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UNIVERSITY OF SUSSEX

James Van Yperen, Doctor of Philosophy

Numerical analysis and simulation of mathematical models

for the rice blast fungus

Abstract

In this thesis we present numerical analysis and simulations of mathematical models

relating to the model for the rice blast fungus proposed in [102]. We begin with a compu-

tational study of a diffuse interface approximation of surface advection-diffusion equations

on evolving surfaces. We study the experimental order of convergence produced by the fi-

nite element approximation presented in [44, 63] with added streamline diffusion from [63]

and the stability term introduced in [44]. Furthermore we study the instabilities caused

by an advection-dominated advection-diffusion equation and we introduce a finite volume

approximation of the diffuse interface approximation. We then extend the computational

study to include models in which the velocity law of the surface satisfies curve shortening

flow. Next we prove optimal error bounds for a semi-discrete finite element approximation

for a system consisting of the evolution of a curve evolving by forced curve shortening flow

coupled to a reaction-diffusion equation on the evolving curve, such that the curve evolves

in a given domain Ω ⊂ R2 and meets the boundary, ∂Ω, orthogonally. We compliment

this analysis with error bounds for a fully discrete finite element approximation of curve

shortening flow in the same fixed boundary configuration without the reaction-diffusion

coupling. We also present numerical experiments and show the experimental order of

convergence of the approximations that we analysed. Finally we derive a diffuse interface

approximation to the mathematical model of the rice blast fungus presented in [102] and

present numerical simulations that are consistent with the simulations presented in [102].
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Chapter 1

Introduction

In this thesis, we study mathematical models relating to the model of the rice blast fungus

presented in [102]. Aspects of the models we study are of interest in the surface evolution

community. As we progress through the thesis, we will demonstrate how the content we

introduce links to the mathematical modelling of the fungus.

The rice blast disease occurs in over 85 countries and accounts for the annual loss

of 11-30% of global rice yield [112]. Explicitly, in China between 2001-2005, 5.7 million

hectares of rice was destroyed [119], and, in 1995 in Bhutan, more than 700 hectares of

rice were affected and led to the losses of 1090 tonnes of rice [114]. It poses a significant

threat to global food security. Magnaporthe Oryzae (a.k.a the rice blast fungus) causes

this disease.

The study of the fungus itself is prevalent in the biology sector. It has been studied

both in-vivo and in-vitro for decades [80, 96, 113, 118]. Gaining a good understanding of

the behaviour of fungus is imperative to the success in stopping it. Growing the fungus and

studying its behaviour takes time and resources that are often expensive and not available

to everyone. This aspect is one of the many reasons why the mathematical community

develop mathematical models. Mathematical models have been behind some of the leading

research into real-life phenomena. Although simplifications are necessary for forming a

model, they offer insight that might not have been obtainable in a laboratory. Multiple

simulations with changing parameters can be run in parallel, while mathematical analysis

can identify essential parameters and thresholds which can then be interpreted into real-

life data and strategy. Indeed, the collaboration between biologists and mathematicians

that resulted in the model in [102] that we are using found that a specific molecular species
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is the driving force behind the invasion into crops.

In this introduction, we briefly introduce mean curvature flow, one of the central

themes in this thesis. We then go on to discuss and compare a parametric formulation of

mean curvature flow with a phase field approximation to mean curvature flow. Next, we

introduce surface partial differential equations and in particular surface advection-diffusion

equations and surface reaction-diffusion equations, the other central theme of this thesis,

by considering different frameworks as well as real-life applications. Finally, we give an

overview of the whole thesis.

1.1 Mean curvature flow

Definition 1.1 (Mean Curvature Flow). blah

A family of hypersurfaces Γ(t) are said to evolve by mean curvature flow if they satisfy

the law

v = κ on Γ(t), t ∈ (0, T ], (1.1.1)

where v is the velocity of Γ(t) in the normal direction ~ν and κ is the mean curvature of

Γ(t).

Remark 1.2. Often mean curvature flow is described by v = −κ, we note here that the

sign is dependent on the orientation of the surface.

Remark 1.3. Forced mean curvature flow is mean curvature flow with a forcing term,

that is

v = κ+ p. (1.1.2)

Again we mention that orientation is important for the sign of p.

Remark 1.4. From [41], mean curvature flow is the result of the L2 gradient flow of the

energy functional

E[Γ](t) :=

∫
Γ(t)

dS. (1.1.3)

There are many applications of mean curvature flow, a few of which we list here:

• Grain boundary motion. Grain boundaries in alloys are interfaces which separate

bulk crystalline regions of the same phase but with different orientations. Diffu-

sion and surface tension drive the interface which mathematically is modelled by,
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some variant of, (1.1.1). Moreover, when the alloyed material is placed in a differ-

ent material’s vapour, the particles from the vapour diffuse through the interfaces,

depositing themselves into the bulk exciting the motion of the travelling interface.

This deposition can be modelled mathematically by a conservation law that holds

on the evolving interface. This process is called diffusion induced grain boundary

motion, see [26, 41, 43, 93].

• Image processing. One of the most important aspects of image processing is the

detection of edges/contours of an object by reducing the noise of the image. Since

(1.1.1) is analogous to the geometric heat equation [41], it poses smoothing properties

for curves, and so provides an appropriate model. Several applications come to mind

instantly in medicine, such as in magnetic resonance imagining or an ultrasound scan,

see [3, 41, 91, 101].

• Cell tracking. Cell migration is a fundamental process in biology; it is one of the

factors that explains the process for biological events such as would healing, inflam-

mation and tumour invasion. Cell tracking is the mathematical process of tracking

the cell shape from images. Detecting the geometry of the cell is essential as it

provides knowledge of the edges of that cell, and thus (1.1.1) plays an important

role. The shape of cells are also affected by their surrounding environment, such

as nutrients. Similarly to diffusion induced grain boundary motion, this supplies a

conservation law defined on the evolving surface that describes pattern formation on

the surface, see [17, 89, 120].

We now closely follow [41] in describing two prevalent forms of mean curvature flow

which we consider in this thesis, namely parametric mean curvature flow and the phase

field approach to mean curvature flow. Other descriptions are the mean curvature flow of

graphs, see [38, 88], and the mean curvature flow of level sets, see [39, 105].

1.1.1 Parametric mean curvature flow

In this thesis we only consider the parametric mean curvature flow of curves in R2, also

know as curve shortening flow, whereby, for motivation purposes, we assume the curve Γ(t)

is closed. We choose to specifically introduce this for curves and not generally for surfaces

as the techniques needed are slightly different. Curve shortening flow is a so-called front-

tracking method or explicit method. By this we mean that it explicitly tracks the curve
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Γ(t) and its movement, and the resulting partial differential equation (PDE) essentially

provides the coordinates of the curve. To be more precise, let Γ(t) ⊂ R2 be a family of

closed curves parametrised by ~x : I × [0, T ] → R2, where I := R \ Z is the periodic unit

interval. Then ~x satisfies the relation

~xt = κ~ν = ∆Γ(t)~x, in I, t ∈ (0, T ], (1.1.4)

where ∆Γ(t) denotes the Laplace-Beltrami operator on Γ(t) defined in Definition A.7. One

notices that taking the inner product of (1.1.4) with ~ν, one recovers v = κ on I. By

considering textbook results in differential geometry, such as Frenet’s formula (3.2.2),

(1.1.4) takes the form

~xt − ~xss = 0, in [0, `], t ∈ (0, T ], (1.1.5)

where s denotes the arc-length parameter associated to Γ(t) and ` denotes the total arc

length of the curve. We go into more detail about curve shortening flow in Section 3.2.1.

1.1.2 Phase field approach to mean curvature flow

Although in this thesis we again only consider the phase field approach to mean curvature

flow of curves, we introduce the concept for a general surface since the techniques are the

same. The phase field approach is an example of an implicit method in which, for some

small positive parameter ε, we assume there exists a function ϕ : Rn+1× [0, T ]→ R, with

n = 1, 2, such that

Γε(t) := {~p ∈ Rn+1 : − 1 + Cε ≤ ϕ(~p, t) ≤ 1− Cε},

where the constant C depends on the type of potential we use to describe the phases. The

phases, ϕ ≈ 1 and ϕ ≈ −1, approximate the two sides of the evolving surface and thus ϕ is

consequently described as the phase field function of Γ(t). The phase field approximation

to (1.1.1) is derived by taking the regularized L2 gradient flow of the Ginzburg-Landau-

Wilson functional

Eε[ϕ](t) =

∫
Ω

ε

2
|∇ϕ(·, t)|2 +

1

ε
W (ϕ(·, t)) dx,

which results in a function ϕ that satisfies

εϕt = ε∆ϕ+
1

ε
W ′(ϕ), in Ω, t ∈ (0, T ], (1.1.6)

where W defines the potential and Ω ⊂ Rn+1 is some set satisfying Γε(t) ⊂ Ω, ∀ t ∈ [0, T ].

The approximation to Γ(t) is then Γε(t)|ϕ(·,t)=0. Although it is not directly formulated

from the definition of Γ(t) like (1.1.4), one can note the similarity to (1.1.3). We go into

more detail about the phase field approach to mean curvature flow in Section 2.2.
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1.1.3 Comments on the discretisation of the mean curvature flow of

curves

In this thesis we concentrate mainly on using the finite element method to numerically

approximate the mean curvature flow of curves. One can ask the question, how is it

known which of the approaches introduced should be used for a given application? For

an in-depth analysis and computational study we refer readers to [12] where the authors

compare a phase field implementation versus a parametric implementation with emphasis

on Stefan problems, such as the Stefan problem for undercooled solidification, see [103].

Here we will highlight some appropriate advantages and disadvantages of the finite element

discretisation of the phase field versus the parametric formulations of the mean curvature

flow of curves:

• Implementation and simulation. Since curve shortening flow can be parametrised

by the arc-length parameter s, a variable in R, the associated finite element dis-

cretisation is easily implementable and does not require the use of specific finite

element packages. The phase field approach to curve shortening flow, however, is

defined in R2 and is thus not as straight forward to implement without the use of

finite element packages due to, for example, the need for adaptive mesh refinement.

Moreover, since (1.1.6) is defined throughout Ω, the computational domain has sig-

nificantly more nodes in its triangulation compared to an equivalent partition of

[0, 1] for (1.1.5). Thus it is not hard to reason that the computational time needed

for phase field approach to mean curvature flow is a lot larger than for a parametric

formulation of curve shortening flow.

• Topological changes. Although it is well known that a closed curve evolving under

curve shortening flow shrinks to a point [70, 72], under forced curve shortening flow

one might expect topological changes to happen, such as self-intersection. Here we

consider how the parametric and phase field approaches handle such changes by

considering a pinching dumbbell. In Figure 1.1 we demonstrate this problem using a

parametric formulation of forced curve shortening flow. As it is an explicit method it

has no notion of interior, and so it cannot detect the pinching of the curve. However,

the phase field approximation to forced mean curvature flow does have a notion of

interior and this allows the phase field function to react to the pinch by splitting into

two curves, as seen in Figure 1.2. Thus phase field approximations can provide an

important insight for applications in which Γ(t) models an evolving boundary that
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splits like in cell tracking.

(a) Initial curve (b) Before self-intersection (c) After self-intersection

Figure 1.1: Parametric implementation of a pinching dumbbell evolving under forced curve

shortening flow.

(a) Initial curve (b) Before self-intersection (c) After self-intersection

Figure 1.2: Zero level set of the phase field implementation of a pinching dumbbell evolving

under forced mean curvature flow.

1.2 Surface partial differential equations

As the name suggests, surface PDEs (SPDEs) are PDEs defined on a surface. More

precisely, they are the study of PDEs on manifolds. PDEs themselves have a large number

of applications and this extends to SPDEs. Due to the fact that SPDEs are defined on

surfaces, one needs to give care not only to how we describe the resulting mathematical

operators, but also to the surface. Indeed one has to consider whether the surface is

stationary or moving and how this changes the representation of the equations. In addition

to this, regularity plays an important factor. In standard PDE theory the relaxation of

solutions to weak formulations or even to a distributional setting is well defined, however

for surfaces this is not so easily accessible. PDE theory is large and vast, see [68], and is

rich in history in comparison to SPDEs. For a review of the finite element analysis for

SPDEs we direct readers to the recent review publication [61].

In this thesis we first focus on surface advection-diffusion equations (SADEs) and then
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on surface reaction-diffusion equations (SRDEs), more specifically advection-diffusion or

reaction-diffusion equations on curves, so in this section we introduce the aspects im-

portant for these. Since both SADEs and SRDEs have a similar structure, the main

difference in this context of this thesis being the forcing term dependencies, we only refer

to advection-diffusion for the remainder of this section. Contextually PDEs are often the

result of a conservation law, and an advection-diffusion equation is no different, both in

the traditional sense and also on a surface. In the traditional sense, the equation comes

about from, for example, the conversation of mass with an advective and diffusive flux.

The derivation then comes from the ability to interchange the derivative and integral, as

well as the definition of the flux. The same techniques can be applied to surfaces, but we

need to consider in addition if the surface evolves. Considering an evolving surface, the

interchanging of the derivative and integral becomes more tricky as we need to consider

the velocity of the moving surface. In this section we assume that the velocity of the

surface is known and takes the form

~v = v ~ν + ~vτ , (1.2.1)

where v is the normal velocity of Γ(t), ~ν is the unit normal to Γ(t) and ~vτ is the tangential

component of the velocity. However, we note that in many instances the velocity might

be defined by a velocity law such as mean curvature flow. We note that in the literature

~v is often called the material velocity.

As preluded to, we will only consider the parametric representation of surface evolu-

tion for curves, however we will introduce the notation here for surfaces for completeness

and derive the results for curves in a later chapter. Similarly, we introduce the associ-

ated equations using an implicit representation even though we only consider the diffuse

interface approach, as the concepts are nevertheless important for derivation purposes.

Throughout this section we will be following the review publication [58] closely. We start

with the parametric representation of a surface.

1.2.1 Parametric representation of SADEs

An advection-diffusion equation on a parametrised surface takes the following form

∂•t u+ u divΓ(t)(~v)− divΓ(t)

(
d∇Γ(t)u

)
= f, on Γ(t), t ∈ (0, T ], (1.2.2)

where ∂•t denotes the material derivative ∂•t u = ut + 〈~v,∇u〉, with 〈·, ·〉 denoting the

standard Euclidean inner product, divΓ(t) is the surface divergence defined in Definition
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A.5, ∇Γ(t) is the surface gradient defined in Definition A.4, d denotes a diffusion coefficient

and f is a forcing term. If we set ~vτ = 0 then (1.2.2) is synonymous to

ut + v 〈∇u, ~ν〉+ κ v u− divΓ(t)

(
d∇Γ(t)u

)
= f, on Γ(t), t ∈ (0, T ]. (1.2.3)

In order to be able to derive a finite element method for surfaces, we need the weak formu-

lation of a PDE. Traditionally this means multiplying by a test function, integrating, and

potentially using integration by parts and Leibniz’s rule. One asks, are these techniques

extendable to SPDEs and the numerical solution of SPDEs? Only recently has this been

the case, by work pioneered by Dziuk and Elliott [53, 54, 55, 56, 57], in which they derived

methods for numerically solving SPDEs for the parametric and implicit representations

of surfaces. For a review of these techniques see [58]. We briefly mention the numer-

ical techniques for the numerical solution of SPDEs in the parametric representation of

surfaces:

• Evolving surface finite element method (ESFEM) [53]. By approximating Γ(tn)

with a polyhedral approximation Γh,n, one approximates the surface gradient using

the approximate normal to Γh,n. Then, similar to the traditional finite element

method, the matrix contributions are the surface integral of the basis functions

over Γh,n, using the approximate surface gradient if necessary, in order to obtain

a numerical scheme which is similar in structure to a finite element approximation

of a standard reaction-diffusion equation. ESFEM is an extension to the originally

conceived surface finite element method (SFEM) which is for the finite element

approximation of PDEs on stationary surfaces, see [50].

• Arbitrary Lagrangian-Eulerian ESFEM (ALE ESFEM) [67]. In ESFEM only the

normal velocity of the surface Γ(tn) is considered when moving the triangulated

surface Γh,n. There are situations where the evolution of Γh,n causes the clumping

of nodes. To prevent this clumping of nodes an artificial tangential motion of the

nodes can be introduced. In such instances this adds an extra term to the numerical

scheme which is the difference of the introduced advective velocity of the surface and

the material velocity of the surface.

1.2.2 Implicit representation of SADEs

When considering Γ(t) to be implicitly defined, the resulting SADE will be different to

(1.2.2). Indeed, rather than deal with Γ(t) explicitly one defines it as the zero level set of
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some function φ and then defines the SADE in some bounded domain Ω ⊂ Rn+1, such that

Γ(t) ⊂ Ω, ∀ t ∈ [0, T ]. To be more specific, let φ ∈ C2(Ω) be a non-degenerate function,

that is |∇φ(~p, t)| 6= 0, for ~p ∈ Ω, and define

Γ(t) = {~p ∈ Ω : φ(~p, t) = 0},

then the SADE takes the following form

∂•t u+ udivφ(~v)− 1

|∇φ|
div (d |∇φ| ∇φu) = f, in Ω, t ∈ (0, T ]. (1.2.4)

Here divφ can be thought of as the φ-extension to divΓ(t), defined as divφ(~v) = div(~v) −

〈∇〈~v, ~νφ〉, ~νφ〉, where ~νφ = ∇φ
|∇φ| which can be thought of as the φ-extension to the unit

normal ~ν to Γ(t), ∇φ can be thought of as the φ-extension to ∇Γ(t), defined as ∇φu =

∇u − 〈∇u, ~νφ〉~νφ, and ∂•t u is as above. One notes that Ω has a boundary, as opposed

to Γ(t) which doesn’t, and so one can reason that the natural choice for the boundary

conditions would be

〈∇φu, ~nΩ〉 = 0.

