University of Sussex
Walker,_Sarah_A..pdf (19.87 MB)

Investigating the role of the ATR-dependent DNA damage response in the aetiology of microcephalic primordial dwarfism disorders

Download (19.87 MB)
posted on 2023-06-08, 14:08 authored by Sarah A Walker
Repair of damage to the DNA is essential for the maintenance of genomic stability, both during embryonic development and normal growth. The cell has therefore evolved a complex array of interconnected pathways to ensure the appropriate response to DNA damage is initiated, such as cell cycle checkpoint arrest, activation of DNA repair pathways or induction of apoptotic processes. These co-ordinated signal transduction pathways have been termed the DNA damage response (DDR). A previous study showed that ATR-dependent damage responses were frequently defective in cell lines from patients with Microcephalic Primordial Dwarfism (MPD) disorders. In this thesis I have further characterised ATR–dependent damage response signalling in several cell lines from patients with various MPD disorders. I have shown that novel mutations in PCNT, which encodes a structural centrosomal protein, result in an MPD disorder and have characterised the associated ATRdependent DNA damage responses. I also contributed to the identification of mutations in ORC1, encoding a component of the DNA replication Origin Recognition Complex, in further MPD patients and examined origin licensing and Sphase progression in the patient derived cell lines. As a novel finding, I observed defects in the ATR-dependent G2/M checkpoint response in these cells. Additionally, I have characterised novel mutations in ATRIP, a gene encoding the obligate partner of ATR, in Seckel Syndrome patients, denoting a novel genetic defect in this condition. Finally, I have explored the role of PLK1 and AurA kinase in ATRdependent G2/M checkpoint control and provided compelling evidence of misregulation of this pathway in various MPD-patient derived cell lines. Collectively these data provide important functional insights into the genetic defects that cause MPD disorders and further explore the link between defective ATR-dependent damage response signalling and microcephaly.


File Version

  • Published version



Department affiliated with

  • Biology and Environmental Science Theses

Qualification level

  • doctoral

Qualification name

  • phd


  • eng


University of Sussex

Full text available

  • Yes

Legacy Posted Date


Usage metrics

    University of Sussex (Theses)


    No categories selected