y. Peng, B. Shi, T. Jiang, X. Tu, D. Xu, and K. Hua, “A Survey on In-vehicle Time

Sensitive Networking,” IEEE Internet of Things Journal, 2023.

Bibliography 194

[11] Bozdal, Mehmet and Samie, Mohammad and Jennions, Ian, “A survey on can bus pro-

tocol: Attacks, challenges, and potential solutions,” in 2018 International Conference

on Computing, Electronics & Communications Engineering (iCCECE), IEEE, 2018,

pp. 201–205.

[12] P. Weiss, A. Weichslgartner, F. Reimann, and S. Steinhorst, “Fail-operational automotive

software design using agent-based graceful degradation,” in 2020 Design, Automation &

Test in Europe Conference & Exhibition (DATE), IEEE, 2020, pp. 1169–1174.

[13] Castro, Rui and Coates, Mark and Liang, Gang and Nowak, Robert and Yu, Bin, “Net-

work tomography: Recent developments,” Statistical science, vol. 19, no. 3, pp. 499–517,

2004.

[14] Lawrence, Earl and Michailidis, George and Nair, Vijayan N and Xi, Bowei, “Network

tomography: A review and recent developments,” Frontiers in statistics, pp. 345–366,

2006.

[15] M. Rumez, D. Grimm, R. Kriesten, and E. Sax, “An overview of automotive service-

oriented architectures and implications for security countermeasures,” IEEE access,

vol. 8, pp. 221 852–221 870, 2020.

[16] W. Wu, R. Li, G. Xie, et al., “A survey of intrusion detection for in-vehicle networks,”

IEEE Transactions on Intelligent Transportation Systems, vol. 21, no. 3, pp. 919–933,

2019.

[17] P. Pelliccione, E. Knauss, R. Heldal, et al., “Automotive architecture framework: The

experience of volvo cars,” Journal of systems architecture, vol. 77, pp. 83–100, 2017.

[18] L. Zhang and D. Ma, “A hybrid approach toward efficient and accurate intrusion detec-

tion for in-vehicle networks,” IEEE Access, vol. 10, pp. 10 852–10 866, 2022.

[19] L. Ma, T. He, K. K. Leung, A. Swami, and D. Towsley, “Topological constraints on

identifying additive link metrics via end-to-end paths measurements,” IBM THOMAS J

WATSON RESEARCH CENTER HAWTHORNE NY, Tech. Rep., 2012.

[20] L. Ma, T. He, K. K. Leung, A. Swami, and D. Towsley, “Identifiability of link metrics

based on end-to-end path measurements,” in Proceedings of the 2013 conference on

Internet measurement conference, 2013, pp. 391–404.

Bibliography 195

[21] S. Saidi, S. Steinhorst, A. Hamann, D. Ziegenbein, and M. Wolf, “Special session: Fu-

ture automotive systems design: Research challenges and opportunities,” in 2018 Inter-

national Conference on Hardware/Software Codesign and System Synthesis (CODES+

ISSS), IEEE, 2018.

[22] S. Sommer, A. Camek, K. Becker, et al., “Race: A centralized platform computer based

architecture for automotive applications,” in 2013 IEEE International Electric Vehicle

Conference (IEVC), IEEE, 2013.

[23] W. Zeng, M. A. Khalid, and S. Chowdhury, “In-vehicle networks outlook: Achievements

and challenges,” IEEE Communications Surveys & Tutorials, vol. 18, no. 3, pp. 1552–

1571, 2016.

[24] P. Goransson, C. Black, and T. Culver, Software defined networks: a comprehensive

approach. Morgan Kaufmann, 2016.

[25] L. Silva, N. Magaia, B. Sousa, et al., “Computing paradigms in emerging vehicular envi-

ronments: A review,” IEEE/CAA Journal of Automatica Sinica, vol. 8, no. 3, pp. 491–

511, 2021.

[26] A. Haddaji, S. Ayed, and L. C. Fourati, “Artificial Intelligence techniques to mitigate

cyber-attacks within vehicular networks: Survey,” Computers and Electrical Engineering,

vol. 104, p. 108 460, 2022.

[27] W. Stolz, R. Kornhaas, R. Krause, and T. Sommer, “Domain control units-the solution

for future E/E architectures?” SAE International, 2010.

[28] N. Navet and F. Simonot-Lion, “In-vehicle communication networks-a historical per-

spective and review,” Industrial Communication Technology Handbook, Second Edition,

2013.

[29] J. Huang, M. Zhao, Y. Zhou, and C.-C. Xing, “In-vehicle networking: Protocols, chal-

lenges, and solutions,” IEEE Network, vol. 33, no. 1, pp. 92–98, 2018.

[30] C. M. Kozierok, C. Correa, R. B. Boatright, and J. Quesnelle, Automotive Ethernet: The

Definitive Guide. Intrepid Control Systems, 2014.

[31] M. Levi, Y. Allouche, and A. Kontorovich, “Advanced analytics for connected car cy-

bersecurity,” in 2018 IEEE 87th vehicular technology conference (VTC spring), IEEE,

2018, pp. 1–7.

Bibliography 196

[32] J. Takahashi, Y. Aragane, T. Miyazawa, et al., “Automotive attacks and countermeasures

on lin-bus,” Journal of Information Processing, vol. 25, pp. 220–228, 2017.

[33] A. Gzemba, MOST—The automotive multimedia network.—From MOST25 to MOST150,

2011.

[34] T. Steinbach, “Ethernet-based network architectures for future real-time systems in the

car,” ATZ worldwide, vol. 121, no. 7, pp. 72–77, 2019.

[35] L. Zhao, F. He, E. Li, and J. Lu, “Comparison of time sensitive networking (TSN) and

TTEthernet,” in 2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC),

IEEE, 2018, pp. 1–7.

[36] T. Steinbach, H.-T. Lim, F. Korf, T. C. Schmidt, D. Herrscher, and A. Wolisz, “To-

morrow’s in-car interconnect? A competitive evaluation of IEEE 802.1 AVB and Time-

Triggered Ethernet (AS6802),” in 2012 IEEE Vehicular Technology Conference (VTC

Fall), IEEE, 2012, pp. 1–5.

[37] L. L. Bello, “The case for ethernet in automotive communications,” ACM SIGBED

Review, vol. 8, no. 4, pp. 7–15, 2011.

[38] J. Farkas, L. L. Bello, and C. Gunther, “Time-sensitive networking standards,” IEEE

Communications Standards Magazine, vol. 2, no. 2, pp. 20–21, 2018.

[39] J. L. Messenger, “Time-sensitive networking: An introduction,” IEEE Communications

Standards Magazine, vol. 2, no. 2, pp. 29–33, 2018.

[40] L. L. Bello, “Novel trends in automotive networks: A perspective on Ethernet and the

IEEE Audio Video Bridging,” Proceedings of the 2014 IEEE Emerging Technology and

Factory Automation (ETFA), pp. 1–8, 2014.