An advantage of using the implicit representation of a surface for the finite element ap-

proximation of a SADE is that one bypasses the difficulty of approximating Γ(t); however,

one still needs to choose Ω appropriately. Indeed, if Ω is chosen to be a generic domain,

like a square, then the level sets of φ will intersect the boundary of Ω, which results in

imposing the additional boundary condition above. Alternatively, one can choose Ω in

terms of φ; however, this may introduce geometric errors into the scheme if Ω is curved.

Considering the implicit surface finite element method, to obtain a numerical scheme the

basis functions are integrated over the whole domain Ω rather than over Γ(tn), see [55].

1.2.3 Diffuse interface approximation to SADEs

The diffuse interface approximation to SADEs is based on a phase field approximation of

the surface and so, for a non-negative function ρε, which we define shortly, we introduce

the diffuse interface approximation to Γ(t) as

Γε(t) := {~p ∈ Ω : ρε(~p, t) > 0} .

Commonly Γε(t) is called the interfacial region. The derivation of an equivalent equation

to (1.2.2) requires a lot more technical detail, which can be found in [44, Lemma 7.1]. We
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introduce the necessary details from [44] to state the diffuse interface equivalent of (1.2.2).

Denoting

Uδ(t) := {~p ∈ Ω : |φ(~p, t)| < δ},

using the extension ue of u to Ω outlined in [44, Section 2.2], one can show that the

suitably extended ue satisfies

∂•t u
e + ue divφ(~v e)− 1

|∇φ|
div (d |∇φ| ∇ue) = fe + φR, in Uδ(t), t ∈ (0, T ],

for a suitably chosen δ and suitably extended ~v and f , where R comes from the extension

of Γ(t) to Uδ(t) and is a smooth function of φ, u and ~v and some of their derivatives, see

[44, Lemma 7.1]. By considering a function g ∈ C1,1(R) such that

ρε(·, t) := g

(
φ(·, t)
ε

)
, in Ω, t ∈ [0, T ],

for some 0 < πε < 2δ, the following properties hold, see [44],

φt + 〈~v e,∇φ〉 = 0, ∂•t ρε = 0, 〈∇ue,∇ρε〉 = 0, in Uδ(t), t ∈ (0, T ].

Thus, as well as noting Γε(t) ⊂ Uδ(t), the diffuse interface approximation of (1.2.2) is

∂•t (ρεu
e) + ρε u

e divφ(~v e)− 1

|∇φ|
div (d |∇φ| ρε∇ue)

= ρε f
e + ρε φR, in Ω, t ∈ (0, T ]. (1.2.5)

A more in-depth review of the diffuse interface approach and the finite element approx-

imation of it is conducted in Section 2.3.

1.2.4 Application of SPDEs

There are many applications to SPDEs, we list a few here:

• Surfactants. A surfactant is a mixing agent that is added to a fluid to increase the

stability of two or more emulsifying liquids. As the surfactant mixes with the liquids,

the tension between the multiple surfaces can cause the surfactant to diffuse along

its interface, thus causing a reaction-diffusion effect. This is called the Marangoni

effect. Similar to diffusion induced grain boundary motion, the mechanics on the

interface changes the boundary layer of the surfactant, leading to a free boundary

problem, see [13, 78, 84].
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• Turing patterns. It is well known in the literature that reaction-diffusion type mech-

anics provide a framework for describing pattern formation in biology, such as spots

and stripes in skin formation. By adding specific forcing to the reaction-diffusion

equation, one can simulate diffusion-driven instabilities, also known as Turing in-

stabilities, and the patterns arising are often called Turing patterns. Focusing on

biology it is natural to use the Turing model on evolving surfaces, whereby the in-

stability can be caused by the evolution of the surface, or the instability causes a

different evolution of the surface, as described by cell motility, see [4, 5, 95, 117].

• Tumours. Although for the evolution of tumours many different types of models

have been derived and used, we specifically mention models that connect the tumour

growth and movement to a coupling of a bulk equation for nutrient and necrotic cells

to surface equations defining the movement corresponding to the concentrations of

nutrients. This application also demonstrates another mathematical use of surface

PDEs, namely coupling to interior bulk equations, see [23, 69, 81].

1.3 Overview of the thesis

The main contributions of this thesis are:

• We derive a finite volume approximation to the diffuse interface approximation for

SADEs and compare with the errors obtained using the finite element approxima-

tion for an advection-dominated problem. To our knowledge, this is the first work

that considers the experimental order of convergence of the finite volume approx-

imation to the diffuse interface approximation for SADEs, and the first work which

systematically looks at the difference between using the finite element method and

the finite volume method for an advection-dominated SADE. Moreover, this is the

first work where one considers the finite volume approximation to the diffuse inter-

face approximation for SADEs whereby the velocity law of the evolving surface is

a phase field approximation to mean curvature flow. The challenge in this section

was that ALBERTA, the software we use to numerically approximate the solution to

the SADEs, is a finite element package and therefore generating the resulting linear

system required to solve the finite volume approximation had to be developed in the

finite element framework.
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• We prove fully discrete finite element error bounds for curve shortening flow attached

orthogonally to a fixed boundary. This proof use the typical fully discrete finite

element error bound techniques for parabolic PDE problems by bounding the error by

the error at the previous time step and the residual, however since curve shortening

flow is a non-linear PDE extra care is needed. As in [6], an inductive hypothesis

is used to get a stability bound on the length element which enables the typical

techniques to be useful. However, unlike in [6] which does not require boundary

terms due to the assumption of periodic boundary conditions, the bounds resulting

from typical techniques for our problem results in the usual terms and extra terms

in the form of L∞, L2 norms and terms with an exponent of 4 rather than 2 which

is what is desired. To overcome this we extend the results in [42] from the semi-

discrete case to the fully discrete case and propose a strong inductive proof rather

than a weak inductive proof as in [6]. Using the concepts presented in [6], the strong

inductive hypothesis and the extended results from [42] enable us to complete this

proof. To our knowledge, this is the first work which also details fully discrete error

bounds in the L2 norm, work which is the fully discrete extension to the result

presented in [42].

• We prove continuous in time finite element errors bounds for curve shortening flow

attached orthogonally to a fixed boundary with a reaction-diffusion equation on the

evolving curve. Similar to above, we use typical semi-discrete finite element error

bound techniques for parabolic PDE problems by bounding the time derivative of

the error by the error itself and the residual, but extra care has to be taken due

to the non-linearity of the problem. Semi-discrete finite element analysis of curve

shortening flow can be split into two types. The first involves using a fixed point

concept whereby the set of admissable functions is chosen as all possible functions

which satisfy the error bound required, using the standard finite element techniques,

and then showing there exists a unique fixed point of this set which is the finite

element approximation [37, 59]. The other is based upon using the same typical

finite element techniques but combined with a contradiction to show that the error

bounds must be satisfied for the whole interval [0, T ] rather than a subset [40, 42].

Both employ similar techniques, however the later is used when terms difficult to

bound in the traditional sense appear, as in the case our boundary conditions. In this

proof we are considering a coupling of curve shortening flow and a reaction-diffusion

equation on the curve, and so we extend the results in [42] using a semi-discrete
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version of the analysis presented in [6].

• We derive a diffuse interface approximation to the rice blast model presented in

[102] and present simulations that reflect the simulations in [102]. The derivation

from the sharp interface description to the phase field setting came with multiple

challenges. Firstly, the use of the evolving surface finite element method gives the

sharp interface approach a natural way to deal with the small diffusion constants

due to its derivation, which is not the case in the phase field setting as demonstrated

in Chapter 2. This was overcome by increasing the diffusion constants so that the

finite element approximation is stable. Secondly, the sharp interface description

makes uses of an obstacle potential to stop the two interfaces (the fungus and the

leaf) from intersecting until a condition is met. There isn’t a clear way of deriving

the same obstacle potential in a phase field setting which caused us to try and

approximate the obstacle force on the resulting equations by adding an extra term

into the Ginzburg-Landau-Wilson function to minimise interaction between the two

phases (the fungus and the leaf).

In Chapter 2, we introduce and investigate the phase field approximation of mean

curvature flow and then further introduce the diffuse interface approximation to SADEs.

We mirror [44, 63] by conducting tests of the experimental order of convergence of the res-

ulting finite element approximation and extend the computational experiments conducted

in [44, 63] by considering an advection-dominated simulation. This prompts us to intro-

duce the finite volume method for diffuse interface approximations. Here we demonstrate

how the finite volume approximation compares to the equivalent finite element discret-

isation in advection-dominated simulations. As well as this we discuss the profile spiking

due to the evolution of the curve and discuss how one can dampen the effects using the

edge smoothing contribution introduced in [63]. We finish off the chapter by considering

the diffuse interface approximation of SADEs, both the finite element discretisation and

the finite volume discretisation, where the velocity law is a phase field approximation to

mean curvature flow.

The main focus of Chapter 3 is the finite element analysis of curve shortening flow

for a curve that is attached orthogonally to some defined fixed boundary. We consider

a time and space discretisation of this flow as well as a purely spatial discretisation of a

model in which this flow is coupled to a SRDE. For the former, we present optimal L2 and

H1 error estimates. For the later, we present optimal H1 error estimates for the curve
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equation and L2 error estimates for the SRDE. Finally, we conclude the chapter with some

numerical simulations. Namely, we conduct a numerical study of a novel Newton method

to discretise the curve shortening flow attached to a fixed boundary. Then we go on to

show experimental order of convergence for the coupled scheme.

In Chapter 4, we consider the rice blast model as presented in [102]. We then reduce

the model from a surface in R3 to a curve in R2 and demonstrate a simulation coupling

curve shortening flow to a SRDE on the evolving curve. We then derive a diffuse interface

approximation to this simplified two dimensional version of the model as well as for the

original three dimensional problem and present simulations that compare well to the sim-

ulations in [102]. Chapter 5 then concludes the thesis, in it we outline future work as well

as possible improvements to the models we derived here. We note here that throughout

the thesis we present results proven within the literature which may have edited to provide

clarity.
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Chapter 2

The diffuse interface method for

surface advection-diffusion

equations

This chapter is an in-depth investigation and extension of the numerical results presented

[44, 63]. To begin, in Section 2.2, we first introduce the phase field approximation to mean

curvature flow in more detail. In Section 2.3 we review [44, 63] which analyse the finite

element discretisation of diffuse interface approximations of SADEs on evolving surfaces.

In Section 2.4 we present an extension to the numerical results presented in [44, 63] by

considering an advection-dominated simulation and the introduction of a finite volume

discretisation of a diffuse interface approximation to SADEs on evolving surfaces. We also

consider the simulation of a diffuse interface approximation to SADEs where the velocity

law of the evolving surface is a phase field approximation to mean curvature flow. Before

we begin with the content we introduce notation that will be used throughout the chapter.

2.1 Notation

As with standard theory we denote the Euclidean inner product by 〈·, ·〉 associated to the

Euclidean norm |~p|2 = 〈~p, ~p〉.

Since we consider diffuse interface approximations to advection-diffusion on curves,

our computational domain Ω is a bounded subset of R2, where we define the closure of a
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set, not just Ω, by Ω. For some fixed h?, let (T h)0<hT ≤h? be a family of triangulation of Ω

with hT := max
Th∈T h

diam(T h) being the maximum diameter of each triangle. Furthermore

we assume that T h is shape regular, as in [44], in the sense that ∀hT ∈ (0, h?] there exists

a σ > 0 with

rTh ≥ σhTh , ∀T h ∈ T h,

where rTh is the radius of the largest ball contained in T h and hTh is the maximum

diameter of T h. Our finite element space is defined as

Sh :=
{
χh ∈ C(Ω̄) : χh|

Th
is affine on each triangle T h ∈ T h

}
.

We use the notation defined in [63] to further describe the triangulation T h as well as sets

of nodes of the triangulation relevant to the diffuse interface approach. Let N be the set

of vertex indices of the nodes of the triangulation T h with Ch being the set of coordinates

(~p1, . . . , ~pJ), J = |N |. For an index i ∈ N let ωi denote the set of nodes in N that have

a triangle edge in common with the node i, let Ni denote the set of triangles that have

the ith node as a vertex and let NTh := {j ∈ N : ~pj ∈ T h} denote the set of vertices

belonging to a triangle T h ∈ T h. We define the basis functions of Sh by χi(~pj) = δji and

we set Ih : C(Ω̄) → Sh to be the standard Lagrange interpolation operator defined as

(Ihη)(~pj) = η(~pj) j = 1, . . . , J , and we denote Ih|
Th

to be the local interpolation operator.

We define the discrete inner product as

(η1, η2)h :=
∑

Th∈T h

∫
Th
Ih|
Th

(η1 η2) dx.

Further to a spatial discretisation, we also discretise in time. Let 0 = t0 < t1 < · · · <

tN−1 < tN = T be a partition of [0, T ]. We set ∆t := max
n=1,...,N

∆tn, where ∆tn := tn− tn−1

and we define the discrete version of the time derivative as

Dta
n :=

an − an−1

∆tn
,

where we have denoted the continuous function a(·, tn) by an(·). In this setting we de-

note fully discretised finite element approximations by capital letters and the continuous

solution by lower case letters, e.g. An(·) denotes the finite element approximation of the

continuous solution a(·, tn). Similarly, we denote the extension of a continuous function

from Γ(t) into Ω by a superscript e, e.g. ue denotes the extension of u.

We adopt standard notation for the Sobolev spaces W l,p(I), where I ⊂ R2 is a bounded

domain, l ∈ N0 and p ∈ [1,∞]. Here we denote the Sobolev l, p norm of a function f on the

interval I to be ‖f‖W l,p(I) and its seminorm to be |f |W l,p(I). For the special case of p = 2,
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we denote W l,2(I) by H l(I), with the appropriate change to the norm and seminorm. For

the special case of l = 0, we work within the Lebesque spaces Lp(I), where the norm

has standard notation ‖f‖Lp(I). We also denote the L2 inner product over Ω by (f, g).

Finally, we extend the notation to include time dependent spaces W l,p(0, T ;X), where X

is a Banach space, with the standard associated norm and seminorm ‖f‖W l,p(0,T ;X) and

|f |W l,p(0,T ;X) respectively.

Lastly, C denotes a generic constant that is independent of hT , ∆tn and ε. Multiple

occurrences of C will not, in general, take the same value.

2.2 Phase field approximation of mean curvature flow

The phase field approach to approximating the evolution of a surface is derived from

taking variational derivatives of energy functionals, which have often come from a physical

interpretation of some interface problem. In this thesis we will only be considering the

phase field approximation of mean curvature flow, introduced in [2], however other phase

field approximations have been introduced for different geometric flows, such as the Cahn-

Hilliard equation [27] which has been shown to approximate surface diffusion, see [24].

Mean curvature flow has been formulated as the asymptotic limit of the system that

is generated by taking the regularised L2 gradient flow of the Ginzburg–Landau–Wilson

functional, see [25], defined by

Eε[ϕ](t) :=

∫
Ω

ε

2
|∇ϕ(·, t)|2 +

1

ε
W (ϕ(·, t)) dx, for ε� 1, (2.2.1)

where Ω is some set such that Γ(t) ⊂ Ω, ∀ t ∈ [0, T ], and W is a potential which defines the

phases. We require that the potential W (·) satisfies the following two conditions, namely

W (s) = W (−s) and the minima of W (s) are at s = ±1. Assuming that Γ(t) is closed, to

give a notion of orientation, we want to describe Γ(t) as the zero level set of some function

ϕ(t). The region where ϕ ≈ −1 approximates the interior region enclosed by Γ(t) and the

region where ϕ ≈ 1 approximates the exterior region.

We examine how the functional (2.2.1) gives rise to this description. Since we look to

minimise (2.2.1), we examine what this means for each term for a suitably small ε. Firstly

we consider the potential term, due to the factor of 1/ε, if W is not small this contribution

will be large. As W is minimised when s = ±1, this contributes to pushing ϕ towards ±1.
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Now, although the small parameter ε multiplies the gradient term, the job of this term is

to penalise large jumps in gradients. One can interpret that the job of the gradient term

is to regularise ϕ and to keep it smooth, hence separating the phases, while the job of W

is to strongly define the two phases.

On the assumption that W ∈ C2(R), utilising Euler-Lagrange theory, see [68], taking

the regularised gradient flow of (2.2.1) yields the Allen-Cahn equation

εϕt = ε∆ϕ− 1

ε
W ′(ϕ), in Ω, t ∈ (0, T ], (2.2.2a)

〈∇ϕ,~nΩ〉 = 0, on ∂Ω, t ∈ (0, T ], (2.2.2b)

ϕ(·, 0) = ϕ0(·), in Ω, (2.2.2c)

where ~nΩ is the outward pointing unit normal to ∂Ω, [41].

Remark 2.1. Considering forced mean curvature flow in (1.1.2), (2.2.2a) becomes

εϕt = ε∆ϕ− 1

ε
W ′(ϕ) + cW p, in Ω, t ∈ (0, T ],

where cW takes the form

cW =
1√
2

∫ 1

−1

√
W (s) ds.

This term is derived from the asymptotic analysis of (2.2.2a) so that in the limit as ε→ 0,

(1.1.2) is recovered, see, for example, [20].

There are a variety of choices of W in the literature. We first discuss the use of the

so called double well potential, which is depicted by the red line in Figure 2.4. This takes

the form

W (s) :=
1

4
(s2 − 1)2, (2.2.3)

and gives rise to the following approximation of Γ(t)

Γε(t) = {~p ∈ Ω : − 1 + Cε ≤ ϕ(~p, t) ≤ 1− Cε}

for some C > 0. By reducing ε, the width of Γε decreases and Cε decreases, which can be

seen numerically in Figure 2.1 by considering the colour scale of each sub figure. Using

(2.2.3), the Allen-Cahn equation (2.2.2a)–(2.2.2c) become

εϕt = ε∆ϕ− 1

ε
ϕ(ϕ2 − 1), in Ω, t ∈ (0, T ], (2.2.4a)

〈∇ϕ,~nΩ〉 = 0, on ∂Ω, t ∈ (0, T ], (2.2.4b)

ϕ(·, 0) = ϕ0(·), in Ω. (2.2.4c)
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Remark 2.2. Using (2.2.3) in Remark 2.1, the double well phase field approximation of

(1.1.2) takes the form

εϕt = ε∆ϕ− 1

ε
ϕ(ϕ2 − 1) +

√
2

3
p, in Ω, t ∈ (0, T ].

Upon multiplying (2.2.4a) by a test function ξ ∈ H1(Ω), and using integration by parts

as well as (2.2.4b), the weak form of (2.2.4a)–(2.2.4b) is given by

ε(ϕt, ξ) + ε(∇ϕ,∇ξ) =
1

ε
(ϕ− ϕ3, ξ), ∀ ξ ∈ H1(Ω). (2.2.5)

When it comes to discretisation, we could use a fully explicit scheme, such as

ε(DtΦ
n, ξh)h + ε(∇Φn−1,∇ξh) =

1

ε
(Φn−1 − (Φn−1)3, ξh)h, ∀ ξh ∈ Sh, (2.2.6)

for which the restrictions on this scheme are the standard parabolic time-step constraint

∆tn ≤ C h2
T , see [65], or we could use a fully implicit scheme, such as

ε(DtΦ
n, ξh)h + ε(∇Φn,∇ξh) =

1

ε
(Φn − (Φn)3, ξh)h, ∀ ξh ∈ Sh.

If this is solved using Newton’s method, then the time-step constraint is ∆tn ≤ C ε2, see

[30]. Consulting [48], other methods that have been analysed and used are:

• Crank-Nicolson: this method takes the diffusive and potential terms both implicitly

and explicitly;

• IMEX: this method takes the diffusive part to be implicit and the potential terms

to be explicit;

• Convex splitting: this method starts by splitting the diffusive and potential terms

into convex and concave components, and then taking the convex contribution to be

implicit and the concave part to be explicit.

Another choice of potential is the so-called double obstacle potential, depicted by

the blue line in Figure 2.4. It was introduced by [15] to give true phase separations in

applications such as grain boundary motion. The double obstacle potential takes the form

W (s) :=
1

2
(1− s2) + I[−1,1](s) (2.2.7)

where

I[−1,1](s) :=

 0 |s| ≤ 1,

∞ |s| > 1.
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This expression is also indeed minimised at s = ±1 however it is not continuous at these

points. Due to this we can’t define the derivative formally, instead we define it using the

subdifferential, see Section B.1, and label it informally as

W ′(s) = −s+B(s)

where

B(s) :=


(−∞, 0] s = −1,

0 |s| < 1,

[0,∞) s = 1.

It has been shown, in [29], that under certain conditions of ε, the double obstacle potential

gives rise to the following approximation of Γ(t)

Γε(t) = {~p ∈ Ω : − 1 < ϕ(~p, t) < 1}. (2.2.8)

To compare the effectiveness of the use of the double obstacle potential compared to the

double well potential, we present the following simulation. Let Γ(0) be a circle of radius

1 defined by

Γ(0) := {~p ∈ Ω : |~p| = 1}

and let it evolve under mean curvature flow, where we define Ω := (−1.5, 1.5)2. Under

mean curvature flow the circle will shrink to a point at a rate inversely proportional to

its radius at the current time [41, 72]. Using the relationships ε = 320
3 hT and a uniform

time step ε = 20
√

10∆t, Figure 2.1 presents the simulation using (2.2.6) and Figure 2.2

presents the simulation using (2.4.19a)–(2.4.19b) (setting pn = 0), with T = 0.1. In Figure

2.3 we show the transition over the line y = x starting at (−1.5,−1.5) of the phases of

both the double well, in red, and the double obstacle, in black. It can be seen that, noting

(2.2.8), the phases are sharply defined in the case of the double obstacle, and one can also

see that as ε decreases, the double well gets closer to attaining values of ±1.

(a) ε = 0.4 (b) ε = 0.2
√

2 (c) ε = 0.2

Figure 2.1: Shrinking circle simulation using the double well potential (2.2.3), T = 0.1.

The white line depicts the ΦN = 0 level set.
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(a) ε = 0.4 (b) ε = 0.2
√

2 (c) ε = 0.2

Figure 2.2: Shrinking circle simulation using the double obstacle potential (2.2.7), T = 0.1.

The white line depicts the ΦN = 0 level set.

(a) ε = 0.4 (b) ε = 0.2
√

2 (c) ε = 0.2

Figure 2.3: Transition over the line y = x of the phases for the shrinking circle simulation,

with results obtained using the double obstacle potential (2.2.7), in black, and the double

well potential, in red, T = 0.1. The dashed line depicts where ΦN = 0 level set should be

to approximate Γ(tN ).

Remark 2.3. Following [18], when we set W (ϕ) as (2.2.7), (2.2.2a) is often written as

an inclusion

εϕt − ε∆ϕ−
1

ε
ϕ ∈ B(ϕ), in Ω, t ∈ (0, T ],

or as a complimentary problem(
εϕt − ε∆ϕ−

1

ε
ϕ

)
(|ϕ| − 1) = 0, in Ω, t ∈ (0, T ],(

εϕt − ε∆ϕ−
1

ε
ϕ

)
sgn(ϕ) ≤ 0, |ϕ| ≤ 1, in Ω, t ∈ (0, T ].

A weak formulation of (2.2.2a) with (2.2.7) can be obtained by considering the min-

imisation problem of (2.2.1), we can utilise Euler-Lagrange theory, see [68], to obtain the

following variational inequality,

ε (ϕt, ξ − ϕ) + ε (∇ϕ,∇ξ −∇ϕ)− 1

ε
(ϕ, ξ − ϕ) ≥ 0, ∀ ξ ∈ K, (2.2.9)

where

K := {ξ ∈ H1(Ω) : |ξ| ≤ 1}.
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−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

Figure 2.4: Different types of potentials. The red line depicts the double well, the blue

line depicts the double obstacle, the orange line depicts the tripe well, and the magenta

line depicts the logarithmic.

We also derive (2.2.9) informally in Section B.1.

Remark 2.4. Using (2.2.7) in Remark 2.1, the phase field approximation of (1.1.2) takes

the form

ε (ϕt, ξ − ϕ) + ε (∇ϕ,∇ξ −∇ϕ)− 1

ε
(ϕ, ξ − ϕ) ≥ π

4
(p, ξ − ϕ) , ∀ ξ ∈ K. (2.2.10)

The solution of the system of algebraic equations that result from a standard finite

element approximation of (2.2.9) is not standard. In this thesis we use the projected SOR

method presented in [60], see Section 2.4.4, however other methods that can be used are

presented in [19, 41]. We close this section with some other choices of potential depicted

in Figure 2.4:

• The non-convex logarithmic potentialW (s) := θ
2 [(1 + s) ln(1 + s) + (1− s) ln(1− s)]−

θc
2 s

2, depicted in magenta, has applications in phase transitions when a binary alloy

has its temperature rapidly reduced below some critical temperature θc, see [71];

• The triple well potential W (s) := s2(s2 − 1)2, depicted in orange, has applications

in phase transitions in microemulsions such as oil-water-surfactant systems, see [86].
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2.3 The diffuse interface approximation to SADEs on evolving

surfaces

The diffuse interface method comes about by using a phase field approximation of an

interface problem, and was first introduced by Rätz and Voigt in [99] for the diffusion

equation on a fixed surface. In [99] the authors conduct asymptotic analysis and show

formal convergence towards the equivalent sharp interface problem as ε→ 0. This result

was then extended to moving surfaces in [87], whereby the authors also demonstrate first

order convergence in the L∞-norm with ε = ChT . In [63] the authors introduced a finite

element discretisation of a diffuse interface approximation of a SADE and presented exper-

imental order of convergence of the discretisation as well as the existence of a numerical

solution. In [44] the authors prove finite element error estimates for a diffuse interface

approximation of a SADE.

Before we begin, we formally define what ρε represents. Considering [44, 63], the

concept of ρε is to approximate the delta distribution of Γ(t), behaving similarly to a

characteristic function for Γε, and is derived with the double obstacle potential in mind.

We re-state useful notation we described in the introduction. Considering a bounded

domain Ω ⊂ R2 such that Γ(t) ⊂ Ω, ∀ t ∈ [0, T ], let φ ∈ C2(Ω) be a non-degenerate

function such that

Γ(t) = {~p ∈ Ω : φ(~p, t) = 0}. (2.3.1)

Then we denote the diffuse interface approximation to Γ(t) as

Γε(t) := {~p ∈ Ω : ρε(~p, t) > 0}, (2.3.2)

where ρε takes the form

ρε(·, t) := g

(
φ(·, t)
ε

)
, in Ω, t ∈ [0, T ] (2.3.3)

and g ∈ C1,1(R) is defined as

g(r) :=

 cos2(r) |r| ≤ π
2 ,

0 |r| > π
2 .

This diffuse interface approximation takes advantage of the sharply defined phases pro-

duced by the double obstacle potential and is posed in the interfacial region, which is

the support of ρε. An advantage of defining ρε in this way is that there is an easy path

to couple it to a diffuse interface approximation of a SADE whereby the velocity law is

approximated by the double obstacle phase field approximation of mean curvature flow.
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In particular this coupling can take place by using ρε(·, t) := 1− ϕ2(·, t). We will discuss

this more in Section 2.4.4.

2.3.1 Computational study of the diffuse interface method for approx-

imating advection-diffusion equations on evolving surfaces by [63]

As detailed in Section 1.2.3, the diffuse interface approximation of (1.2.2) is (1.2.5). In

[63] the authors set φ(·, t) = dΓ(·, t), where dΓ(·, t) is the signed distance function

dΓ(~p, t) :=


dist(~p,Γ(t)) ~p ∈ Rn+1 \G(t),

0 ~p ∈ Γ(t),

−dist(~p,Γ(t)) ~p ∈ G(t),

with dist(~p,A) being the Haussdorf distance function from a point ~p to a set A, see [100],

and G(t) ⊂ Γ(t) such that ∂G(t) = Γ(t), which results in |∇φ(~p, t)| = 1 for ~p ∈ Ω. By

neglecting R, denoting the extension of u by uε to signify we are approximating (1.2.5),

and noting ∂•t ρε = 0 and 〈uε,∇ρε〉 = 0, see [62], the authors in [63] write (1.2.5) in the

following variational form

∂t(ρεuε) + div (ρεuε ~v
e)− div (d ρε∇uε) = ρεf

e, in Ω, t ∈ (0, T ], (2.3.4a)

〈∇uε, ~nΩ〉 = 0, on ∂Ω, t ∈ (0, T ], (2.3.4b)

uε(·, 0) = ue,0(·), in Ω, (2.3.4c)

where ue,0 is the extension of u(·, 0) and uε is set to zero where ρε = 0. The authors in

[63] specify that to generate, for example, fe, one extends f constantly in the (positive

and negative) normal direction to Γ(t). Multiplying (2.3.4a) by a smooth test function ξ,

using integration by parts and the boundary condition (2.3.4b), the weak form to (2.3.4a)–

(2.3.4b) satisfies uε(·, t) = 0 in Ω \ Γε(t) and

(∂t(ρεuε), ξ)− (ρεuε~v
e,∇ξ) + (d ρε∇uε,∇ξ) = (ρεf

e, ξ) , for all smooth ξ. (2.3.5)

The fully discrete finite element approximation the authors in [63] use then takes the form:

given Un−1 ∈ Sh, find Un ∈ Sh such that(
Dt[ρ

n
ε U

n], ξh
)h
−
(
ρnε U

n ~v e,n,∇ξh
)h

+
(
d ρnε ∇Un,∇ξh

)h
=
(
ρnε f

e,n, ξh
)h
, ∀ ξh ∈ Sh. (2.3.6)

As can be seen, these integrals are over Ω rather than within Γε(t) and so we need to treat

the formulation with care as the equation is degenerate in terms of Un. More precisely



25

ρnε = 0 in Ω \Γε(t
n) leading us to an ill-posed system, since the values of Un in Ω \Γε(t

n)

can’t be determined. We specify the strategy for solving this, as described by [63], in

Section 2.4.1.

In [63] the authors show unique solvability of the finite element approximation (2.3.6)

in the following theorem [63, Proposition 2.7, p. 6].

Theorem 2.5 (C. Elliott, B. Stinner, V. Styles & R. Welford, 2010). blah

Let ∆t ‖~v‖2L∞(Ω) < 4d, then the scheme (2.3.6) has a unique solution with initial data

U0(~pi) :=

 ue,0(~pi) i ∈ N 0
h ,

0 otherwise,

where

N n
h := {i ∈ N : ∃ j ∈ ωi such that ρε(~pj , t

n) > 0}.

In [63] the authors monitor the following errors as part of their computational study

e[L∞, L2] := max
n=1,...,N

∫
Γ(tn)

|u(·, tn)− Un(·)|2 dS,

e[L2, H1] :=
N∑
n=1

∆tn

∫
Γ(tn)

|∇Γ(tn)u(·, tn)−∇Un(·)|2 dS,

e[L2, H1
ν ] :=

N∑
n=1

∆tn

∫
Γ(tn)

|〈∇Un(·), ~ν(·, tn)〉|2 dS,

e[L2, H1
τ ] :=

N∑
n=1

∆tn

∫
Γ(tn)

|∇Γ(tn)u(·, tn)−∇Γ(tn)U
n(·)|2 dS,

for fixed ratios ε = C hT and hT = C∆t2. They use numerical quadrature to generate the

errors and find that they follow the experimental order of convergence

e[L∞, L2] ≤ C h4
T , e[L2, H1] ≤ C h2

T , e[L2, H1
ν ] ≤ C h2

T , e[L2, H1
τ ] ≤ C h2

T .

2.3.2 Finite element analysis of the diffuse interface approach for SADEs

on evolving surfaces by [44]

In [44] the authors approach the description and approximation of (1.2.2) differently to

[63]. With numerics in mind, one of the main arguments supporting the use of the diffuse

interface approximation is that it allows us to use a volume integral to approximate a

surface integral. For a fixed t ∈ [0, T ] and ξ ∈ L1(Ω), see Section B.2, this can be realised

by noting that
2

επ

∫
Ω
ξ(·) ρε(·, t) |∇φ(·, t)| dx ≈

∫
{φ(·,t)=0}

ξ(·) dS. (2.3.7)
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This motivates the consideration that making the restriction φ(·, t) = dΓ(·, t) is not neces-

sarily helpful for the analysis of the resulting equation. Denoting

ST :=
⋃

t∈[0,T ]

(Γ(t)× t),

in [44] the authors rigorously extend (1.2.2) from being defined on ST to Uδ,T and derive

a weak form using an Eulerian transport identity which deals with the |∇φ| term, see

Lemma 2.6. To be more specific, noting (2.3.1), the authors in [44] denote

Uδ(t) := {~p ∈ Ω : |φ(~p, t)| < δ} and Uδ,T :=
⋃

t∈[0,T ]

(Uδ(t)× t),

where there exists some δ0 such that δ < δ0, Uδ0(t) ⊂ Ω, ∀ t ∈ [0, T ], and the following

stability bounds hold

c0 ≤ |∇φ(~p, t)| ≤ c1, |D2φ(~p, t)|, |φt(~p, t)|, |φtt(~p, t)| ≤ c2, (~p, t) ∈ Uδ0,T , (2.3.8)

for some 0 < c0 ≤ c1 and c2 > 0. Although we won’t describe the extension used by the

authors in [44], we will state useful properties derived from it. Namely for some function

z : ST → R, the extension ze : Uδ,T → R satisfies

〈∇ze(~p, t),∇φ(~p, t)〉 = 0, (~p, t) ∈ Uδ,T . (2.3.9)

Considering the extension of the velocity, the authors in [44] go on to describe that ~v can

be extended to ~v e = ve ~ν e + ~v eτe , where

~v eτe := ~v eτ − 〈~v eτ , ~ν e〉~ν e in UδT ,

and

ve := − φt
|∇φ|

, ~ν e :=
∇φ
|∇φ|

, 〈~v eτe , ~ν e〉 = 0, in Uδ,T . (2.3.10)

A simple calculation gives us

〈~v e, ~ν e〉 = ve = − φt
|∇φ|

in Uδ,T ,

which implies that, for some 0 < πε < 2δ,

∂•t ρε =
1

ε
g′
(
φ

ε

)
∂•t φ =

1

ε
g′
(
φ

ε

)
(φt + 〈~v e,∇φ〉) = 0. (2.3.11)

Using these properties the authors in [44] present (1.2.5), the extension of (1.2.2) from ST

to Uδ,T , which we state again for the ease of the reader

∂•t u
e + uedivφ(~v e)− 1

|∇φ|
div (|∇φ|∇ue) = fe + φR, in Uδ,T , (2.3.12a)



27

ue(·, 0) = ue,0(·), in Uδ(0), (2.3.12b)

where R is as described in Section 1.2.3. We note that Uδ(t) is without boundary, hence

the lack of boundary conditions. We first introduce the Eulerian transport formula, which

will be used to generate the weak formulation of (2.3.12a).