[41] X. Yang, D. Scholz, and M. Helm, “Deterministic networking (DetNet) vs time sensitive

networking (TSN),” Network, vol. 79, 2019.

[42] G. Alderisi, G. Patti, and L. L. Bello, “Introducing support for scheduled traffic over

IEEE audio video bridging networks,” in 2013 IEEE 18th Conference on Emerging Tech-

nologies & Factory Automation (ETFA), IEEE, 2013, pp. 1–9.

[43] V. Bandur, G. Selim, V. Pantelic, and M. Lawford, “Making the case for centralized

automotive E/E architectures,” IEEE Transactions on Vehicular Technology, vol. 70,

no. 2, pp. 1230–1245, 2021.

Bibliography 197

[44] A. Nasrallah, A. S. Thyagaturu, Z. Alharbi, et al., “Ultra-low latency (ULL) networks:

The IEEE TSN and IETF DetNet standards and related 5G ULL research,” IEEE

Communications Surveys & Tutorials, vol. 21, no. 1, pp. 88–145, 2018.

[45] L. Deng, G. Xie, H. Liu, Y. Han, R. Li, and K. Li, “A survey of real-time ethernet

modeling and design methodologies: From AVB to TSN,” ACM Computing Surveys

(CSUR), vol. 55, no. 2, pp. 1–36, 2022.

[46] N. Finn, “Introduction to time-sensitive networking,” IEEE Communications Standards

Magazine, vol. 2, no. 2, pp. 22–28, 2018.

[47] “Time-Sensitive Networking: A Technical Introduction White Paper,” en, p. 8, 2017.

[48] H. Zhu, W. Zhou, Z. Li, L. Li, and T. Huang, “Requirements-driven automotive elec-

trical/electronic architecture: A survey and prospective trends,” IEEE Access, vol. 9,

pp. 100 096–100 112, 2021.

[49] H. Askaripoor, M. Hashemi Farzaneh, and A. Knoll, “E/E architecture synthesis: Chal-

lenges and technologies,” Electronics, vol. 11, no. 4, p. 518, 2022.

[50] M. Haeberle, F. Heimgaertner, H. Loehr, et al., “Softwarization of automotive E/E archi-

tectures: A software-defined networking approach,” in 2020 IEEE Vehicular Networking

Conference (VNC), IEEE, 2020, pp. 1–8.

[51] N. Navet and F. Simonot-Lion, Automotive embedded systems handbook. CRC press,

2017.

[52] U. Keskin, “In-vehicle communication networks: a literature survey,” 2009.

[53] S. Brunner, J. Roder, M. Kucera, and T. Waas, “Automotive E/E-architecture enhance-

ments by usage of ethernet TSN,” in 2017 13th Workshop on Intelligent Solutions in

Embedded Systems (WISES), IEEE, 2017, pp. 9–13.

[54] B. Carlson, “Vehicle Network Processors Play Decisive Role in New Vehicle Architec-

tures,” ATZelectronics worldwide, vol. 16, no. 9, pp. 10–15, 2021.

[55] V. Bandur, V. Pantelic, T. Tomashevskiy, and M. Lawford, “A Safety Architecture for

Centralized E/E Architectures,” in 2021 51st Annual IEEE/IFIP International Confer-

ence on Dependable Systems and Networks Workshops (DSN-W), IEEE, 2021, pp. 67–

70.

Bibliography 198

[56] V. M. Navale, K. Williams, A. Lagospiris, M. Schaffert, and M.-A. Schweiker, “(R)

evolution of E/E architectures,” SAE International Journal of Passenger Cars-Electronic

and Electrical Systems, vol. 8, no. 2015-01-0196, pp. 282–288, 2015.

[57] J. Klaus-Wagenbrenner, “Zonal EE architecture: Towards a fully automotive Ethernet-

based vehicle infrastructure,” in Proc. Automotive E/E Architecture Technology Innova-

tion Conference, 2019.

[58] U. Schifferdecker and C. Rätz, “High-Performance Computing Platforms in the Auto-

mobile,” en, Feb. 2020.

[59] F. Rehm, J. Seitter, J.-P. Larsson, et al., “The road towards predictable automotive

high-performance platforms,” in 2021 Design, Automation & Test in Europe Conference

& Exhibition (DATE), IEEE, 2021.

[60] V. L. Thing and J. Wu, “Autonomous vehicle security: A taxonomy of attacks and

defences,” in 2016 ieee international conference on internet of things (ithings) and ieee

green computing and communications (greencom) and ieee cyber, physical and social

computing (cpscom) and ieee smart data (smartdata), IEEE, 2016, pp. 164–170.

[61] C. Bernardini, M. R. Asghar, and B. Crispo, “Security and privacy in vehicular commu-

nications: Challenges and opportunities,” Vehicular Communications, vol. 10, pp. 13–28,

2017.

[62] N. T. Courtois, G. V. Bard, and D. Wagner, “Algebraic and slide attacks on KeeLoq,”

Lecture Notes in Computer Science, vol. 5086, pp. 97–115, 2008.

[63] T. Eisenbarth, T. Kasper, A. Moradi, C. Paar, M. Salmasizadeh, and M. T. M. Shalmani,

“On the power of power analysis in the real world: A complete break of the KeeLoq code

hopping scheme,” in Advances in Cryptology–CRYPTO 2008: 28th Annual International

Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2008. Proceedings 28,

Springer, 2008, pp. 203–220.

[64] I. Rouf, R. D. Miller, H. A. Mustafa, et al., “Security and Privacy Vulnerabilities of In-

Car Wireless Networks: A Tire Pressure Monitoring System Case Study.,” in USENIX

Security Symposium, vol. 10, 2010.

[65] C. Miller and C. Valasek, “Adventures in automotive networks and control units,” Def

Con, vol. 21, no. 260-264, pp. 15–31, 2013.

Bibliography 199

[66] A. Yadav, G. Bose, R. Bhange, K. Kapoor, N. Iyengar, and R. D. Caytiles, “Security,

vulnerability and protection of vehicular on-board diagnostics,” International Journal of

Security and Its Applications, vol. 10, no. 4, pp. 405–422, 2016.

[67] D. Klinedinst and C. King, “On board diagnostics: Risks and vulnerabilities of the

connected vehicle,” CERT Coordination Center, Tech. Rep, 2016.

[68] “A practical wireless attack on the connected car and security protocol for in-vehicle

CAN, author=Woo, Samuel and Jo, Hyo Jin and Lee, Dong Hoon,” IEEE Transactions

on intelligent transportation systems, vol. 16, no. 2, pp. 993–1006, 2014.

[69] B. Groza, H. Gurban, L. Popa, A. Berdich, and S. Murvay, “Car-to-Smartphone Inter-

actions: Experimental Setup, Risk Analysis and Security Technologies,” in 5th Interna-

tional Workshop on Critical Automotive Applications: Robustness & Safety, 2019.

[70] Z. El-Rewini, K. Sadatsharan, D. F. Selvaraj, S. J. Plathottam, and P. Ranganathan,

“Cybersecurity challenges in vehicular communications,” Vehicular Communications,

vol. 23, p. 100 214, 2020.

[71] S. Parkinson, P. Ward, K. Wilson, and J. Miller, “Cyber threats facing autonomous and

connected vehicles: Future challenges,” IEEE transactions on intelligent transportation

systems, vol. 18, no. 11, pp. 2898–2915, 2017.

[72] N. Khatri, R. Shrestha, and S. Y. Nam, “Security issues with in-vehicle networks, and

enhanced countermeasures based on blockchain,” Electronics, vol. 10, no. 8, p. 893, 2021.

[73] K. Kim, J. S. Kim, S. Jeong, J.-H. Park, and H. K. Kim, “Cybersecurity for autonomous

vehicles: Review of attacks and defense,” Computers & Security, vol. 103, p. 102 150,

2021.

[74] Z. Petho, I. Khan, and Á. Torok, “Analysis of security vulnerability levels of in-vehicle

network topologies applying graph representations,” Journal of Electronic Testing, pp. 1–

9, 2021.

[75] A. Chattopadhyay, K.-Y. Lam, and Y. Tavva, “Autonomous vehicle: Security by design,”

IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 11, pp. 7015–7029,

2020.

[76] H. M. Song, H. R. Kim, and H. K. Kim, “Intrusion detection system based on the

analysis of time intervals of CAN messages for in-vehicle network,” in 2016 international

conference on information networking (ICOIN), IEEE, 2016, pp. 63–68.

Bibliography 200

[77] M. R. Moore, R. A. Bridges, F. L. Combs, M. S. Starr, and S. J. Prowell, “Modeling

inter-signal arrival times for accurate detection of can bus signal injection attacks: a

data-driven approach to in-vehicle intrusion detection,” in Proceedings of the 12th Annual

Conference on Cyber and Information Security Research, 2017, pp. 1–4.

[78] C. Young, H. Olufowobi, G. Bloom, and J. Zambreno, “Automotive intrusion detection

based on constant can message frequencies across vehicle driving modes,” in Proceedings

of the ACM Workshop on Automotive Cybersecurity, 2019, pp. 9–14.

[79] H. Lee, S. H. Jeong, and H. K. Kim, “OTIDS: A novel intrusion detection system for

in-vehicle network by using remote frame,” in 2017 15th Annual Conference on Privacy,

Security and Trust (PST), IEEE, 2017, pp. 57–5709.

[80] Q. Wang, Y. Qian, Z. Lu, Y. Shoukry, and G. Qu, “A delay based plug-in-monitor

for intrusion detection in controller area network,” in 2018 Asian Hardware Oriented

Security and Trust Symposium (AsianHOST), IEEE, 2018, pp. 86–91.

[81] P. Waszecki, P. Mundhenk, S. Steinhorst, M. Lukasiewycz, R. Karri, and S. Chakraborty,

“Automotive electrical and electronic architecture security via distributed in-vehicle traf-

fic monitoring,” IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, vol. 36, no. 11, pp. 1790–1803, 2017.

[82] S. Halder, M. Conti, and S. K. Das, “COIDS: A clock offset based intrusion detection

system for controller area networks,” in Proceedings of the 21st International Conference

on Distributed Computing and Networking, 2020, pp. 1–10.

[83] K. Huang, Q. Zhang, C. Zhou, N. Xiong, and Y. Qin, “An efficient intrusion detection ap-

proach for visual sensor networks based on traffic pattern learning,” IEEE Transactions

on Systems, Man, and Cybernetics: Systems, vol. 47, no. 10, pp. 2704–2713, 2017.

[84] M. Basseville, I. V. Nikiforov, et al., Detection of abrupt changes: theory and application.

prentice Hall Englewood Cliffs, 1993, vol. 104.

[85] M. Müter, A. Groll, and F. C. Freiling, “A structured approach to anomaly detection for

in-vehicle networks,” in 2010 Sixth International Conference on Information Assurance

and Security, IEEE, 2010, pp. 92–98.

[86] M. Müter, A. Groll, and F. Freiling, “Anomaly detection for in-vehicle networks using

a sensor-based approach,” Journal of Information Assurance and Security, vol. 6, no. 2,

pp. 132–140, 2011.

Bibliography 201

[87] J. Ning, J. Wang, J. Liu, and N. Kato, “Attacker identification and intrusion detection

for in-vehicle networks,” IEEE communications letters, vol. 23, no. 11, pp. 1927–1930,

2019.

[88] K.-T. Cho and K. G. Shin, “Error handling of in-vehicle networks makes them vulnera-

ble,” in Proceedings of the 2016 ACM SIGSAC Conference on Computer and Commu-

nications Security, 2016, pp. 1044–1055.

[89] G. Baldini, “Detection of cybersecurity spoofing attacks in vehicular networks with re-

currence quantification analysis,” Computer Communications, vol. 191, pp. 486–499,

2022.

[90] M. Müter and N. Asaj, “Entropy-based anomaly detection for in-vehicle networks,” in

2011 IEEE Intelligent Vehicles Symposium (IV), IEEE, 2011, pp. 1110–1115.

[91] W. Wu, Y. Huang, R. Kurachi, et al., “Sliding window optimized information entropy

analysis method for intrusion detection on in-vehicle networks,” IEEE Access, vol. 6,

pp. 45 233–45 245, 2018.

[92] G. Baldini, “On the application of entropy measures with sliding window for intrusion

detection in automotive in-vehicle networks,” Entropy, vol. 22, no. 9, p. 1044, 2020.

[93] D. Stabili, M. Marchetti, and M. Colajanni, “Detecting attacks to internal vehicle net-

works through Hamming distance,” in 2017 AEIT International Annual Conference,

IEEE, 2017, pp. 1–6.

[94] E. Seo, H. M. Song, and H. K. Kim, “GIDS: GAN based intrusion detection system

for in-vehicle network,” in 2018 16th Annual Conference on Privacy, Security and Trust

(PST), IEEE, 2018, pp. 1–6.

[95] J. Zhang, F. Li, H. Zhang, R. Li, and Y. Li, “Intrusion detection system using deep

learning for in-vehicle security,” Ad Hoc Networks, vol. 95, p. 101 974, 2019.

[96] S. Tariq, S. Lee, and S. S. Woo, “CANTransfer: Transfer learning based intrusion detec-

tion on a controller area network using convolutional LSTM network,” in Proceedings of

the 35th annual ACM symposium on applied computing, 2020, pp. 1048–1055.

[97] H. M. Song, J. Woo, and H. K. Kim, “In-vehicle network intrusion detection using deep

convolutional neural network,” Vehicular Communications, vol. 21, p. 100 198, 2020.

Bibliography 202

[98] H. M. Song and H. K. Kim, “Self-supervised anomaly detection for in-vehicle network

using noised pseudo normal data,” IEEE Transactions on Vehicular Technology, vol. 70,

no. 2, pp. 1098–1108, 2021.