Lemma 2.6 (Eulerian transport formula, [56]). blah

For some functions g : Ω × [0, T ] → R and ~v : Ω × [0, T ] → Rn+1 defined as ~v = v ~ν +

~vτ , where ~v is material velocity of some hypersurface Γ(t), noting (2.3.1), the Eulerian

transport formula is defined as

d

dt

∫
Ω
g |∇φ| dx =

∫
Ω

(∂•t g + g divφ(~v)) |∇φ| dx−
∫
∂Ω
g〈ν, ~nΩ〉|∇φ| dS,

where ~nΩ is the outward pointing unit normal to Ω.

Using Lemma 2.6, taking g = ρεu
e, ξ ∈ H1(Ω) and noting (2.3.3), the authors in [44]

present the following weak formulation of (2.3.12a) as

d

dt
(ρε u

e |∇φ|, ξ) + (ρε∇ue |∇φ|,∇ξ)− (ρε u
e ~v e |∇φ|,∇ξ)

= (ρε f
e |∇φ|, ξ) + (ρε φR |∇φ|, ξ) , ∀ ξ ∈ H1(Ω), (2.3.13)

where the boundary conditions from the Eulerian transport formula and integration by

parts disappear due to the support of ρε. Rather than considering a finite element space

throughout the domain Ω, the authors in [44] consider a finite element space that is defined

on a diffuse interface domain with a slightly larger support than ρε for analysis purposes.

Namely, the authors define ρ̃ε by

ρ̃ε(·, t) := g

(
φ(·, t)
rε

)
, in Ω, t ∈ [0, T ]

with r = 2, see Figure 2.5, and describe an evolving triangulation, for n = 0, . . . , N , as

T nh := {T h ∈ T h : ρ̃ε(~p, t
n) > 0 for some ~p ∈ T h ∩ Ch}, and Dn

h :=
⋃

Th∈T nh

T h,

as well as an evolving finite element space

V n
h := {ξh ∈ C0(Dn

h) : ξh|
Th

is affine on each triangle T h ∈ T nh },

with corresponding Lagrangian interpolant operator Inh : C0(Dn
h) → V n

h . By neglecting

the term containing R, the fully discrete finite element approximation presented in [44] is

then as follows: given Un−1 ∈ V n−1
h , find Un ∈ V n

h such that

Dt

[(
ρnε U

n |∇φn|, ξh
)]

+
(
ρnε ∇Un |∇φn|,∇ξh

)
−
(
ρnε U

n ~v e,n|∇φn|,∇ξh
)
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+ γ∆tn

(
Inh (ρ̃nε )∇Un,∇ξh

)
=
(
ρnε f

e,n |∇φn|, ξh
)
, ∀ ξh ∈ V n

h . (2.3.14)

Here the additional term acts as artificial diffusion and is the crucial term that allows the

finite element analysis. Indeed, γ > 0 is chosen suitably to ensure existence and stability

of the scheme.

Remark 2.7. We notice that (2.3.14) is not fully practical, in the sense of computations,

since the integrals are to be evaluated exactly. The analysis of a fully practical scheme

involving mass lumping would result in the interpolation of ρε and, using interpolations

estimates, would introduce a term of the form

‖(I − Ih)ρnε ‖L2(Ω) ≤ C h2 ‖ρnε ‖H2(Ω) ≤ C
h2

ε2

into the analysis, for which it is not obvious how to deal with, [44]. However, for a

stationary surface, recent work has been conducted to rectify this for a fully practical finite

element approximation to the diffuse interface approximation of an elliptic SPDE, [7].

In [44] the authors go on to show existence and stability bounds as well as the finite

element error bounds for (2.3.14) in the following theorem [44, Theorem 5.2, p. 15].

Theorem 2.8 (K. Deckelnick & V. Styles, 2018). blah

Suppose that a solution of (1.2.2) satisfies

max
t∈[0,T ]

‖u(·, t)‖2H2(Γ(t)) +

∫ T

0

(
‖u(·, t)‖2H3(Γ(t)) + ‖∂•t u(·, t)‖2H2(Γ(t))

)
dt <∞.

Then there exist 0 < ∆t2 ≤ ∆t1 and a constant C > 0 such that

max
n=1,...,N

2

επ

∫
Ω
ρε(·, tn) |∇φ(·, tn)| |ue(·, tn)− Un(·)|2 dx

+

N∑
n=1

∆tn
2

επ

∫
Ω
ρε(·, tn) |∇φ(·, tn)| |∇ue(·, tn)−∇Un(·)|2 dx ≤ Cε2

provided that (2.3.8) holds, ∆t ≤ max(ε2,∆t2), γ ≥ γ1 := 1 + C and

h ≤
cos2(3π

8 )

2c1
ε, ∆t ≤

cos2(3π
8 )

2c2
ε.

Remark 2.9. Noting the approximation in (2.3.7), one can see that the error results

in Theorem 2.8 are the diffuse interface approximations to the equivalent errors on the

surface Γ(t). This allowed the authors in [44] to derive formal error bounds on the surface

Γ(t) in the form of

max
n=1,...,N

‖u(·, tn)− Un(·)‖2L2(Γ(tn))
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+
N∑
n=1

∆tn‖∇Γ(tn)u(·, tn)−∇Γ(tn)U
n(·)‖2L2(Γ(tn)) ≤ Cε

2.

This motivates the computational bounds found in [63] by monitoring e[L∞, L2] and e[L2, H1
τ ].

Remark 2.10. As with all existence and uniqueness results for PDEs and the finite ele-

ment approximation to the solutions of PDEs in bounded domains, one would expect some

sort of regularity on the boundary of the domain Ω [32, 68]. A benefit of using the diffuse

interface approach is that Ω is defined large enough so that Γε(t) ⊂ Ω, ∀ t ∈ [0, T ] and thus

there is no interaction between Γε and ∂Ω, which is why ∂Ω doesn’t appear in the analysis.

The same can’t be said for other implicit methods of approximating moving surfaces, such

as the implicit surface finite element method [58].

2.4 Further computational study of the diffuse interface ap-

proximation

As mentioned in Section 1.1.3, one major disadvantage of using the phase field approach

and the diffuse interface approach is that the entire domain Ω has to be triangulated

rather than just the surface Γ(t), and if we require a fine mesh on the whole of Ω this

will greatly increase the computational time. However, as defined in [58, 63], the so-called

narrow band implementation can be adopted in which the triangulation is refined in the

interfacial region where ρε > 0 and coarsened elsewhere. Recalling (2.3.14) we denote

N n
h := {i ∈ N : ∃ j ∈ ωi such that ρε(~pj , t

n) > 0},

Ñ n
h := {i ∈ N : ∃ j ∈ ωi such that ρ̃ε(~pj , t

n) > 0}

and set

Γh,nε :=

 {T h ∈ T h : NTh ⊂ N n
h } if γ = 0,

{T h ∈ T h : NTh ⊂ Ñ n
h } if γ > 0.

Taking the restriction that ∆t ‖~v‖2L∞(Ω) ≤ ChT ensures that the approximations Γh,n+1
ε

and Γh,nε only differ by at most a single layer of elements. Using this the following refine-

ment procedure can be adopted. At each time level, taking Bh such that Γh,nε ∪Γh,n+1
ε ⊂ Bh,

the refinement procedure can be set up to refine in Bh to the necessary level and coarsen

everywhere else. Considering this we continue to denote T h by the evolving triangu-

lation with corresponding interpolant operator Ih as well as redefining the mesh size as

hT := max
Th∈Bh

diam(T h). We demonstrate this procedure in Figures 2.5 and 2.6. Figure 2.5a
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(a) ρε support mesh (b) ρ̃ε support mesh

Figure 2.5: Comparison of Bh for Model: FE (2.4.2) with γ = 0 (a) and γ > 0 (b).

shows Bh for γ = 0 and Figure 2.5b shows Bh for γ > 0. Figure 2.6 shows the refinement

and coarsen procedure happening throughout a simulation of an expanding circle.

(a) Initial Refinement (b) Movement of refinement

Figure 2.6: Refinement and coarsen procedure with a moving interface.

Another aspect of the scheme that needs to be considered is that the scheme is degen-

erate in terms of Un, as mentioned in Section 2.3.1, since we are solving over the whole

of Ω. For simplicity of notation we only consider the situation when γ = 0. In order to

combat the degeneracy we define the coefficients of our numerical solution to be zero when

ρε = 0, namely we decompose

Un =
∑
j∈Nnh

Unj χj +
∑

j∈N\Nnh

Ūnj χj =
∑

j∈Nn+1
h

Ũnj χj +
∑

j∈Nnh \N
n+1
h

Unj χj , (2.4.1)

where one notes that if i ∈ N n
h \ N

n+1
h then ρnε (~pi) = 0, which can be guaranteed using

the narrow band implementation. This is called the discrete interface assumption, see [63,

Assumption 2.3, p. 5]. We also note that, from Theorem 2.5, Ūnj = 0 for j /∈ N n
h .
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2.4.1 Finite element approximation of a diffuse interface approximation

to SADEs on evolving surface, Model: FE

Model: FE

The fully practical finite element scheme we will be using for our numerical computations

takes the form of

Ūn(~pi) = 0 for

 i /∈ N n
h if γ = 0,

i /∈ Ñ n
h if γ > 0,

and

Dt

[(
ρnε U

n |∇φn|, ξh
)h]

+ d
(
ρnε ∇Un |∇φn|,∇ξh

)h
−
(
ρnε U

n ~v e,n|∇φn|,∇ξh
)h

+ γ∆tn

(
Ih(ρ̃nε )∇Un,∇ξh

)
=
(
ρnε f

e,n |∇φn|, ξh
)h
, ∀ ξh ∈ Sh. (2.4.2)

Remark 2.11. In the derivation of (2.4.2) we have implicitly set the functions to ξh to

only depend on space and not time, which is why we can interchange the integration and

the discrete time derivative. For analytic purposes one would need to keep the Dt inside

the integration, but since we only look at simulations in this section we are justified in

making this restriction in view of taking ξh as basis functions.

Similarly to [44, 63] we look to test Model: FE (2.4.2) against the convergence results

predicted by the theorems. We look to monitor the following errors

E1 := sup
n=0,...,N

2

επ

∫
Ω
Ih(ρε(·, tn)) |Ihue(·, tn)− Un(·)|2 |∇Ihφ(·, tn)| dx, (2.4.3a)

E2 :=

N∑
n=1

2

επ
∆tn

∫
Ω
Ih(ρε(·, tn)) |∇Ihue(·, tn)−∇Un(·)|2 |∇Ihφ(·, tn)| dx, (2.4.3b)

as well as the equivalent versions of e[L∞, L2] and e[L2, H1
τ ] over the surface Γ(t). Following

[44, 63], in all the examples presented Γ(t) will be a circle, with radius R(t) and centre

~c0(t), to be defined in the example. Given this, the quadrature approximations of e[L∞, L2]

and e[L2, H1
τ ] take the form

E3 := sup
n=0,...,N

L−1∑
l=0

2π

L
|u(xl(t

n), tn)− Un(xl(t
n))|2, (2.4.3c)

E4 :=

M∑
n=1

∆tn

L−1∑
l=0

2π

L
|∇Γ(tn)u(xl(t

n), tn)−∇Γ(tn)U
n(xl(t

n))|2, (2.4.3d)

where,

xl(t) := c0(t) +

(
cos

(
2πl

L

)
, sin

(
2πl

L

))T
, l = 0, . . . , L− 1,
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and, noting [44, 63], we set L = 200. We quantify the errors by calculating the estimated

order of convergence (eoc)

eoci,j :=
ln(Ei,j+1)− ln(Ei,j)
ln(hTj+1)− ln(hTj )

(2.4.4)

where i corresponds to the error measurement, j corresponds to the relative mesh size

hTj and Ei,j corresponds to the error of the error measurement i at the j level. Upon

setting up the initial refinement using the refinement procedure, we note the refinement

and coarsening will maintain the shape regular properties with hT fixed throughout the

simulation. The computational domain we consider is Ω = (−2.4, 2.4)2 and the computa-

tional end time is taken to be T = 0.1. We solve the linear system appearing at each time

step using GMRES, since the resulting system matrix is not symmetric, together with

diagonal preconditioning.

Example 1

For our first example we use a translating circle, which is the same as Example 3 in

[44] and Example 1 in Section 3.1 in [63]. Consider R(t) := 1 and ~c0(t) := (1
2 − 2t, 0)T ,

with d = 1, ~v(~p, t) = (2, 0)T and f(~p, t) = 0 for ~p ∈ Γ(t). Then, the solution to (1.2.2) is

u(~p, t) = e−4t

(
~p1 +

1

2
− 2t

)
~p2, ~p ∈ Γ(t), t ∈ [0, T ].

The following results in Tables 2.1–2.4 were produced using the finite element toolbox

ALBERTA 2.0 [104] implemented on the University of Sussex High Performance Computer

cluster (HPC) which uses Scientific Linux as its operating system [111]. Each result used

one core, a core is a processor in the Central Processing Unit (CPU) which is the hardware

that executes the software commands, of an AMD 64 bit CPU which typically has between

8 to 64 cores. Given the HPC infrastructure, we have no way of using a specific core to

enable us to compare execution times reliably. There are many factors that may effect

execution time that we can’t foresee or manipulate, such as the current number of different

codes being executed on a core or the age of a CPU, especially when simulations last at

least an hour.

We first demonstrate the experimental order of convergence of Model: FE (2.4.2)

with γ = 0 in Table 2.1 and γ = 0.01 in Table 2.2. We use the same relationship in [44],

that is ε = 256
3 hT and ε = 20

√
∆t, where a uniform time step was chosen, T = 0.1 and we

define φ(~p, t) = |~p−~c0(t)|2−R2(t), for ~p ∈ Ω. We see very similar results to the equivalent

error results in [44], that is E1 is approaching an eoc of 4, E2 and E3 have eocs close to

4, and E4 has an eoc between 2 and 3. E1 and E3 have eocs that are larger than what
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is proven in the theorem, but they do have the correct order expected from the general

literature of numerical solution to PDEs [22, 32, 115], since they are L2 type errors. E2

has an eoc which is larger than the theory predicts and larger than we would expect from

the general literature which, since it is an H1 type error, is an eoc of 2 and is thus exhibits

superconvergence. Superconvergence is a phenomenon which occurs when the computable

error, that is ∇Ihu(·, tn) −∇Un(·), is a higher order than that of the total error, that is

∇u(·, tn)−∇Un(·). In other words, ∇Un(·) is a better approximation to ∇Ihu(·, tn) than

to ∇u(·, tn) [115]. One often notices superconvergence in one spatial variable problems

and we speculate that, since we are approximating advection-diffusion on a curve, this is

why we see this here. E4 has an eoc which is slightly larger than what the theory predicts,

but one expects that this eoc will reduce towards 2 as ε decreases.

Next we test how the value of γ affects the errors. In the proof of Theorem 2.8 in

[44] the authors require γ ≥ 1 + C, so in Table 2.3 we present the errors for ε = 0.4 with

γ = 0, 0.01, 0.1, 1, 2. As can be seen the errors are very similar. We stick with the choice

of γ = 0.01 from here onwards.

Next we demonstrate that choosing r = 2 for ρ̃ε computationally is just a formality.

In Table 2.4 we present the errors for ε = 0.4 with γ = 0.01 and r = 1, 1.2, 1.5, 2. As can

be seen the errors are practically identical. The important result we can extract here is

that, comparing r = 2 to r = 1.2, we can reduce the amount of degrees of freedom in the

mesh since the interfacial region of ρ̃ε is smaller. From here onwards we will take r = 1.2.

Finally, we look at the computational time of some of the results. Considering the

standard setting of γ = 0, taking ε = 0.4, which noting the narrow band implementa-

tion equates initially to 370727 degrees of freedom (DOFs), results in approximately 140

minutes of execution whilst ε = 0.1
√

2, which equates initially to 1047848 DOFs, results

in approximately 2760 minutes (1 day, 22 hours) of execution time. In the setting of γ > 0

and r = 1.2, taking ε = 0.4, which equates initially to 442139 DOFs, results in approxim-

ately 240 minutes of execution whilst ε = 0.1
√

2, which equates initially to 1250991 DOFs,

results in approximately 3960 minutes (2 days, 18 hours) of execution time. Lastly, in the

setting of γ > 0 and r = 2, taking ε = 0.4, which equates initially to 654423 DOFs, results

in approximately 1220 minutes of execution time whilst ε = 0.1
√

2, which equates initially

to 2063849 DOFs, results in approximately 10800 minutes (7 days, 12 hours) of execution

time. As one can readily see, the computational time gained from taking r = 1.2 rather

than r = 2 is massive. Similarly, taking r = 1 rather than r = 1.2 gains computational
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time but you lose the guaranteed convergence from the theory.