[99] S. Jeong, B. Jeon, B. Chung, and H. K. Kim, “Convolutional neural network-based

intrusion detection system for AVTP streams in automotive Ethernet-based networks,”

Vehicular Communications, vol. 29, p. 100 338, 2021.

[100] J. Wei, Y. Chen, Y. Lai, Y. Wang, and Z. Zhang, “Domain adversarial neural network-

based intrusion detection system for in-vehicle network variant attacks,” IEEE Commu-

nications Letters, vol. 26, no. 11, pp. 2547–2551, 2022.

[101] L. Fei-Fei, R. Fergus, and P. Perona, “One-shot learning of object categories,” IEEE

transactions on pattern analysis and machine intelligence, vol. 28, no. 4, pp. 594–611,

2006.

[102] L. Y. Pratt, “Discriminability-based transfer between neural networks,” in Advances in

neural information processing systems, S. Hanson, J. Cowan, and C. Giles, Eds., vol. 5,

Morgan-Kaufmann, 1992. [Online]. Available: https://proceedings.neurips.cc/

paper_files/paper/1992/file/67e103b0761e60683e83c559be18d40c-Paper.pdf.

[103] Z. Deng, Y. Xun, J. Liu, S. Li, and Y. Zhao, “A Novel Intrusion Detection System

for Next Generation In-Vehicle Networks,” in GLOBECOM 2022-2022 IEEE Global

Communications Conference, IEEE, 2022, pp. 2098–2103.

[104] A. K. Dwivedi, “Anomaly detection in intra-vehicle networks,” arXiv preprint

arXiv:2205.03537, 2022.

[105] D. Stabili, L. Ferretti, M. Andreolini, and M. Marchetti, “DAGA: Detecting attacks to

in-vehicle networks via n-Gram analysis,” IEEE Transactions on Vehicular Technology,

vol. 71, no. 11, pp. 11 540–11 554, 2022.

[106] H. Kwon, S. Lee, J. Choi, and B.-h. Chung, “Mitigation mechanism against in-vehicle

network intrusion by reconfiguring ECU and disabling attack packet,” in 2018 Interna-

tional Conference on Information Technology (InCIT), IEEE, 2018, pp. 1–5.

[107] S.-F. Lokman, A. T. Othman, and M.-H. Abu-Bakar, “Intrusion detection system for

automotive Controller Area Network (CAN) bus system: a review,” EURASIP Journal

on Wireless Communications and Networking, vol. 2019, pp. 1–17, 2019.

https://proceedings.neurips.cc/paper_files/paper/1992/file/67e103b0761e60683e83c559be18d40c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1992/file/67e103b0761e60683e83c559be18d40c-Paper.pdf

Bibliography 203

[108] S. Rajapaksha, H. Kalutarage, M. O. Al-Kadri, A. Petrovski, G. Madzudzo, and M.

Cheah, “AI-based intrusion detection systems for in-vehicle networks: A survey,” ACM

Computing Surveys, vol. 55, no. 11, pp. 1–40, 2023.

[109] Y. Xie, Y. Zhou, J. Xu, J. Zhou, X. Chen, and F. Xiao, “Cybersecurity protection on

in-vehicle networks for distributed automotive cyber-physical systems: state-of-the-art

and future challenges,” Software: Practice and Experience, vol. 51, no. 11, pp. 2108–2127,

2021.

[110] I. Zenden, H. Wang, A. Iacovazzi, A. Vahidi, R. Blom, and S. Raza, “On the Resilience

of Machine Learning-Based IDS for Automotive Networks,” in 2023 IEEE Vehicular

Networking Conference (VNC), IEEE, 2023, pp. 239–246.

[111] K. He, D. D. Kim, and M. R. Asghar, “Adversarial Machine Learning for Network

Intrusion Detection Systems: A Comprehensive Survey,” IEEE Communications Surveys

& Tutorials, 2023.

[112] Y. Vardi, “Network tomography: Estimating source-destination traffic intensities from

link data,” Journal of the American statistical association, vol. 91, no. 433, pp. 365–377,

1996.

[113] K Claffy, T. E. Monk, and D. McRobb, “Internet tomography,” Nature, pp. 1–6, 1999.

[114] A. Coates, A. O. Hero III, R. Nowak, and B. Yu, “Internet tomography,” IEEE Signal

processing magazine, vol. 19, no. 3, pp. 47–65, 2002.

[115] T. Bu, N. Duffield, F. L. Presti, and D. Towsley, “Network tomography on general

topologies,” ACM SIGMETRICS Performance Evaluation Review, vol. 30, no. 1, pp. 21–

30, 2002.

[116] A. Gopalan and S. Ramasubramanian, “On identifying additive link metrics using lin-

early independent cycles and paths,” IEEE/ACM Transactions on Networking, vol. 20,

no. 3, pp. 906–916, 2011.

[117] L. Ma, T. He, K. K. Leung, D. Towsley, and A. Swami, “Efficient identification of additive

link metrics via network tomography,” in 2013 IEEE 33rd International Conference on

Distributed Computing Systems, IEEE, 2013, pp. 581–590.

[118] H. Li, Y. Gao, W. Dong, and C. Chen, “Preferential link tomography in dynamic net-

works,” IEEE/ACM transactions on networking, vol. 27, no. 5, pp. 1801–1814, 2019.

Bibliography 204

[119] P. Qin, B. Dai, G. Xu, K. Wu, and B. Huang, “Taking a free ride for routing topology

inference in peer-to-peer networks,” Peer-to-Peer Networking and Applications, vol. 9,

pp. 1047–1059, 2016.

[120] X. Zhang and C. Phillips, “A survey on selective routing topology inference through

active probing,” IEEE Communications Surveys & Tutorials, vol. 14, no. 4, pp. 1129–

1141, 2011.

[121] B. Eriksson, G. Dasarathy, P. Barford, and R. Nowak, “Efficient network tomography

for internet topology discovery,” IEEE/ACM Transactions on Networking, vol. 20, no. 3,

pp. 931–943, 2011.

[122] R. Zhang, Y. Li, and X. Li, “Topology inference with network tomography based on

t-test,” IEEE communications letters, vol. 18, no. 6, pp. 921–924, 2014.

[123] B. Xi, G. Michailidis, and V. N. Nair, “Estimating network loss rates using active tomog-

raphy,” Journal of the American Statistical Association, vol. 101, no. 476, pp. 1430–1448,

2006.

[124] E. Lawrence, G. Michailidis, and V. N. Nair, “Statistical inverse problems in active

network tomography,” Lecture notes-monograph series, pp. 24–44, 2007.

[125] X. Fan, X. Li, and J. Zhang, “Compressed sensing based loss tomography using weighted

l1 minimization,” Computer Communications, vol. 127, pp. 122–130, 2018.

[126] Y. Tsang, M. Coates, and R. Nowak, “Passive unicast network tomography based on

TCP monitoring,” Rice University, ECE Department Technical Report TR-0005, 2000.

[127] Y. Tsang, M. Coates, and R. Nowak, “Passive network tomography using EM algo-

rithms,” in 2001 IEEE International Conference on Acoustics, Speech, and Signal Pro-

cessing. Proceedings (Cat. No. 01CH37221), IEEE, vol. 3, 2001, pp. 1469–1472.

[128] V. N. Padmanabhan and L. Qiu, “Network tomography using passive end-to-end mea-

surements,” in DIMACS Workshop on Internet and WWW Measurement, Mapping and

Modeling, Citeseer, 2002.

[129] H. Yao, S. Jaggi, and M. Chen, “Passive network tomography for erroneous networks:

A network coding approach,” IEEE Transactions on Information Theory, vol. 58, no. 9,

pp. 5922–5940, 2012.

Bibliography 205

[130] L. Ma, T. He, K. K. Leung, A. Swami, and D. Towsley, “Inferring link metrics from end-

to-end path measurements: Identifiability and monitor placement,” IEEE/ACM trans-

actions on networking, vol. 22, no. 4, pp. 1351–1368, 2014.

[131] N. G. Duffield, J. Horowitz, F. L. Presti, and D Towsley, “Network delay tomography

from end-to-end unicast measurements,” in IWDC, Springer, vol. 1, 2001, pp. 576–595.

[132] M. J. Coates and R. D. Nowak, “Network tomography for internal delay estimation,”

in 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing.

Proceedings (Cat. No. 01CH37221), IEEE, vol. 6, 2001, pp. 3409–3412.

[133] Y. Tsang, M. Coates, and R. D. Nowak, “Network delay tomography,” IEEE Transac-

tions on Signal Processing, vol. 51, no. 8, pp. 2125–2136, 2003.

[134] N. G. Duffield and F. L. Presti, “Network tomography from measured end-to-end delay

covariance,” IEEE/ACM Transactions On Networking, vol. 12, no. 6, pp. 978–992, 2004.

[135] E. Lawrence, G. Michailidis, and V. N. Nair, “Network delay tomography using flexicast

experiments,” Journal of the Royal Statistical Society: Series B (Statistical Methodology),

vol. 68, no. 5, pp. 785–813, 2006.

[136] V. Arya, N. G. Duffield, and D. Veitch, “Temporal delay tomography,” in IEEE INFO-

COM 2008-The 27th Conference on Computer Communications, IEEE, 2008, pp. 276–

280.

[137] K. Deng, Y. Li, W. Zhu, Z. Geng, and J. S. Liu, “On delay tomography: Fast al-

gorithms and spatially dependent models,” IEEE Transactions on Signal Processing,

vol. 60, no. 11, pp. 5685–5697, 2012.

[138] P. Qin, B. Dai, K. Wu, B. Huang, and G. Xu, “DCE: A novel delay correlation measure-

ment for tomography with passive realization,” arXiv preprint arXiv:1307.5085, 2013.

[139] Y. Gao, W. Dong, C. Chen, et al., “Domo: passive per-packet delay tomography in

wireless ad-hoc networks,” in 2014 IEEE 34th International Conference on Distributed

Computing Systems, IEEE, 2014, pp. 419–428.

[140] N. E. Rad, Y. Ephraim, and B. L. Mark, “Delay network tomography using a partially

observable bivariate Markov chain,” IEEE/ACM Transactions on Networking, vol. 25,

no. 1, pp. 126–138, 2016.

Bibliography 206

[141] R. N. Pradhan, M. S. Khan, M. Nijim, and R. Challoo, “Network delay modeling in

Mobile Wireless Mesh Networks using Network Tomography,” in 2017 IEEE 7th Annual

Computing and Communication Workshop and Conference (CCWC), IEEE, 2017, pp. 1–

8.

[142] H.-T. Wei, S.-H. Hsieh, W.-L. Hwang, C.-S. Liao, and C.-S. Lu, “Link Delay Estimation

Using Sparse Recovery for Dynamic Network Tomography,” arXiv preprint arXiv:1812.00369,

2018.

[143] D. Ghita, H. Nguyen, M. Kurant, K. Argyraki, and P. Thiran, “Netscope: Practical

network loss tomography,” in 2010 Proceedings IEEE INFOCOM, IEEE, 2010, pp. 1–9.

[144] Y. Qiao, G. Wang, X.-s. Qiu, and R. Gu, “Network loss tomography using link indepen-

dence,” in 2012 IEEE Symposium on Computers and Communications (ISCC), IEEE,

2012, pp. 000 569–000 574.

[145] X. Cao, Y. Wang, X. Qiu, and L. Meng, “End-to-end path loss inference algorithm with

network tomography,” in 2013 15th Asia-Pacific Network Operations and Management

Symposium (APNOMS), IEEE, 2013, pp. 1–3.

[146] N. Duffield, “Simple network performance tomography,” in Proceedings of the 3rd ACM

SIGCOMM conference on Internet measurement, 2003, pp. 210–215.

[147] N. Duffield, “Network tomography of binary network performance characteristics,” IEEE

Transactions on Information Theory, vol. 52, no. 12, pp. 5373–5388, 2006.

[148] M. Mukamoto, T. Matsuda, S. Hara, K. Takizawa, F. Ono, and R. Miura, “Adaptive

boolean network tomography for link failure detection,” in 2015 IFIP/IEEE Interna-

tional Symposium on Integrated Network Management (IM), IEEE, 2015, pp. 646–651.

[149] N. Ogino, T. Kitahara, S. Arakawa, G. Hasegawa, and M. Murata, “Decentralized

boolean network tomography based on network partitioning,” in NOMS 2016-2016 IEEE/I-

FIP Network Operations and Management Symposium, IEEE, 2016, pp. 162–170.

[150] N. Bartolini, T. He, V. Arrigoni, A. Massini, F. Trombetti, and H. Khamfroush, “On fun-

damental bounds on failure identifiability by boolean network tomography,” IEEE/ACM

Transactions on Networking, vol. 28, no. 2, pp. 588–601, 2020.

[151] N. Galesi and F. Ranjbar, “Counting and localizing defective nodes by Boolean network

tomography,” arXiv preprint arXiv:2101.04403, 2021.

Bibliography 207

[152] S. Zarifzadeh, M. Gowdagere, and C. Dovrolis, “Range tomography: combining the prac-

ticality of boolean tomography with the resolution of analog tomography,” in Proceedings

of the 2012 Internet Measurement Conference, 2012, pp. 385–398.

[153] Y. Chen, D. Bindel, and R. H. Katz, “Tomography-based overlay network monitoring,”

in Proceedings of the 3rd ACM SIGCOMM conference on Internet measurement, 2003,

pp. 216–231.

[154] M. H. Firooz and S. Roy, “Network tomography via compressed sensing,” in 2010 IEEE

Global Telecommunications Conference GLOBECOM 2010, IEEE, 2010, pp. 1–5.