ε E1 × 104 eoc1 E2 × 104 eoc2 E3 × 105 eoc3 E4 × 106 eoc4

0.4 1.056 - 5.959 - 2.764 - 4.770 -

0.2
√

2 0.1602 5.44 1.484 4.01 0.8114 3.54 1.812 2.79

0.2 0.03097 4.74 0.3736 3.98 0.2193 3.76 0.6371 3.02

0.1
√

2 0.006715 4.41 0.09462 3.96 0.05703 3.89 0.2383 2.84

Table 2.1: Errors for Model: FE (2.4.2), with γ = 0, for Example 1.

ε E1 × 104 eoc1 E2 × 104 eoc2 E3 × 105 eoc3 E4 × 106 eoc4

0.4 1.056 - 5.952 - 2.764 - 4.770 -

0.2
√

2 0.1602 5.44 1.481 4.01 0.8110 3.54 1.811 2.79

0.2 0.03092 4.74 0.3723 3.98 0.2188 3.78 0.6363 3.02

0.1
√

2 0.006691 4.42 0.09390 3.98 0.05679 3.89 0.2379 2.84

Table 2.2: Errors for Model: FE (2.4.2), with γ = 0.01, for Example 1.

γ E1 × 104 E2 × 104 E3 × 105 E4 × 106

0 1.056 5.959 2.764 4.770

0.01 1.056 5.952 2.764 4.770

0.1 1.057 5.954 2.774 4.785

1 1.065 5.982 2.877 4.936

2 1.074 6.013 2.994 5.107

Table 2.3: Errors for Model: FE (2.4.2), with varying γ and fixed ε = 0.4, for Example

1.

r E1 × 104 E2 × 104 E3 × 105 E4 × 106

1 1.056 5.959 2.764 4.770

1.2 1.056 5.952 2.764 4.769

1.5 1.056 5.952 2.764 4.770

2 1.056 5.952 2.764 4.770

Table 2.4: Errors for Model: FE (2.4.2), with varying r, and fixed γ = 0.01 and ε = 0.4,

for Example 1.
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2.4.2 Finite volume approximation of a diffuse interface approximation

to SADEs on evolving surfaces, Model: FV

In this section we present a finite volume discretisation of (2.3.12a), for which we closely

follow the finite volume/element discretisation in [66]. Before we derive a scheme, we set

up the appropriate dual mesh. Here we follow the set up from [66] adopting our notation

for clarity.

Given a quasi-uniform triangulation T h, of a bounded, polygonal domain Ω ⊂ R2,

we construct the following dual mesh: we denote each cell of the dual mesh by Vi and

associate it with a node ~pi of T h. Each Vi is bounded by the lines that bisect and are

perpendicular to the edge emanating from its associated node, see Figure 2.7. When the

mesh is acute the dual cell associated with a particular node can also be characterised

as the set of points in Ω that are closer to the node than any others. The perpendicular

bisectors will meet at the circumcentres of the triangles of T h which form the nodes of the

complementary mesh. We refer to the edges and nodes of the dual mesh as co-nodes and

co-edges and we restrict ourselves to triangulations whose interior angles are no greater

than π
2 as this guarantees that the circumecentre of a triangle will be contained within the

triangle and co-edges intersect only a co-nodes. We denote the edge of T h connecting the

ith node to the jth node by σij and its length by hij . Similarly, σ′ij will denote the co-edge

that is perpendicular to σij and h′ij will denote its length and we denote the portion of

h′ij that is in T h by (h′ij)Th . We set ξij to be the set of triangles in T h having σij as an

edge: ξij = {T h ∈ T h : σij ⊂ T h} and we note in general ξij contains two triangles; the

exception being when σij is a boundary edge which only meets one triangle.

Using the notation defined in [66] we can now derive a finite volume scheme for

(2.3.12a), which follows a similar derivation to the finite element approximation to (2.3.12a)

in [63]. We multiply (2.3.12a) by ρε|∇φ|, noting (2.3.9) and (2.3.11), and integrate over

each volume cell Vj , where j ∈ N such that ~pj /∈ ∂Ω, to obtain∫
Vj

[∂•t (ρεu
e) + ρε u

e divφ(~v e)] |∇φ| dx− d
∫
Vj

div(ρε|∇φ|∇ue) dx

=

∫
Vj

ρε f
e |∇φ| dx+

∫
Vj

φ ρεR |∇φ| dx.

Using the classical divergence theorem and Lemma 2.6, we obtain the weak form

d

dt

∫
Vj

ρε u
e |∇φ| dx+

∫
∂Vj

ρε u
e〈~v e, ~nVj 〉|∇φ| dS − d

∫
∂Vj

ρε〈∇ue, ~nVj 〉|∇φ| dS
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Figure 2.7: The basic structure of the dual mesh considered in Section 2.4.2. Here T h

denotes a triangle in the triangulation T h and Vi denotes the volume cell corresponding

to the node ~pi at index i. Inspiration from [66].

=

∫
Vj

ρε f
e |∇φ| dx+

∫
Vj

φ ρεR |∇φ| dx, (2.4.5)

where ~nVj is the outward pointing unit normal to ∂Vj .

Model: FV

In a similar manner to (2.3.14), we neglect the remainder term involving R. To approx-

imate (2.4.5) for Un in the form of (2.4.1) we set Unj = 0 for j /∈ N n
h together with the

following upwinding scheme

1

∆tn
(ρnε )j U

n
j m

n
j − d

∑
k∈ωj

(
Unk − Unj
hjk

)
(ρnε )jk p

n
jk

+
∑
k∈ωj

(
Unj

[
〈(ρnε~v e,n)jk, ~nσ′jk〉

]
+

+ Unk

[
〈(ρnε~v e,n)jk, ~nσ′jk〉

]
−

)
pnjk

=
1

∆tn
(ρn,n−1
ε )j U

n−1
j mn−1

j + (ρnε )j f
e,n
j mn

j , ∀ j ∈ N n
h , (2.4.6)

where [s]+ = max{s, 0}, [s]− = min{s, 0}, (g)jk = 1
2 (gj + gk) with gj = g(~pj) and

mn
j :=

∑
Th∈Nj

|∇Ihφn|
Th
|
∫
Th|Vj

dx, pnjk :=
∑

Th∈ξjk

(
h′jk
)
Th
|∇Ihφn|

Th
|,

with

(ρn,n−1
ε )j :=

 (ρn−1
ε )j if j ∈ N n

h ,

0 otherwise.
(2.4.7)

The discretisation method we employ here to derive (2.4.6) from (2.4.5) is similar to the

so called Finite Volume Element method [28, 85, 94]. This method sets up the weak form
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of the equation we want to approximate in a finite volume style, i.e. integrals over volume

cells, and then approximates the integrals in a finite element style by using the nodal

values of the functions within the integrals. This enables us to use the finite element

framework set up in ALBERTA. We include upwinding in Model: FV (2.4.6) as a

tool used to dampen oscillations by introducing some form of numerical diffusion [74].

Given this setup, and how similar the resulting nodal scheme is to the one derived for

the finite element approximation, one would expect the same rates of convergence for the

conventional advection-diffusion equation, even with the addition of upwinding [46, 47, 85].

Table 2.5 demonstrates the errors and eocs using Model: FV (2.4.6) applied to Ex-

ample 1 with the same parameter choices and relationships, and the same implementation

using ALBERTA with access to one core of computational power on the HPC. By com-

paring Table 2.5 to Table 2.1 we see that the eocs for the errors E3 and E4, the errors

restricted to the interface, follow a similar trend and the error values themselves are quite

similar. The diffuse interface type error E1 also follows the eoc trend of the finite element

results in Table 2.1 and the error values are quite similar to the finite element error values.

The diffuse interface type error E2 is however not converging. We speculate this is due to

the large profile spikes which can be seen in Figure 2.10.

Taking ε = 0.4 results in approximately 130 minutes of execution time, which is slightly

shorter than using Model: FE (2.4.2) with γ = 0. Taking ε = 0.1
√

2 results in approx-

imately 3180 minutes (2 days, 15 hours) of execution time. Finally, taking ε = 0.05
√

2,

which is the smallest value of ε we take in this section and leads initially to 2123063 DOFs,

results in approximately 16530 minutes (11 days, 11.5 hours) of execution time. Given the

difference in computational time needed for ε = 0.05
√

2 compared to ε = 0.1
√

2, one can

see that using a finer mesh would almost be intractable.

ε E1 × 104 eoc1 E2 × 104 eoc2 E3 × 105 eoc3 E4 × 106 eoc4

0.4 1.084 - 6.641 - 3.385 - 5.778 -

0.2
√

2 0.1778 5.22 7.887 -0.50 0.9801 3.58 2.102 2.92

0.2 0.04000 4.30 2.453 3.37 0.3086 3.33 0.7812 2.86

0.1
√

2 0.009010 4.30 22.36 -6.38 0.07977 3.90 0.2919 2.84

0.1 0.002729 3.45 7.756 3.06 0.02630 3.20 0.1176 2.62

0.05
√

2 0.0006637 4.08 85.79 -6.93 0.006390 4.08 0.04221 2.82

Table 2.5: Errors for Model: FV (2.4.6), for Example 1.
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With the rice blast model in mind, we notice the molecular species equations (4.1.2a)–

(4.1.2b) each have a small, if not zero, diffusion constant. This leads us to investigating

how Model: FE (2.4.2) and Model: FV (2.4.6) fare when small diffusion constants are

used. To solve the algebraic system of equations resulting from Model: FV (2.4.6) we

use GMRES but without diagonal preconditioning.

Example 1a

We consider a slightly perturbed version of Example 1. Considering R(t) = 1 and

~c0(t) = (1
2 − 2t, 0)T , with ~v(~p, t) = (2, 0)T , f(~p, t) = 4(d − 1)e−4t

(
~p1 + 1

2 − 2t
)
~p2 for

~p ∈ Γ(t), the solution to (1.2.2) is

u(~p, t) = e−4t

(
~p1 +

1

2
− 2t

)
~p2, ~p ∈ Γ(t), t ∈ [0, T ].

Similarly to Example 1, we produce the results in Tables 2.6–2.9 using ALBERTA with

access to one core of computational power on the HPC. Figures 2.8–2.10 are produced

using MATLAB (R2019a) [92].

Tables 2.6–2.9 depict the errors of Example 1a whilst Figures 2.8–2.10 depict the

profile of UN on the line y = x starting at (0, 0). Table 2.6 demonstrates how Model: FE

(2.4.2), with γ = 0, performs when d is reduced, for ε = 32
3 hT , ε = 20

√
∆t and ε = 0.1

√
2,

T = 0.1 and φ(~p, t) = |~p − ~c0(t)| − R(t) for ~p ∈ Ω. This value of ε results initially in

19997 DOFs. We display the profile of UN in Figure 2.8, in which we see that there seems

to be an appearance of instabilities over the interfacial region as d reduces. One may

expect that this could be due to the CFL type condition in Theorem 2.5, however the

instabilities appear magnitudes of d before this condition is not met since ∆t = 5× 10−5

and ‖v‖L∞(Ω) = 2. Moreover we also see large peaks close to the edge of the interfacial

region, we will discuss these peaks in Section 2.4.3. We reduced hT by a factor of 2 and

∆t by a factor of 4 and saw no major improvements, as shown in Table 2.7. In Figure

2.9 we see a similar profile for Model: FE (2.4.2) with γ = 0.01. In Table 2.6 we

display the errors for Model: FE (2.4.2) with γ = 0.01 and we see that E1 and E2 are

significantly better than the errors for γ = 0 in Table 2.6 even though this is not evident

from Figure 2.9. This improvement of the errors for γ > 0 can be expected due to the

added diffusion the stabilisation term gives. Table 2.9 demonstrates how Model: FV

(2.4.6) performs when d is reduced. With the exception of E2 we see that Model: FV

(2.4.6) performs well even for very small values of d. Figure 2.10 displays the profile of

UN obtained using Model: FV (2.4.6), in it we see that, as d is reducing, no instabilities
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appear, however there also seems to be sharp peaks close to the edge of the interfacial

region. Taking d = 1, the computational time solving Example 1a using Model: FE

(2.4.2) with γ = 0 was approximately 80 minutes of execution time whilst using Model:

FV (2.4.6) was approximately 120 minutes of execution time, a similar difference in

times compared to Example 1. Taking d = 0, the computational time solving Example 1a

using Model: FE (2.4.2) with γ = 0 was approximately 690 minutes of execution time

whilst using Model: FV (2.4.6) was approximately 390 minutes of execution time. We

expect that the instabilities caused by d = 0 whilst using Model: FE (2.4.2) caused an

increased number of iterations of the GMRES solver at each time step, hence the longer

computational time.

d E1 × 105 E2 × 104 E3 × 106 E4 × 105

1 1.18 1.479 2.348 1.741

10−1 4.022 48.33 0.1356 2.484

10−2 1967 29711 0.2266 74.95

10−3 22202 610920 9.488 6465

10−4 167224 3865034 175.9 117704

10−5 289409 6447880 368.2 232113

0 310241 6941655 405.3 254757

Table 2.6: Errors for Model: FE (2.4.2), with varying d, and fixed γ = 0 and ε = 0.1
√

2,

for Example 1a.

d E1 × 105 E2 × 104 E3 × 106 E4 × 105

1 1.1166 1.375 2.204 0.4382

10−1 0.5351 1.910 0.06514 0.5861

10−2 25.82 1983 0.01511 18.42

10−3 544.0 63230 0.7940 1767

10−4 2299 564966 48.46 113730

10−5 8144 2230500 289.7 674849

0 10750 3235908 387.7 931739

Table 2.7: Errors for Model: FE (2.4.2), with varying d, and fixed γ = 0 and ε = 0.1
√

2

but with a smaller hT and ∆t, for Example 1a.
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d E1 × 105 E2 × 104 E3 × 106 E4 × 105

1 1.18 1.478 2.348 1.741

10−1 0.5559 5.752 0.1355 2.484

10−2 8.061 616.2 0.2267 74.94

10−3 29.52 5690 9.48 6459

10−4 49.95 51727 174.2 117200

10−5 109.7 117598 362.9 230440

0 124.7 131751 399.2 252775

Table 2.8: Errors for Model: FE (2.4.2), with varying d, and fixed γ = 0.01 and ε =

0.1
√

2, for Example 1a.

d E1 × 105 E2 × 104 E3 × 106 E4 × 105

1 2.390 14.48 17.68 1.952

10−1 2.367 65.07 12.50 2.486

10−2 4.106 535.8 9.776 21.19

10−3 50.21 10417 9.891 67.34

10−4 63.52 15934 9.920 80.75

10−5 63.36 15934 9.923 82.24

0 63.99 15988 9.924 82.40

Table 2.9: Errors for Model: FV (2.4.6), with varying d and fixed ε = 0.1
√

2, for Example

1a.

blah
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(a) Zoom out (b) Zoom in

Figure 2.8: Profile of UN demonstrating appearance of instabilities when reducing d using

Model: FE (2.4.2) with fixed γ = 0 and ε = 32
3 hT , ε = 20

√
∆t and ε = 0.1

√
2, for

Example 1a. The red line is d = 1, the green line is d = 10−2 and the blue line is

d = 10−4, with the black dashed line being the profile of the true solution. The grey

dashed lines in (a) represents the zone that (b) is demonstrating.

(a) Zoom out (b) Zoom in

Figure 2.9: Profile of UN demonstrating appearance of instabilities when reducing d using

Model: FE (2.4.2) with fixed γ = 0.01 and ε = 32
3 hT , ε = 20

√
∆t and ε = 0.1

√
2, for

Example 1a. The red line is d = 1, the green line is d = 10−2 and the blue line is d = 10−4,

with the black dashed line being the profile of the true solution. The grey dashed lines in

(a) represents the zone that (b) is demonstrating.

blah
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(a) Zoom out (b) Zoom in

Figure 2.10: Profile of UN demonstrating appearance no instabilities when reducing d

using Model: FV (2.4.6) with fixed ε = 32
3 hT , ε = 20

√
∆t and ε = 0.1

√
2, for Example

1a. The red line is d = 1, the green line is d = 10−2 and the blue line is d = 10−4, with

the black dashed line being the profile of the true solution. The grey dashed lines in (a)

represents the zone that (b) is demonstrating.

2.4.3 Edge smoothing for Model: FE

Studying Figures 2.8–2.10 we notice spikes at the edge of the profiles of UN for large h and

small d. The authors in [63] note that this could be the result of the surface evolving and

subsequently investigate how to remedy it by considering the one dimensional problem

with Ω ⊂ R. We reiterate their calculations with the inclusion of the diffusion constant.

Let Ω ⊂ R, and T h = ∪Jj=1σj , where σj = (pj−1, pj) and |σj | = hj . By denoting

vi = v(pi), let i ∈ N n
h be a node index such that (ρnε )i = 0 but (ρnε )i−1 > 0 and (ρn−1

ε )i > 0.