[155] M. Firooz and S. Roy, “Network Tomography via Compressed Sensing - with path se-

lection,” Dec. 2010, pp. 1–5. doi: 10.1109/GLOCOM.2010.5684036.

[156] W. Wang, X. Gan, W. Bai, X. Wang, and X. Tian, “Compressed sensing based net-

work tomography using end-to-end path measurements,” in 2017 IEEE International

Conference on Communications (ICC), IEEE, 2017, pp. 1–6.

[157] G Sharma, S Jaggi, and B. Dey, “Network tomography via network coding,” in 2008

Information Theory and Applications Workshop, IEEE, 2008, pp. 151–157.

[158] H. Yao, S. Jaggi, and M. Chen, “Network coding tomography for network failures,” in

2010 Proceedings IEEE INFOCOM, IEEE, 2010, pp. 1–5.

[159] P. Qin, B. Dai, B. Huang, G. Xu, and K. Wu, “A survey on network tomography with

network coding,” IEEE Communications Surveys & Tutorials, vol. 16, no. 4, pp. 1981–

1995, 2014.

[160] V. N. Padmanabhan, L. Qiu, and H. J. Wang, “Passive network tomography using

bayesian inference,” in Proceedings of the 2nd ACM SIGCOMM Workshop on Internet

measurment, 2002, pp. 93–94.

[161] X. Fan and X. Li, “Network tomography via sparse Bayesian learning,” IEEE Commu-

nications Letters, vol. 21, no. 4, pp. 781–784, 2017.

[162] G. Liang and B. Yu, “Maximum pseudo likelihood estimation in network tomography,”

IEEE Transactions on Signal Processing, vol. 51, no. 8, pp. 2043–2053, 2003.

https://doi.org/10.1109/GLOCOM.2010.5684036

Bibliography 208

[163] G. Liang and B. Yu, “Pseudo likelihood estimation in network tomography,” in IEEE

INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer and

Communications Societies (IEEE Cat. No. 03CH37428), IEEE, vol. 3, 2003, pp. 2101–

2111.

[164] Z. Yang, R. Gu, T. Dong, et al., “An artificial neural network based attenuation tomog-

raphy in free space optical network,” in 2018 International Conference on Networking

and Network Applications (NaNA), IEEE, 2018, pp. 52–57.

[165] L. Ma, Z. Zhang, and M. Srivatsa, “Neural network tomography,” arXiv preprint

arXiv:2001.02942, 2020.

[166] M. Rahali, J.-M. Sanner, and G. Rubino, “TOM: a self-trained Tomography solution for

Overlay networks Monitoring,” in 2020 IEEE 17th Annual Consumer Communications

& Networking Conference (CCNC), IEEE, 2020, pp. 1–6.

[167] I. Sartzetakis and E. Varvarigos, “Machine Learning Network Tomography with partial

topology knowledge and dynamic routing,” in GLOBECOM 2022-2022 IEEE Global

Communications Conference, IEEE, 2022, pp. 4922–4927.

[168] G. I. Mary, Z. C. Alex, and L. Jenkins, “Response time analysis of messages in controller

area network: a review,” Journal of Computer Networks and Communications, vol. 2013,

2013.

[169] G. Kakkavas, A. Stamou, V. Karyotis, and S. Papavassiliou, “Network tomography for

efficient monitoring in SDN-enabled 5G networks and beyond: Challenges and opportu-

nities,” IEEE Communications Magazine, vol. 59, no. 3, pp. 70–76, 2021.

[170] M. H. Raza, A. Nafarieh, and W. Robertson, “Application of network tomography in

load balancing,” Procedia Computer Science, vol. 52, pp. 1120–1125, 2015.

[171] W. Wang, H. Wang, B. Wang, Y. Wang, and J. Wang, “Energy-aware and self-adaptive

anomaly detection scheme based on network tomography in mobile ad hoc networks,”

Information Sciences, vol. 220, pp. 580–602, 2013.

[172] T. He, “Distributed link anomaly detection via partial network tomography,” ACM

SIGMETRICS Performance Evaluation Review, vol. 45, no. 3, pp. 29–42, 2018.

[173] L. Ma, T. He, A. Swami, D. Towsley, K. K. Leung, and J. Lowe, “Node failure local-

ization via network tomography,” in Proceedings of the 2014 Conference on Internet

Measurement Conference, 2014, pp. 195–208.

Bibliography 209

[174] V. W. Bandara, A. P. Jayasumana, and R. Whitner, “An adaptive compressive sensing

scheme for network tomography based fault localization,” in 2014 IEEE International

Conference on Communications (ICC), IEEE, 2014, pp. 1290–1295.

[175] S. Pan, P. Li, C. Yi, D. Zeng, Y.-C. Liang, and G. Hu, “Edge intelligence empowered

urban traffic monitoring: A network tomography perspective,” IEEE Transactions on

Intelligent Transportation Systems, vol. 22, no. 4, pp. 2198–2211, 2020.

[176] R. Zhang, S. Newman, M. Ortolani, and S. Silvestri, “A network tomography approach

for traffic monitoring in smart cities,” IEEE Transactions on Intelligent Transportation

Systems, vol. 19, no. 7, pp. 2268–2278, 2018.

[177] A. Paranjothi, M. S. Khan, R. Patan, R. M. Parizi, and M. Atiquzzaman, “VANETomo:

A congestion identification and control scheme in connected vehicles using network to-

mography,” Computer Communications, vol. 151, pp. 275–289, 2020.

[178] G. Michailidis, “Power allocation to a network of charging stations based on network

tomography monitoring,” in 2013 18th International Conference on Digital Signal Pro-

cessing (DSP), IEEE, 2013, pp. 1–6.

[179] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016.

[180] S. J. Russell, Artificial intelligence a modern approach. Pearson Education, Inc., 2010.

[181] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press, 2018.

[182] C. C. Aggarwal et al., “Neural networks and deep learning,” Springer, vol. 10, no. 978,

p. 3, 2018.

[183] R. Rojas and R. Rojas, “The backpropagation algorithm,” Neural networks: a systematic

introduction, pp. 149–182, 1996.

[184] A. F. Agarap, “Deep learning using rectified linear units (ReLU),” arXiv preprint

arXiv:1803.08375, 2018.

[185] S. Sharma, S. Sharma, and A. Athaiya, “Activation functions in neural networks,” To-

wards Data Sci, vol. 6, no. 12, pp. 310–316, 2017.

[186] S. Narayan, “The generalized sigmoid activation function: Competitive supervised learn-

ing,” Information sciences, vol. 99, no. 1-2, pp. 69–82, 1997.

Bibliography 210

[187] P. Jeatrakul and K. W. Wong, “Comparing the performance of different neural networks

for binary classification problems,” in 2009 Eighth International Symposium on Natural

Language Processing, IEEE, 2009, pp. 111–115.

[188] B. Gao and L. Pavel, “On the properties of the softmax function with application in

game theory and reinforcement learning,” arXiv preprint arXiv:1704.00805, 2017.

[189] G. Ou and Y. L. Murphey, “Multi-class pattern classification using neural networks,”

Pattern recognition, vol. 40, no. 1, pp. 4–18, 2007.

[190] D. F. Specht et al., “A general regression neural network,” IEEE transactions on neural

networks, vol. 2, no. 6, pp. 568–576, 1991.

[191] H. Zhao, O. Gallo, I. Frosio, and J. Kautz, “Loss functions for image restoration with

neural networks,” IEEE Transactions on computational imaging, vol. 3, no. 1, pp. 47–57,

2016.

[192] S. Ruder, “An overview of gradient descent optimization algorithms,” arXiv preprint

arXiv:1609.04747, 2016.

[193] L. Bottou et al., “Stochastic gradient learning in neural networks,” Proceedings of Neuro-

Nımes, vol. 91, no. 8, p. 12, 1991.

[194] D. R. Wilson and T. R. Martinez, “The general inefficiency of batch training for gradient

descent learning,” Neural networks, vol. 16, no. 10, pp. 1429–1451, 2003.

[195] S. Khirirat, H. R. Feyzmahdavian, and M. Johansson, “Mini-batch gradient descent:

Faster convergence under data sparsity,” in 2017 IEEE 56th Annual Conference on

Decision and Control (CDC), IEEE, 2017, pp. 2880–2887.

[196] R. Diestel, “Graph theory,” Grad. Texts in Math, vol. 101, p. 867, 2005.

[197] A. Benjamin, G. Chartrand, and P. Zhang, The fascinating world of graph theory. Prince-

ton University Press, 2017.

[198] A. Varga, “OMNeT++,” in Modeling and tools for network simulation, Springer, 2010,

pp. 35–59.

[199] R. L. S. De Oliveira, C. M. Schweitzer, A. A. Shinoda, and L. R. Prete, “Using Mininet

for emulation and prototyping software-defined networks,” in 2014 IEEE Colombian

conference on communications and computing (COLCOM), Ieee, 2014, pp. 1–6.

Bibliography 211

[200] C. Fernandez and J. L. Munoz, “Software Defined Networking (SDN) with OpenFlow

1.3, Open vSwitch and Ryu,” UPC Telematics Department, 2015.

[201] R. Khondoker, A. Zaalouk, R. Marx, and K. Bayarou, “Feature-based comparison and

selection of Software Defined Networking (SDN) controllers,” in 2014 world congress on

computer applications and information systems (WCCAIS), IEEE, 2014, pp. 1–7.

[202] L. Mamushiane, A. Lysko, and S. Dlamini, “A comparative evaluation of the performance

of popular SDN controllers,” in 2018 Wireless Days (WD), IEEE, 2018, pp. 54–59.

[203] D. Houcque et al., “Introduction to Matlab for engineering students,” Northwestern

University, no. 1, 2005.

[204] W. McKinney et al., “Pandas: A foundational Python library for data analysis and

statistics,” Python for high performance and scientific computing, vol. 14, no. 9, pp. 1–9,

2011.

[205] N. Ari and M. Ustazhanov, “Matplotlib in python,” in 2014 11th International Confer-

ence on Electronics, Computer and Computation (ICECCO), IEEE, 2014, pp. 1–6.

[206] N. Ketkar and E. Santana, Deep learning with Python. Springer, 2017, vol. 1.

[207] J. C. Walrand, M. Turner, and R. Myers, “An Architecture for In-Vehicle Networks,”

IEEE Transactions on Vehicular Technology, 2021.

[208] A. Ibraheem, Z. Sheng, G. Parisis, and D. Tian, “In-Vehicle Network Delay Tomog-

raphy,” in GLOBECOM 2022-2022 IEEE Global Communications Conference, IEEE,

2022, pp. 5528–5533.

[209] Y. Xia and D. Tse, “Inference of link delay in communication networks,” IEEE Journal

on Selected areas in Communications, vol. 24, no. 12, pp. 2235–2248, 2006.

[210] A. M. Turing, “Rounding-off errors in matrix processes,” The Quarterly Journal of Me-

chanics and Applied Mathematics, vol. 1, no. 1, pp. 287–308, 1948.

[211] T. Steinbach, P. Meyer, S. Buschmann, and F. Korf, “Extending OMNeT++ towards

a platform for the design of future in-vehicle network architectures,” arXiv preprint

arXiv:1609.05179, 2016.

[212] D. Thiele, J. Schlatow, P. Axer, and R. Ernst, “Formal timing analysis of CAN-to-

Ethernet gateway strategies in automotive networks,” Real-time systems, vol. 52, pp. 88–

112, 2016.

Bibliography 212

[213] E. Bisong and E. Bisong, “Introduction to Scikit-learn,” Building Machine Learning and

Deep Learning Models on Google Cloud Platform: A Comprehensive Guide for Beginners,

pp. 215–229, 2019.

[214] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint

arXiv:1412.6980, 2014.

[215] C. Gay and T. Matsumoto, “A Study of Message Arrival Timestamps on Controller Area

Networks,” International Journal of Automotive Engineering, vol. 13, no. 1, pp. 29–37,

2022.

[216] Y. J. Kim, J. H. Kim, B. M. Cheon, Y. S. Lee, and J. W. Jeon, “Performance of IEEE

802.1 AS for automotive system using hardware timestamp,” in The 18th IEEE Inter-

national Symposium on Consumer Electronics (ISCE 2014), IEEE, 2014, pp. 1–2.

[217] A. Ibraheem, Z. Sheng, G. Parisis, and D. Tian, “Neural network based partial tomog-

raphy for in-vehicle network monitoring,” in 2021 IEEE International Conference on

Communications Workshops (ICC Workshops), IEEE, 2021, pp. 1–6.

[218] P. Meyer, F. Korf, T. Steinbach, and T. C. Schmidt, “Simulation of mixed critical in-

vehicular networks,” in Recent Advances in Network Simulation: The OMNeT++ Envi-

ronment and its Ecosystem, A. Virdis and M. Kirsche, Eds. Cham: Springer International

Publishing, 2019, pp. 317–345.

[219] M. Buechel, J. Frtunikj, K. Becker, et al., “An automated electric vehicle prototype

showing new trends in automotive architectures,” in 2015 IEEE 18th International Con-

ference on Intelligent Transportation Systems, IEEE, 2015.

[220] R. Hegde, S. Kumar, and K. Gurumurthy, “The impact of network topologies on the

performance of the in-vehicle network,” International Journal of Computer Theory and

Engineering, 2013.

[221] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky, and S.

Uhlig, “Software-defined networking: A comprehensive survey,” Proceedings of the IEEE,

2014.

[222] N. McKeown, T. Anderson, H. Balakrishnan, et al., “OpenFlow: enabling innovation in

campus networks,” ACM SIGCOMM computer communication review, 2008.