Then, considering σi in Model: FE (2.4.2), whereby for simplicity we set γ = 0, with

(ρnε )i+1 = 0 by default, one has

− 1

∆tn

(
hi q

n−1
i + hi+1 q

n−1
i+1

2

)
(ρn−1
ε )i U

n−1
i − 1

2
(ρnε )i−1 U

n
i−1 ~v

e,n
i−1 q

n
i

+
d

2

qni
hi

(ρnε )i−1

(
Uni − Uni−1

)
= 0, (2.4.8)

where qni = |(φn|σi )x|. It is easy to see that, in general, Uni will be different from Uni−1, thus

resulting in peaks. Considering a uniform mesh size h and a uniform time step ∆t, it can

be verified that ρn−1
ε (ai) = O(∆t2) as ∆t→ 0 and ρnε (ai−1) = O(h2), from [62]. Thus, the

authors in [63] conclude that

|Uni − Uni−1| = O(h), as h→ 0.
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We can see this behaviour in Figure 2.11. Here, we also add that the peaks scale linearly

in d−1, which can be seen in Figure 2.12. Indeed we speculate that as d gets smaller, this

forces |Uni − Uni−1| to get larger, thus creating the larger peaks. By including γ in the

expansion (2.4.8), this also heuristically shows why the errors E1 and E2 obtained from

Model: FE (2.4.2) with γ > 0 are smaller when d is reducing compared to the errors with

γ = 0. Nevertheless taking γ > 0 doesn’t actually help with the peaks in the interface, as

demonstrated by Figures 2.13 and 2.14.

Model: FEs

Although these spikes occur close to the boundary of the interfacial region, this can still

have an effect on the overall solution given enough time, especially in situations when the

scalar quantity is used in other equations, such as for our application of the rice blast. To

reduce the size of the peaks, in [63] the authors present a streamline diffusion term in the

form of ∫
Ω
Ih(gne )〈~v e,n~ν,h ,∇χi〉〈~v

e,n
~ν,h ,∇χj〉|∇φ

n| dx, i, j ∈ N n
h (2.4.9)

where, for ~p ∈ Ω,

ge(~p, t) :=

 0 if |dΓ(~p,t)|
ε ≤ π

4 or |dΓ(~p,t)|
ε ≥ π

2 ,

h
d

4
π

(
|dΓ(~p,t)|

ε − π
4

)
otherwise,

(2.4.10)

and ~v e,n~ν,h is an approximate projection of ~v e,n in the normal direction, which is approxim-

ately orthogonal to the boundary of Γnε . The role of ge is to add small levels of diffusion

close to the boundary in the approximate normal direction, hence the given description of

streamline diffusion. The addition of (2.4.9) to (2.4.2), with U
n
(~pi) = 0 for i /∈ N n

h , yields

the following scheme

Dt

[(
ρnε U

n |∇φn|, ξh
)h]

+ d
(
ρnε ∇Un |∇φn|,∇ξh

)h
−
(
ρnε U

n ~v e,n|∇φn|,∇ξh
)h

+ γ∆tn

(
Ih(ρ̃nε )∇Un,∇ξh

)
+
(
gne 〈~v

e,n
~ν,h ,∇U

n〉~v e,n~ν,h |∇φ
n|,∇ξh

)h
=
(
ρnε f

e,n |∇φn|, ξh
)h
, ∀ ξh ∈ Sh. (2.4.11)

With the addition of (2.4.9) into Model: FE (2.4.2), continuing from (2.4.8), noting that

(gne )i = (gne )i+1 = 0, the authors in [63] yield

− 1

∆tn

(
hi q

n−1
i + hi+1 q

n−1
i+1

2

)
(ρn−1
ε )i U

n−1
i − 1

2
(ρnε )i−1 U

n
i−1 ~v

e,n
i−1 q

n
i−1

+
d

2

qni
hi

(ρnε )i−1

(
Uni − Uni−1

)
+

1

2

qni
hi

(gne )i−1 |(~v e,nν,h )i−1|2(Uni − Uni−1) = 0. (2.4.12)
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Thus, since ge = O(h) as h → 0, the authors in [63] conclude that with the addition of

(2.4.9) one has

|Uni − Uni−1| = O(h2), as h→ 0.

Since ge ≤ Cd−1, as opposed to in (2.4.8), where d getting smaller makes |Uni − Uni−1|

get larger, d getting smaller implies the contribution from ge gets larger, thus forcing

|Uni −Uni−1| to stay small, dampening the spikes. In [63] the authors extend their uniqueness

result Theorem 2.5 to include (2.4.9) with d = 1.

Remark 2.12. We note that the same edge spiking phenomena happens for Model: FV

(2.4.6), see Figures 2.15 and 2.16; however, we leave the edge smoothing for Model: FV

for future research.

Tables 2.10 and 2.11 depicts the errors resulting from Example 1 using Model: FEs

(2.4.11) with γ = 0 and γ = 0.01 respectively, whilst Tables 2.12 and 2.13 depict the

errors resulting from Example 1a using Model: FEs (2.4.11) with γ = 0 and γ = 0.01

respectively. Figures 2.11–2.14 depict the profile of UN resulting from a reduction in hT

and d using Model: FE (2.4.2) with γ = 0 and γ = 0.01 on the line y = x starting

at (0, 0), whilst Figures 2.15 and 2.16 depict the same except using Model: FV (2.4.6).

Figures 2.17 and 2.18 depict the profile of UN resulting from Example 1a using Model:

FEs (2.4.11) with γ = 0 and γ = 0.01 on the line y = x starting at (0, 0).

In terms of errors, it is reported in [63] that using Model: FEs (2.4.11) rather than

Model: FE (2.4.2) doesn’t largely affect the errors since it is only present close to the

boundary of the interfacial region, we see this in Tables 2.10 and 2.11. In Table 2.10 we

see the errors for Example 1 obtained using Model: FEs (2.4.11) with γ = 0, while

Table 2.11 shows the errors for Model: FEs (2.4.11) with γ = 0.01. Considering the

setting of γ = 0, taking ε = 0.4 resulted in approximately 150 minutes of execution time

whilst taking ε = 0.1
√

2 resulted in approximately 2880 minutes (2 days) of execution

time. Considering the setting of γ = 0.01, taking ε = 0.4 resulted in approximately 270

minutes of execution time whilst taking ε = 0.1
√

2 resulted in approximately 4380 minutes

(3 days, 1 hour) of execution time. As one can see, adding the edge smoothing term only

adds a small amount of computational time which is probably due to the assembling of

an extra matrix. Even though the addition of the edge smoothing term gives stabilisation

and thus should improve the solving time for each linear system, the choices of h and ∆t

in Example 1 are suitably small and so the edge spiking has a relatively small impact.

Tables 2.12 and 2.13 display the errors for Example 1a for Model: FEs (2.4.11) with
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γ = 0 and γ = 0.01 respectively. Considering Table 2.12 first, comparing to Table 2.6 we

can see that initially the addition of (2.4.9) has a positive effect on the errors, however as

d reduces it has a negative effect. Although we can see from Figure 2.17 that the profile

is a lot smoother at the edges, even when d is small, wiggles still appear in regions where

there is no edge smoothing, but the edge smoothing results in a jump of the profile. We

speculate that this is caused by a combination of the instabilities outside the region of

edge smoothing and the fact that the finite element approximation is continuous. We see

a similar behaviour for Model: FEs (2.4.11) when γ > 0 in Table 2.13 and in Figure

2.18. Taking d = 1 resulted in approximately 45 minutes of execution time whilst taking

d = 10−8 resulted in approximately 510 minutes of execution time. Here we can see that

reducing the effects of the edge spikes enables a faster solving time as one expects the

solver converges quicker. For the comparison of Figures 2.11–2.16 we note here to be wary

of the different scaling used for the y−axis. In these simulations we have used the same

implementation in ALBERTA with one core of power on the HPC but used GMRES with

diagonal preconditioning for the solution to the algebraic system resulting from Model:

FEs (2.4.11).

ε E1 × 104 eoc1 E2 × 104 eoc2 E3 × 105 eoc3 E4 × 106 eoc4

0.4 1.056 - 5.950 - 2.763 - 4.769 -

0.2
√

2 0.1601 5.44 1.481 4.01 0.8102 3.54 1.810 2.80

0.2 0.03085 4.75 0.3719 3.99 0.2182 3.79 0.6353 3.02

0.1
√

2 0.006634 4.43 0.09384 3.97 0.05621 3.91 0.2369 2.84

Table 2.10: Errors for Model: FEs (2.4.11) with γ = 0, for Example 1.

ε E1 × 104 eoc1 E2 × 104 eoc2 E3 × 105 eoc3 E4 × 106 eoc4

0.4 1.056 - 5.950 - 2.764 - 4.770 -

0.2
√

2 0.1601 5.44 1.481 4.01 0.8108 3.54 1.811 2.79

0.2 0.03092 4.74 0.3719 3.99 0.2188 3.78 0.6363 3.02

0.1
√

2 0.006691 4.42 0.09385 3.97 0.05679 3.89 0.2379 2.84

Table 2.11: Errors for Model: FEs (2.4.11) with γ = 0.01, for Example 1
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d E1 × 105 E2 × 104 E3 × 106 E4 × 105

1 1.176 1.404 2.351 1.741

10−1 5.108 0.6212 0.124 2.484

10−2 0.04293 11.47 0.223 74.94

10−3 0.6292 890.7 9.441 6329

10−4 15.13 12642 95.64 68726

10−5 75.48 23889 155.9 112827

10−8 19668 8562119 33420 1960620

Table 2.12: Errors for Model: FEs (2.4.11), with varying d, and fixed γ = 0 and ε =

0.1
√

2, for Example 1a.

d E1 × 105 E2 × 104 E3 × 106 E4 × 105

1 1.176 1.404 2.351 1.741

10−1 0.5108 0.6213 0.124 2.484

10−2 0.04293 11.46 0.223 74.94

10−3 0.6286 890.0 9.433 6323

10−4 15.12 12607 95.44 68575

10−5 75.50 23811 155.5 112535

10−8 19665 853545 33315 1949437

Table 2.13: Errors for Model: FEs (2.4.11), with varying d, and fixed γ = 0.01 and

ε = 0.1
√

2, for Example 1a.

blah
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(a) Zoom out (b) Zoom in

Figure 2.11: Profile of UN demonstrating profile spiking when reducing hT using Model:

FE (2.4.2) with γ = 0, for Example 1a. The red line is hT = 2.4× 2−6.5, the green line is

hT = 2.4× 2−7 and the blue line is hT = 2.4× 2−7.5, where ε is fixed and ∆t = 8
15(hT )2.

The black line depicts the profile of Un(·) using Model: FEs (2.4.11) with γ = 0 and

hT = 2.4×2−6.5. The grey dashed lines in (a) represents the zone that (b) is demonstrating.

(a) Zoom out (b) Zoom in

Figure 2.12: Profile of UN demonstrating profile spiking when increasing d using Model:

FE (2.4.2) with γ = 0, for Example 1a. The red line is d = 0.1, the green line is d = 0.2

and the blue line is d = 0.4, where ε = 0.1
√

2, ε = 32
3 hT and ε = 20

√
∆t are fixed. The

black line depicts the profile of Un(·) using Model: FEs (2.4.11) with γ = 0 and d = 0.1.

The grey dashed lines in (a) represents the zone that (b) is demonstrating.

blah
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(a) Zoom out (b) Zoom in

Figure 2.13: Profile of UN demonstrating profile spiking when reducing hT using Model:

FE (2.4.2) with γ = 0.01, for Example 1a. The red line is hT = 2.4×2−6.5, the green line

is hT = 2.4×2−7 and the blue line is hT = 2.4×2−7.5, where ε is fixed and ∆t = 8
15(hT )2.

The black line depicts the profile of Un(·) using Model: FEs (2.4.11) with γ = 0.01 and

hT = 2.4×2−7.5. The grey dashed lines in (a) represents the zone that (b) is demonstrating.

(a) Zoom out (b) Zoom in

Figure 2.14: Profile of UN demonstrating profile spiking when increasing d using Model:

FE (2.4.2) with γ = 0.01, for Example 1a. The red line is d = 0.1, the green line is

d = 0.2 and the blue line is d = 0.4, where ε = 0.1
√

2, ε = 32
3 hT and ε = 20

√
∆t are fixed.

The black line depicts the profile of Un(·) using Model: FEs (2.4.11) with γ = 0.01 and

d = 0.1. The grey dashed lines in (a) represents the zone that (b) is demonstrating.

blah
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(a) Zoom out (b) Zoom in

Figure 2.15: Profile of UN demonstrating the profile spiking when reducing hT using

Model: FV (2.4.6), for Example 1a. The red line is hT = 2.4 × 2−6.5, the green line is

hT = 2.4× 2−7 and the blue line is hT = 2.4× 2−7.5, where ε is fixed and ∆t = 8
15(hT )2.

The grey dashed lines in (a) represents the zone that (b) is demonstrating.

(a) Zoom out (b) Zoom in

Figure 2.16: Profile of UN demonstrating the profile spiking when reducing d using Model:

FV (2.4.6), for Example 1a. The red line is d = 0.1, the green line is d = 0.2 and the blue

line is d = 0.4, where ε = 0.1
√

2, ε = 32
3 hT and ε = 20

√
∆t are fixed. The grey dashed

lines in (a) represents the zone that (b) is demonstrating.

blah
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(a) Zoom out (b) Zoom in

Figure 2.17: Profile of UN demonstrating the appearance of instabilities when reducing d

using Model: FEs (2.4.11) with fixed γ = 0 and ε = 32
3 hT , ε = 20

√
∆t and ε = 0.1

√
2,

for Example 1a. The red line is d = 1, the green line is d = 10−2 and the blue line is

d = 10−4, with the black dashed line being the profile of the true solution. The grey

dashed lines in (a) represents the zone that (b) is demonstrating.

(a) Zoom out (b) Zoom in

Figure 2.18: Profile of UN demonstrating the appearance of instabilities when reducing d

using Model: FEs (2.4.11) with fixed γ = 0.01 and ε = 32
3 hT , ε = 20

√
∆t and ε = 0.1

√
2,

for Example 1a. The red line is d = 1, the green line is d = 10−2 and the blue line is

d = 10−4, with the black dashed line being the profile of the true solution. The grey

dashed lines in (a) represents the zone that (b) is demonstrating.

blah
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2.4.4 Coupling the diffuse interface approximation of a SADE on an

evolving surface to the phase field approximation of mean curvature

flow

Following [63, Section 4.1], we now look to extend Model: FE , Model: FEs and Model:

FV to the case where the velocity ~v isn’t a given function but instead is the solution of

an equation that approximates mean curvature flow. As in [63] we set

ρϕ(~p, t) := 1− ϕ2(~p, t), ~p ∈ Ω, t ∈ [0, T ] (2.4.13)

where ϕ is the solution to (2.2.9). In essence, this means that all appearances of φ in

(2.3.12a), subsequent weak formulations and finite element and finite volume approxima-

tions will be replaced by ϕ. In particular, this means that the phase field approximation to

the normal velocity of Γ(t) and the unit normal vector of Γ(t) in (2.3.10) are respectively

vϕ(·, t) := − ϕt(·, t)
|∇ϕ(·, t)|

, ~νϕ(·, t) :=
∇ϕ(·, t)
|∇ϕ(·, t)|

, in Ω, t ∈ [0, T ]. (2.4.14)

Moreover, since we consider mean curvature flow, we note that ~vτ = 0. Denoting the

approximation of ρϕ and ~vϕ as

ρnΦ(·) := 1− (Φn(·))2, ~v nΦ (·) := −DtΦ
n(·)

|∇Φn(·)|
∇Φn(·)
|∇Φn(·)|

, in Ω,

with an abuse of notation we redefine

N n
h := {i ∈ N : ∃ j ∈ ωi such that ρnΦ(~pj) > 0}

and set

Γh,nε := {T h ∈ T h : NTh ⊂ N n
h }. (2.4.15)

Model: ACFE

With the velocity of the surface given by (2.4.14), the coupling of the finite element

approximation to the diffuse interface approximation to SADEs to the finite element ap-

proximation to the phase field approximation of mean curvature flow takes the form of

U
n
(~pi) = 0 for i /∈ N n

h and

Dt

[(
ρnΦ U

n |∇Φn|, ξh
)h]

+ d
(
ρnΦ∇Un |∇Φn|,∇ξh

)h
−
(
ρnΦ U

n ~v nΦ |∇Φn|,∇ξh
)h

=
(
ρnΦ f

e,n |∇Φn|, ξh
)h
, ∀ ξh ∈ Sh, (2.4.16a)

ε
(
DtΦ

n, ηh − Φn
)h

+ ε
(
∇Φn,∇ηh −∇Φn

)
−1

ε

(
Φn, ηh − Φn

)h
− π

4

(
pn, ηh − Φn

)h
≥ 0, ∀ ηh ∈ Kh, (2.4.16b)
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where

Kh := {ηh ∈ Sh : |ηh| ≤ 1}.

Model: ACFEs

Similarly, the coupling of the finite element approximation to the diffuse interface approx-

imation to SADEs with edge smoothing to the finite element approximation to the phase

field approximation of mean curvature flow takes the form of U
n
(~pi) = 0 for i /∈ N n

h and

Dt

[(
ρnΦ U

n |∇Φn|, ξh
)h]

+ d
(
ρnΦ∇Un |∇Φn|,∇ξh

)h
−
(
ρnΦ U

n ~v nΦ |∇Φn|,∇ξh
)h

+
(
gne,Φ 〈~v

e,n
~ν,Φ,∇U

n〉~v e,n~ν,Φ |∇Φn|,∇ξh
)h

=
(
ρnΦ f

e,n |∇Φn|, ξh
)h
, ∀ ξh ∈ Sh, (2.4.17a)

ε
(
DtΦ

n, ηh − Φn
)h

+ ε
(
∇Φn,∇ηh −∇Φn

)
−1

ε

(
Φn, ηh − Φn

)h
− π

4

(
pn, ηh − Φn

)h
≥ 0, ∀ ηh ∈ Kh, (2.4.17b)

with ~v n~νε,Φ being the approximate projection of ~v nΦ in the approximate normal direction

~νΦ. Given the form of ge in (2.4.10), we can approximate dΓ(·, tn) by using Φn(·), noting

(2.4.20) and see [41], which is how we calculate ge,Φ.