[223] P.-W. Tsai, C.-W. Tsai, C.-W. Hsu, and C.-S. Yang, “Network monitoring in software-

defined networking: A review,” IEEE Systems Journal, 2018.

Bibliography 213

[224] C. Birkinshaw, E. Rouka, and V. G. Vassilakis, “Implementing an intrusion detection and

prevention system using software-defined networking: Defending against port-scanning

and denial-of-service attacks,” Journal of Network and Computer Applications, 2019.

[225] I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini, and H. Flinck, “Network slicing and soft-

warization: A survey on principles, enabling technologies, and solutions,” IEEE Com-

munications Surveys & Tutorials, vol. 20, no. 3, pp. 2429–2453, 2018.

[226] T. Ahmed, A. Alleg, R. Ferrus, and R. Riggio, “On-demand network slicing using

SDN/NFV-enabled satellite ground segment systems,” in 2018 4th IEEE Conference

on Network Softwarization and Workshops (NetSoft), ieee, 2018.

[227] N. Zope, S. Pawar, and Z. Saquib, “Firewall and load balancing as an application of

SDN,” in 2016 Conference on advances in signal processing (CASP), IEEE, 2016.

[228] W. Zhou, L. Li, M. Luo, and W. Chou, “REST API design patterns for SDN northbound

API,” in 2014 28th international conference on advanced information networking and

applications workshops, IEEE, 2014, pp. 358–365.

[229] R. Tagyo, D. Ikegami, and R. Kawahara, “Network tomography using routing probability

for virtualized network,” in 2018 IEEE International Conference on Communications

(ICC), IEEE, 2018.

[230] P. Fussey and G. Parisis, “Poster: an in-vehicle software defined network architecture

for connected and automated vehicles,” in Proceedings of the 2nd ACM International

Workshop on Smart, Autonomous, and Connected Vehicular Systems and Services, 2017.

[231] A. Ibraheem, “Cross Network Slicing in Vehicular Networks,” in Intelligent Technologies

for Internet of Vehicles, Springer, 2021, pp. 151–189.

[232] S. R. Pokhrel, “Software defined internet of vehicles for automation and orchestration,”

IEEE Transactions on Intelligent Transportation Systems, 2021.

[233] T. Mekki, I. Jabri, A. Rachedi, and L. Chaari, “Software-defined networking in vehicular

networks: A survey,” Transactions on Emerging Telecommunications Technologies, 2022.

[234] T. Häckel, A. Schmidt, P. Meyer, F. Korf, and T. C. Schmidt, “Strategies for Integrating

Control Flows in Software-Defined In-Vehicle Networks and Their Impact on Network

Security,” in 2020 IEEE Vehicular Networking Conference (VNC), IEEE, 2020.

[235] R. E. Tarjan and T. RE, “A Note on Finding the Bridges of a Graph.,” 1974.

	PhD
	IBRAHEEM PhD thesis FINAL
	Declaration
	Acknowledgements
	Abstract
	Contents
	List of Tables
	List of Figures
	List of Abbreviations
	List of Notations
	Publications
	Introduction
	Overview
	Challenges and Motivation
	Research Questions and Objectives
	Research Questions
	Research Objectives

	Contributions
	Roadmap

	Background
	Vehicular Communications
	External Communication
	Internal Communications

	In-Vehicle Networking Architectures
	Fieldbus Architecture
	Central-Gateway Architecture
	Domain-based Architecture
	Zonal-based Architecture

	Security and Monitoring Challenges in In-Vehicle Networks
	Attack Surfaces
	Attack Types
	In-Vehicle Network Monitoring
	Existing Solutions for Monitoring In-Vehicle Networks

	Network Tomography
	Background
	Categories
	Measurement Types
	Metrics
	Solution Approaches for Network Tomography Problem
	Applications

	Deep Neural Networks (DNNs)
	Feedforward
	Backpropagation

	Graph Theory Preliminaries
	Tools Used for Implementation and Analysis
	OMNeT++
	Mininet
	Ryu SDN Controller
	MATLAB
	Pandas
	TensorFlow and Keras

	Summary

	In-Vehicle Network Tomography
	Overview
	Motivation
	System Model and Problem Formulation
	In-Vehicle Network Model
	Problem Statement

	Network Tomography for In-Vehicle Networks
	Network Tomography Problem Formulation
	Network Identifiability

	Evaluating Network Tomography in In-Vehicle Networks
	Simulation
	Results

	Summary

	DNN-based Partial Tomography
	Overview
	Introduction
	Partial Network Tomography
	Delay Estimation with DNN
	DNN-based Algebraic Tomography
	DNN-based Tomography

	Performance Evaluation
	Experiment Setup
	Results

	Summary

	Anomaly Detection and Localisation using Network Tomography
	Overview
	Anomaly Detection and Localisation Problem
	Network Tomography and DNN-based Anomaly Detection and Localisation
	Delay Network Tomography (DNT)
	Binary Network Tomography (BNT)
	Deep Neural Network (DNN)-based Tomography
	Discussion

	Performance Evaluation
	Experiment Setup
	Results
	Discussion

	Summary

	A New SDN-enabled In-Vehicle Network Topology
	Overview
	Introduction and Motivation
	Centralised In-Vehicle Networking Architectures
	Redundancy in In-Vehicle Networks
	Software-Defined Network (SDN)
	Problem Statement and Assumptions
	Problem Statement
	Assumptions

	Identifiable Topology
	Topological Conditions
	Transformation into Identifiable Topology

	Redundant Topology
	Topological Conditions
	Transformation into Redundant Topology
	Revisiting Identifiability for Redundant Topology

	SDN-enabled Topology
	Proposed In-Vehicle Network Topology
	Proposed Monitoring Framework

	Performance Evaluation
	Transformation Algorithms
	SDN and Network Tomography Integration

	Summary

	Conclusion
	Research Summary
	Future Work
	Network Tomography for Vehicular Communications
	Software-Defined Networks (SDNs) for Vehicular Communications

	Appendix: Traffic Characteristics for Applying Network Tomography in In-Vehicle Networks
	Traffic Characteristics in Single CAN Architecture
	Traffic Characteristics in Central-Gateway Architecture
	Traffic Characteristics in Ethernet-based Architecture
	Cross-traffic between different CANs
	Cross-traffic between different gateways

	Appendix: Evaluation of DNN-based Partial Tomography
	When 50% of the network is measured
	When 60% of the network is measured
	When 70% of the network is measured

	Appendix: Procedures and Code Snippets
	Constructing independent paths in network G
	Finding bridges in network G
	Removing cycles in generated random graph G
	Connecting graph G of multiple components

	Appendix: Simulation Parameters for SDN-enabled In-Vehicle Network
	Delay Tomography Parameters
	When the worst-case delay is 10ms
	When the worst-case delay is 100ms
	When the worst-case delay is 1000ms

	Loss Tomography Parameters
	When the worst-case loss rate is 5%
	When the worst-case loss rate is 10%
	When the worst-case loss rate is 55%

	Bibliography