Remark 2.13. One notices that Model: ACFE and Model: ACFEs do not have the

added streamline diffusion term from [44]. This is because we could not find a way to

define ρ̃ε for any time without the explicit knowledge of the curve, and hence we could not

extend the term to this coupled case where the approximation of the curve satisfies its own

velocity law.

Model: ACFV

The coupling of the finite volume approximation to the diffuse interface approximation

to SADEs to the finite element approximation to the phase field approximation of mean

curvature flow takes the form of U
n
(~pi) = 0 for i /∈ N n

h and

1

∆tn
(ρnΦ)j U

n
j (mn

Φ)j − d
∑
k∈ωj

(
Unk − Unj
hjk

)
(ρnΦ)jk (pnΦ)jk

+
∑
k∈ωj

(
Unj

[
〈(ρnΦ~v

e,n
Φ )jk, ~nσ′jk〉

]
+

+ Unk

[
〈(ρnΦ~v

e,n
Φ )jk, ~nσ′jk〉

]
−

)
(pnΦ)jk

=
1

∆tn
(ρn,n−1

Φ )j U
n−1
j (mn−1

Φ )j + (ρnΦ)j f
e,n
j (mn

Φ)j , ∀ j ∈ N n
h , (2.4.18a)

ε
(
DtΦ

n, ηh − Φn
)h

+ ε
(
∇Φn,∇ηh −∇Φn

)
−1

ε

(
Φn, ηh − Φn

)h
− π

4

(
pn, ηh − Φn

)h
≥ 0, ∀ ηh ∈ Kh, (2.4.18b)
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where (ρn,n−1
Φ )j as defined in (2.4.7), and

(mn
Φ)j :=

∑
Th∈Nj

|∇Φn
|
Th
|
∫
Th|Vj

dx, (pnΦ)jk :=
∑

Th∈ξjk

(
h′jk
)
Th
|∇Φn

|
Th
|.

Example 2

For our second example we use an expanding circle, which is the same as Example 2

in Section 3.2 in [63], whereby we want to see how Model: ACFE (2.4.16a)–(2.4.16b),

Model: ACFEs (2.4.17a)–(2.4.17b) and Model: ACFV (2.4.18a)–(2.4.18b) react to a

small diffusion constant. Consider R(t) = 0.75 + 5t and ~c0(t) = (0, 0)T , with ~v(~p, t) = 5~p
|~p| ,

and f(~p, t) = 4(d− 1)e
4

5R(t) ~p1~p2

R3(t)|~p|2 for ~p ∈ Γ(t). Then, the solution to (1.2.2) is

u(~p, t) = e
4

5R(t)
~p1 ~p2

R(t)|~p|2
, ~p ∈ Γ(t), t ∈ [0, T ].

One notices that the velocity in Example 1 was not in the normal direction; however, for

this example it is which allows us to compare the errors from diffuse interface approach to

the errors from the coupled Allen-Cahn diffuse interface approach. As Γ(t) is a circle, this

implies that v = R′(t) and κ = −R(t)−1, and hence we take the forcing for the Allen-Cahn

equation, noting (1.1.2), to be

p = v − κ = 5 +
1

0.75 + 5t
.

We solve the algebraic system of equations resulting from the diffuse interface approx-

imation of the SADEs using GMRES with diagonal preconditioning only for the finite

element approximations (2.4.16a) and (2.4.17a), we do not use diagonal preconditioning

for (2.4.18a). For the solution of algebraic system resulting from (2.4.16b), (2.4.17b) and

(2.4.18b) we use the projective SOR method presented in [60], which, ∀ j ∈ N , gives

ε

∆tn

(
Φn′ , χj

)h
+ ε

(
∇Φn′ ,∇χj

)
=

(
ε

∆tn
+

1

ε

)(
Φn−1, χj

)h
+
π

4
(pn, χj)

h , (2.4.19a)

Φn = PΦn′ , (2.4.19b)

where, as in [41], P is defined as the component-wise projection

(Px)j := max{−1,min{1, xj}}, j ∈ N .

Simplistically this can be thought of as the semi-implicit finite element approximation to

the ‘equivalent’ variational equality to (2.2.9) whereby if a nodal value goes above 1 or

below -1 it gets truncated to make sure that Φn ∈ Kh. Initially, see [41], we consider the
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profiles for (2.4.16b), (2.4.17b) and (2.4.18b), for ~p ∈ Ω, to be Φ0 := Ihϕ0, where

ϕ0(~p) :=


1 if dΓ(~p, 0) > πε

2 ,

sin
(
dΓ(~p,0)

ε

)
if |dΓ(~p, 0)| ≤ πε

2 ,

−1 if dΓ(~p, 0) < −πε
2 .

(2.4.20)

As before, the following results were produced using ALBERTA using one core of pro-

cessing power on the HPC whilst the visualisations were produced in MATLAB. To

quantify how each system is reacting we consider E3 and E4 in (2.4.3c) and (2.4.3d) re-

spectively. We take φ(~p, t) = |~p − c0(t)| − R(t), for ~p ∈ Ω, and set ε = 0.1, hT = 3ε
32 ,

∆t = ε2

400 , and T = 0.1. This value of ε results initially in 21221 DOFs. Table 2.14 depicts

the errors resulting from Example 2 comparing Model: FE (2.4.2) and Model: ACFE

(2.4.16a)–(2.4.16b), Table 2.15 depicts the errors resulting from Example 2 comparing

Model: FEs (2.4.11) with Model: ACFEs (2.4.17a)–(2.4.17b), and Table 2.16 depicts

the errors resulting from Example 2 comparing Model: FV (2.4.6) with Model: ACFV

(2.4.18a)–(2.4.18b). Figures 2.19–2.21 depict the profile of UN resulting from Example 2

using Model: FE (2.4.2), Model: FEs (2.4.11) and Model: FV (2.4.6) respectively

on the line y = x starting at (0, 0), whilst Figures 2.22–2.24 depict the same profiles but

resulting from the Allen-Cahn variants of the schemes.

Table 2.19b demonstrates how Model: ACFE (2.4.16a)–(2.4.16b) performs when d

is reduced, while for comparison Table 2.19a demonstrates how Model: FE (2.4.2), with

γ = 0, performs when d is reduced. We display the profiles of UN resulting from Model:

FE (2.4.2) and Model: ACFE (2.4.16a)–(2.4.16b) in Figures 2.19 and 2.22 respectively.

Unlike in Figure 2.8 for Example 1a where we saw the appearance of instabilities, albeit

for smaller values of d than here, the edge spikes are causing a much larger problem, es-

pecially for Model: ACFE (2.4.16a)–(2.4.16b). Taking d = 1, the computational time

solving Example 2 using Model: FE (2.4.2) was approximately 120 minutes of execution

time whilst using Model: ACFE (2.4.16a)–(2.4.16b) was approximately 70 minutes of

execution time. As one can see the simulation using Model: ACFE (2.4.16a)–(2.4.16b)

is faster, which is somewhat surprising. Taking d = 0, the computational time solving

Example 2 using Model: FE (2.4.2) was approximately 720 minutes of execution time

whilst using Model: ACFE (2.4.16a)–(2.4.16b) was approximately 620 minutes of exe-

cution time. In Table 2.19b we display the errors for Model: ACFEs (2.4.17a)–(2.4.17b)

and Table 2.19a displays the errors for Model: FEs (2.4.11) for comparison. Figure

2.20 depicts the profile of UN resulting from Model: FEs (2.4.11) while Figure 2.23

depicts the profile of UN resulting from Model: ACFEs (2.4.17a)–(2.4.17b). In a sim-
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ilar fashion to Example 1a, the edge smoothing contributions affect the errors when d

is small but largely improve the profile of UN , as we see from comparing Figure 2.23 to

Figure 2.22. Taking d = 1, the computational time solving Example 2 using Model: FEs

(2.4.11) was approximately 150 minutes of execution time whilst using Model: ACFEs

(2.4.17a)–(2.4.17b) was approximately 120 minutes of execution time. Taking d = 10−8,

the computational time solving Example 2 using Model: FEs (2.4.11) was approxim-

ately 405 minutes of execution time whilst using Model: ACFEs (2.4.17a)–(2.4.17b) was

approximately 510 minutes of execution time. Table 2.19a displays the errors for Model:

FV (2.4.6) for the comparison to Model: ACFV (2.4.18a)–(2.4.18b) whose errors are

displayed in Table 2.19b. As in Example 1a the interface errors using Model: ACFV

are significantly better than the respective errors of Model: ACFE (2.4.16a)–(2.4.16b)

and Model: ACFEs (2.4.17a)–(2.4.17b); however, like in Example 1a, the profile of UN

resulting from Model: FV (2.4.6) and Model: ACFV (2.4.18a)–(2.4.18b) both suffer

from large edge spikes, which for Model: FV (2.4.6) can be seen in Figure 2.21 and in

Figure 2.24 for Model: ACFV (2.4.18a)–(2.4.18b). Taking d = 1, the computational time

solving Example 2 using Model: FV (2.4.6) was approximately 80 minutes of execution

time whilst using Model: ACFV (2.4.18a)–(2.4.18b) was approximately 45 minutes of

execution time. Taking d = 0, the computational time solving Example 2 using Model:

FV (2.4.6) was approximately 300 minutes of execution time whilst using Model: ACFV

(2.4.18a)–(2.4.18b) was approximately 240 minutes of execution time. For the comparison

of Figures 2.19–2.24 we note here to be wary of the different scaling used for the y−axis.

d E3 × 106 E4 × 104

1 6.368 1.316

10−1 10.40 9.876

10−2 72.40 808.9

10−3 1390 58593

10−4 7138 372797

10−5 9538 484733

0 9871 499776

(a) Model: FE

d E3 × 106 E4 × 104

1 295.0 2.202

10−1 727.4 19.37

10−2 770.5 2822

10−3 6466 344237

10−4 22130 1334963

10−5 25552 1559463

0 25930 1559463

(b) Model: ACFE

Table 2.14: Errors comparing Model: FE (2.4.2) to Model: ACFE (2.4.16a)–(2.4.16b),

with varying d, and fixed ε = 0.1, for Example 2.
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d E3 × 106 E4 × 104

1 6.327 1.315

10−1 7.423 9.859

10−2 59.69 808.7

10−3 1288 50174

10−4 5275 195772

10−5 961604 3969932

10−8 996891 4178887

(a) Model: FEs

d E3 × 106 E4 × 104

1 302.7 2.224

10−1 838.8 21.02

10−2 2230 2865

10−3 45293 279309

10−4 192630 955223

10−5 201504 992176

10−8 224957 1164530

(b) Model: ACFEs

Table 2.15: Errors comparing Model: FEs (2.4.11) to Model: ACFEs (2.4.17a)–

(2.4.17b), with varying d, and fixed ε = 0.1, for Example 2.

d E3 × 106 E4 × 104

1 38.23 1.585

10−1 93.56 11.17

10−2 132.1 175

10−3 146.0 402.3

10−4 146.7 451.6

10−5 146.8 457.4

0 146.8 458.0

(a) Model: FV

d E3 × 106 E4 × 104

1 442.2 3.476

10−1 1125 42.24

10−2 1754 802.5

10−3 1790 1956

10−4 1789 2197

10−5 1789 2224

0 1790 2227

(b) Model: ACFV

Table 2.16: Errors comparing Model: FV (2.4.6) to Model: ACFV (2.4.18a)–(2.4.18b),

with varying d, and fixed ε = 0.1, for Example 2.

blah
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(a) Zoom out (b) Zoom in

Figure 2.19: Profile of UN when reducing d using Model: FE (2.4.2) with fixed γ = 0,

ε = 32
3 hT , ε = 20

√
∆t and ε = 0.1, for Example 2. The red line is d = 1, the green line is

d = 10−1 and the blue line is d = 10−2, with the black dashed line being the profile of the

true solution. The grey dashed lines in (a) represents the zone that (b) is demonstrating.

(a) Zoom out (b) Zoom in

Figure 2.20: Profile of UN when reducing d using Model: FEs (2.4.11) with fixed γ = 0,

ε = 32
3 hT , ε = 20

√
∆t and ε = 0.1, for Example 2. The red line is d = 1, the green line is

d = 10−1 and the blue line is d = 10−2, with the black dashed line being the profile of the

true solution. The grey dashed lines in (a) represents the zone that (b) is demonstrating.

blah
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(a) Zoom out (b) Zoom in

Figure 2.21: Profile of UN when reducing d using Model: FV (2.4.6) with fixed ε = 32
3 hT ,

ε = 20
√

∆t and ε = 0.1, for Example 2. The red line is d = 1, the green line is d = 10−1

and the blue line is d = 10−2, with the black dashed line being the profile of the true

solution. The grey dashed lines in (a) represents the zone that (b) is demonstrating.

(a) Zoom out (b) Zoom in

Figure 2.22: Profile of UN when reducing d using Model: ACFE (2.4.16a)–(2.4.16b)

with fixed ε = 32
3 hT , ε = 20

√
∆t and ε = 0.1, for Example 2. The red line is d = 1, the

green line is d = 10−1 and the blue line is d = 10−2, with the black dashed line being the

profile of the true solution. The grey dashed lines in (a) represents the zone that (b) is

demonstrating. The blue line goes up to approximately 100 and down to approximately -4.

blah
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(a) Zoom out (b) Zoom in

Figure 2.23: Profile of UN when reducing d using Model: ACFEs (2.4.17a)–(2.4.17b)

with fixed ε = 32
3 hT , ε = 20

√
∆t and ε = 0.1, for Example 2. The red line is d = 1, the

green line is d = 10−1 and the blue line is d = 10−2, with the black dashed line being the

profile of the true solution. The grey dashed lines in (a) represents the zone that (b) is

demonstrating.

(a) Zoom out (b) Zoom in

Figure 2.24: Profile of UN when reducing d using Model: ACFV (2.4.18a)–(2.4.18b)

with fixed ε = 32
3 hT , ε = 20

√
∆t and ε = 0.1, for Example 2. The red line is d = 1, the

green line is d = 10−1 and the blue line is d = 10−2, with the black dashed line being the

profile of the true solution. The grey dashed lines in (a) represents the zone that (b) is

demonstrating.

2.4.5 Summary of numerical results

In this section we have introduced a finite element approximation of the diffuse interface

approximation to SADEs without edge smoothing Model: FE (2.4.2) and with edge

smoothing Model: FEs (2.4.11), as well introduced a finite volume approximation of
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the diffuse interface approximation to SADEs Model: FV (2.4.6). We mirrored the error

results and estimated orders of convergence found in the literature for Model: FE (2.4.2)

and Model: FEs (2.4.11) and we demonstrated that Model: FV (2.4.6) has similar

errors as well as follows a similar experimental order of convergence, except for E2. We then

showed that for an advection-dominated simulation Model: FV (2.4.6) has significantly

better errors for a small diffusion constant d; however, like Model: FE (2.4.2), it suffers

from large spikes in the profile of the approximate solution near the edge of the interface.

The edge smoothing term (2.4.9) was introduced by [63] to dampen these profile spikes

which we demonstrated for Model: FE (2.4.2), but we are currently unable to show a

similar feature for Model: FV (2.4.6). We then coupled these approximations to the

finite element approximation to the phase field approximation of mean curvature flow,

whereby the velocity of the SADE satisfied mean curvature flow. We demonstrated errors

for the systems Model: ACFE (2.4.16a)–(2.4.16b), Model: ACFEs (2.4.17a)–(2.4.17b)

and Model: ACFV (2.4.18a)–(2.4.18b) and showed that, in terms of errors, Model:

ACFV (2.4.18a)–(2.4.18b) was still superior; however, in terms of profile, still suffered

from edge spiking.

We finish this section off with some general observations. Considering Model: FE

(2.4.2), judging from the errors in Table 2.6 and the plot in Figure 2.8, it seems that the

approximate solution Un is only meaningful for d ≥ 10−3, whereas one can argue that

Model: FV (2.4.6) is meaningful for all values of d judging by the errors but, due to

the spiking, is ineffective for d ≤ 10−5. The addition of edge smoothing in Model: FEs

(2.4.11) improves the profile massively but is heavily affected by the instabilities caused

for small d, as can be seen for d = 1×10−5 in Figure 2.17, as the smoothing is not near the

true solution but rather whatever the nodal value of Un is when it reaches the smoothing

zone. Each of the schemes maintain these properties upon the coupling to the Allen-Cahn

equation, and all are more susceptible to profile spiking for even larger values of d. Again,

Model: ACFV (2.4.18a)–(2.4.18b) provides much better errors compared to Model:

ACFE (2.4.16a)–(2.4.16b) and Model: ACFEs (2.4.17a)–(2.4.17b) but still suffers from

large profile spiking. We conclude that, for a small d, one should consider Model: FV

(2.4.6) and Model: ACFV (2.4.18a)–(2.4.18b) for good accuracy, but should consider

Model: FEs (2.4.11) and Model: ACFEs (2.4.17a)–(2.4.17b) if the pointwise value of

the approximate solution Un is needed as, for example, forcing for another equation as

part of a system.
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Chapter 3

The parametric approach for

curve shortening flow

3.1 Introduction to Model M1 and Model M2

This chapter concerns itself with the derivation and finite element error analysis of the

parametric setting of curve shortening flow attached to a fixed boundary. In this chapter

we consider two models. The first is simply curve shortening flow for a curve attached to

some prescribed boundary under an orthogonal contact condition. To be more specific, let

the curve Γ(t) move inside some domain Ω ⊂ R2 such that we can describe the boundary,

∂Ω, as

∂Ω := {~p ∈ R2 : F (~p) = 0} with |∇F (~p)| = 1 for ~p ∈ ∂Ω,

for some function F ∈ C2,1(R2). Relating to this setup, we introduce Model M1, which

takes the following form, find ~x : [0, 1]× [0, T ]→ R2 such that

~xt −
~xρρ
|~xρ|2

= 0, (ρ, t) ∈ I × (0, T ], (3.1.1a)

F (~x(ρ, t)) = 0, (ρ, t) ∈ {0, 1} × (0, T ], (3.1.1b)

〈~xρ(ρ, t),∇⊥F (~x(ρ, t))〉 = 0, (ρ, t) ∈ {0, 1} × (0, T ], (3.1.1c)

~x(ρ, 0) = ~x 0(ρ), ρ ∈ [0, 1]. (3.1.1d)

Here ρ denotes the parametrisation of ~x associated to I, ~x 0 denotes the given parametrisa-

tion of Γ(0) and ~p⊥ = (p0, p1)⊥ := (−p1, p0). We denote I := (0, 1) for ease of notation,

but will refer to the closure as [0, 1] rather than I and refer to the boundary elements as
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{0, 1} rather than ∂I. In Section 3.3 we motivate Model M1 and prove discrete in time

and space finite element error bounds. The second model concerns itself with a coupling

of Model M1 with a reaction-diffusion equation on the curve Γ(t). For this setup we

introduce Model M2, which takes the following form, find ~x : [0, 1] × [0, T ] → R2 and

w̃ : [0, 1]× [0, T ]→ R such that

α~xt + (1− α)〈~xt, ~ν〉~ν −
~xρρ
|~xρ|2

= f(w̃)~ν, (ρ, t) ∈ I × (0, T ], (3.1.2a)

(|~xρ| w̃)t − (ψ w̃)ρ − d
(
w̃ρ
|~xρ|

)
ρ

= |~xρ| g(v, w̃), (ρ, t) ∈ I × (0, T ], (3.1.2b)

F (~x(ρ, t)) = 0, (ρ, t) ∈ {0, 1} × (0, T ], (3.1.2c)

〈~xρ(ρ, t),∇⊥F (~x(ρ, t))〉 = 0, (ρ, t) ∈ {0, 1} × (0, T ], (3.1.2d)

w̃(ρ, t) = wb, (ρ, t) ∈ {0, 1} × (0, T ], (3.1.2e)

~x(ρ, 0) = ~x 0(ρ), w̃(ρ, 0) = w̃0(ρ) ρ ∈ [0, 1]. (3.1.2f)

Here α ∈ (0, 1], wb ∈ R, f , g are given functions and ψ(·, t) and v(·, t) define the tangential

and normal velocity of Γ(t) respectively. Moreover we denote w̃(·, t) := w(~x(·, t), t) such

that w(·, t) : Γ(t) → R and w0 is a given function defined on Γ(0). In Section 3.4 we

motivate the reaction-diffusion equation contribution in terms of this thesis and prove

continuous in time finite element error bounds. We next introduce notation that is used

throughout this chapter.

3.1.1 Notation

We repeat some of the same notation used in Chapter 2 for the ease of the reader. As

with standard theory we denote the Euclidean inner product by 〈·, ·〉 associated to the

Euclidean norm |~p|2 = 〈~p, ~p〉. We let ⊗ denote the outer product defined as

(
~a⊗~b

)
ij

:= ~ai~bj , for ~a ∈ Rm and ~b ∈ Rn, m, n ∈ N.

Let us define a partition of our interval [0, 1] = ∪Jj=1σj , where σj = (ρj−1, ρj). We set

h := max
j=1,...,J

hj , where hj = ρj − ρj−1. Our finite element spaces are defined as

Sh := {χh ∈ C([0, 1]) : χh|σj
is affine for each j = 1, . . . , J} ⊂ H1(I)

Sh0 := {χh ∈ Sh : χh(ρj) = 0, for j ∈ {0, J}}

Shper := {χh ∈ Sh : χh(0) = χh(1)}.
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We define the basis functions of Sh to be defined as χi(ρj) = δji and we set Ih : C([0, 1])→

Sh to be the standard Lagrange interpolation operator defined as

(Ihη)(ρj) = η(ρj), j = 0, . . . , J, (3.1.3)

and we denote Ihj := Ih|σj
to be the local interpolation operator. We define the discrete

inner product and the resultant induced norm as

(η1, η2)h :=
J∑
j=1

∫
σj

Ihj (η1 η2) dρ, ‖η‖2h := (η, η)h.

Further to a spatial discretisation, we also discretise in time. Let 0 = t0 < t1 < · · · <

tN−1 < tN = T be a partition of [0, T ]. We set ∆t := max
n=1,...,N

∆tn, where ∆tn := tn− tn−1.

We define the discrete time derivative as

Dta
n :=

an − an−1

∆tn
,

where we have denoted the continuous function a(·, tn) by an(·). In this setting, with the

exception of F , we use capital letters to denote fully discretised finite element approxima-

tions and lower case letters to denote the continuous solution, e.g. An(·) denotes the finite

element approximation to a(·, tn). We add a superscript h to a lower case letter to denote

a continuous in time finite element function, e.g. ah(·, tn) denotes the semi-discrete finite

element approximation to a(·, tn).

We adopt standard notation for Sobolev spaces W l,p(I), where I ⊂ R is a bounded

interval, l ∈ N0 and p ∈ [1,∞]. Unless stated otherwise we will be considering only

I = I and so omit this dependency from the standard Sobolev notation. We denote the

Sobolev l, p norm of a function f to be ‖f‖l,p and its associated seminorm to be |f |l,p. For

the special case of p = 2, we denote W l,2(I) by H l(I) and denote the associated norm

and seminorm to be ‖f‖l and |f |l respectively. For the special case of l = 0, we work

within the Lebesque spaces Lp(I), where the norm has its standard notation ‖f‖Lp(I)

with the L2(I) inner product denoted as (f, g). When the function is vector valued,

the function spaces are naturally extended to [W l,p(I)]n and [H l(I)]n with appropriately

defined norms and seminorms, we however leave the notation for the norms unchanged.

We extend the notation to include time dependent spaces W l,p(0, T ;X), where [0, T ] ⊂ R is

the time domain and X a Banach Space, with the standard associated norm and seminorm

‖f‖W l,p(0,T ;X) and |f |W l,p(0,T ;X).

Lastly, C denotes a generic constant that is independent of h and ∆tn. Multiple

occurrences of C will not, in general, take the same value.
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3.1.2 Useful identities and results

Using the notation defined above, we now state the approximation identities we plan on

using throughout our analysis in this chapter. Firstly, we assume for some C > 0 that

h ≤ C hj , j = 1, . . . , J, (3.1.4a)

as well as

∆t ≤ C∆tn, n = 1, . . . , N. (3.1.4b)

In our notation, the standard interpolation results, see [32], are as follows, for p ∈ (1,∞],

k ∈ {0, 1}, l ∈ {1, 2}, s ∈ {0, 1, 2} and j = 1, . . . , J

h
1
p

j |η
h|0,∞,σj + hj |ηh|1,p,σj ≤ C |ηh|0,p,σj ∀ ηh ∈ Sh, (3.1.5a)

|(I − Ihj )η|k,p,σj ≤ C h
`−k
j |η|`,p,σj ∀ η ∈W `,p(σj), (3.1.5b)

|(I − Ihj )η|`−1,∞,σj ≤ C h
1
2
j |η|`,σj ∀ η ∈ H`(σj), (3.1.5c)

|Ihj η|s,p,σj ≤ C |η|s,p,σj ∀ η ∈W s,p(σj), (3.1.5d)

where |η|`,p,σj is the seminorm of the space W l,p(σj). We also have that for j = 1, . . . , J ,

and for all ηh, χh ∈ Sh that∫
σj

|ηh|2 dρ ≤
∫
σj

Ihj

[
|ηh|2

]
dρ ≤ 3

∫
σj

|ηh|2 dρ, (3.1.6a)∣∣∣∣∣
∫
σj

(I − Ihj )(ηh χh) dρ

∣∣∣∣∣ ≤ C h2
j |ηh|1,σj |χh|1,σj ≤ C hj |ηh|1,σj |χh|0,σj . (3.1.6b)

We also state explicitly that from the definition of the interpolant operator (3.1.3) we have

Ih~xn(ρ) = ~xn(ρ), ρ ∈ {0, 1}. (3.1.7)

We note two inequalities that we will be using a lot in this chapter. First we have Young’s

inequality, which states that, for a, b ∈ R and δ > 0,

|a||b| ≤ δ

2
|a|2 +

2

δ
|b|2. (3.1.8)

Secondly we have the Gagliardo–Nirenberg inequality, which states that for η ∈ H1(I),

|η|20,∞ ≤ C|η|0‖η‖1 (3.1.9a)

≤ ε|η|21 + C(ε)|η|20. (3.1.9b)

Another identity we look to use, for a, b ∈ R, is

b2 − a2 = (a− b)2 − 2a(a− b). (3.1.10)
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Using Theorem B.6 we have that H1(I) ↪→ L∞(I). Namely, for u ∈ H1(I), we have

|u|0,∞ ≤ Cemb ‖u‖1. (3.1.11)

We also use the following Taylor’s expansions

F (~p)− F (~q) =〈~p− ~q,∇F (~p)〉

+

∫ 1

0
〈∇F (s~p+ (1− s)~q)−∇F (~p), ~p− ~q〉 ds, (3.1.12)

for ~p, ~q ∈ R2, as well as

∇F (~p)−∇F (~q) =D2F (~p) (~p− ~q)

+

∫ 1

0
(D2F (s~p+ (1− s)~q)−D2F (~p))(~p− ~q) ds, (3.1.13)

Finally we introduce the discrete version of Gronwall’s Lemma.

Lemma 3.1 (Discrete Gronwall’s Lemma, [75]). blah

Let yn, fn and gn be non-negative sequences and

yn ≤ fn +

n∑
k=0

gk yk, for n ≥ 0,

then

yn ≤ fn +

n∑
k=0

fk gk exp

 n∑
j=k

gj

, for n ≥ 0.

3.2 Literature review

In Section 3.2.1 we present established results relating to the finite element approximation

and analysis of curve shortening flow whilst in Section 3.2.2 we present results relating

to the finite element approximation and analysis of curve shortening flow coupled to a

reaction-diffusion equation on the curve.

3.2.1 Curve shortening flow

We begin with the seminal work produced by Dziuk in [52] who proposed a finite element

approximation to curve shortening flow for a closed curve in R2. Details of the derivation

are standard and found in a differential geometry textbook such as [116]. Namely, let s(ρ)
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define the arc-length of ~x, then ~x(s) defines the arc-length parameterisation. Thus, the

unit tangential and normal vectors of ~x respectively are

~τ = ~xs =
~xρ
|~xρ|

, ~ν = ~τ⊥. (3.2.1)

Moreover, we have Frenet’s formula, see [42, 107], which relates the tangent vector to the

normal vector and the mean curvature

~τs = κ~ν. (3.2.2)

Using (3.2.1) and (3.2.2) we see that the curvature in the normal direction is

∆Γ(t)~x = ~κ = κ~ν = ~τs = ~xss. (3.2.3)

We also detail the tangential and normal velocities of ~x, namely

ψ = 〈~xt, ~τ〉, v = 〈~xt, ~ν〉. (3.2.4)

Hence, as introduced in [52], we see that (1.1.5) can be rewritten as

~xt −
1

|~xρ|

(
~xρ
|~xρ|

)
ρ

= 0, (ρ, t) ∈ I× (0, T ), (3.2.5a)

~x(0, t) = ~x(1, t), t ∈ (0, T ], (3.2.5b)

~x(ρ, 0) = ~x 0(ρ), ρ ∈ I. (3.2.5c)

Here we define I := R/Z to be the periodic unit interval and ρ is the parameter associated

to it. In an abuse of notation we use ρ as the parameter associated to I and also to I.

Multiplying (3.2.5a) by |~xρ| and a smooth periodic test function ~ξ, using integration by

parts and the boundary conditions (3.2.5b), the weak form of (3.2.5a)–(3.2.5b) is given by(
|~xρ| ~xt, ~ξ

)
+

(
~xρ
|~xρ|

, ~ξρ

)
= 0, for all smooth periodic ~ξ, (3.2.6)

and the associated semi-discrete finite element approximation presented in [52] takes the

form (
|~xhρ | ~xht , ~ξ h

)
+

(
~xhρ
|~xhρ |

, ~ξ hρ

)
= 0, ∀ ~ξ h ∈ [Shper]

2. (3.2.7)

Dziuk in [52] proves the following theorem which provides finite element error estimates

for curve shortening flow [52, Theorem 2, p. 591].

Theorem 3.2 (G. Dziuk, 1994). blah

Let ~x = ~x(ρ, t), (ρ, t) ∈ I × [0, T ], be a smooth solution of the curve shortening flow

(3.2.5a)–(3.2.5c) with |~xρ| ≥ c0 > 0. Then there exists an h0 depending on ~x and T such
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that for every h ∈ (0, h0] there exists a unique solution ~xh of (3.2.7) with initial data

~xh(ρj , 0) = ~x 0(ρj), for j = 0, . . . , J , and

max
t∈[0,T ]

|~x− ~xh|20 +

∫ T

0
|~x− ~xh|21 dt ≤ Ch2,

max
t∈[0,T ]

|~xt − ~xht |20 +

∫ T

0
|~xt − ~xht |21 dt ≤ Ch2,

where C depends on ~x, T and I.

This realisation of curve shortening flow is prescribed purely in the normal direction.

For the continuous solution, this is not a problem; however, for numerical simulation, this

could lead to problems such as the nodes of the finite element approximation clumping

together since they do not have any tangential motion, see Figure 3.1. Not only can one

see the nodes clump together, but in turn this means that the distribution of the values

of the length elements is poor as well. Heuristically we can see this occurs because in the

continuous setting we have

ψ = 〈~xt, ~τ〉 =
1

|~xρ|
〈~τρ, ~τ〉 =

1

2

1

|~xρ|
d

dρ
|~τ |2 = 0. (3.2.8)

In [37], Deckelnick and Dziuk replaced the parametrisation of (3.2.5a) by

~xt −
~xρρ
|~xρ|2

= 0, (ρ, t) ∈ I× (0, T ), (3.2.9a)

~x(0, t) = ~x(1, t), t ∈ (0, T ], (3.2.9b)

~x(ρ, 0) = ~x 0(ρ), ρ ∈ I, (3.2.9c)

where here we note that

1

|~xρ|

(
~xρ
|~xρ|

)
ρ

=
~xρρ
|~xρ|2

− 〈~xρρ, ~τ〉
|~xρ|2

~τ = (I − ~τ ⊗ ~τ)
~xρρ
|~xρ|2

(3.2.10)

such that removing the term containing 〈~xρρ, ~τ〉 in (3.2.10) consequentially adds a tangen-

tial component to the parametrisation. We importantly stress that neglecting the term

containing 〈~xρρ, ~τ〉 in (3.2.10) only changes the parametrisation tangentially and thus has

no effect on the desired movement of the curve. Multiplying (3.2.9a) by |~xρ|2 and a test

function ~ξ ∈ [H1
per(I)]2, using integration by parts and the boundary conditions (3.2.9b),

the weak form of (3.2.9a)–(3.2.9b) is given by(
|~xρ|2 ~xt, ~ξ

)
+
(
~xρ, ~ξρ

)
= 0, ∀ ~ξ ∈ [H1

per(I)]2, (3.2.11)

and the associated semi-discrete finite element approximation presented in [37] takes the

form (
|~xhρ |2 ~xht , ~ξ h

)
+
(
~xhρ ,

~ξ hρ

)
= 0, ∀ ~ξ h ∈ [Shper]

2. (3.2.12)
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(a) t = 0 (b) t = 0.05

(c) t = 0.1 (d) t = 0.15

Figure 3.1: Simulation of a dumbbell moving under curve shortening flow using the nu-

merical scheme presented in [52]. The top plot is the finite element approximation ~Xn

and the bottom is the distribution of the (normalised) length elements | ~Xn
ρ |. T = 0.15.

Here we denote H1
per(I) := {f ∈ H1(I) : f(ρ) = f(ρ + z), ρ ∈ I, ∀ z ∈ Z}. In [37] the

authors prove the following theorem which provides finite element error estimates for this

new parametrisation of curve shortening flow [37, Theorem 3.1, p. 4].

Theorem 3.3 (K. Deckelnick & G. Dziuk, 1995). blah

Let ~x ∈ C2,1(I× [0, T ]) be a solution of (3.2.9a)–(3.2.9c) with |~xρ| ≥ c0 > 0 and

~xt ∈ L∞(0, T ; [H1
per(I)]2) ∩ L2(0, T ; [H2

per(I)]2).

Then there exists an h0 depending on ~x and T such that for every h ∈ (0, h0] there exists

a unique solution ~xh ∈ H1(0, T ; [Shper]
2) of (3.2.12) and

max
t∈[0,T ]

|~x− ~xh|21 +

∫ T

0
|~xt − ~xht |20 ≤ Ch2

where C depends on ~x and T .
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One thing to note about (3.2.11) in comparison to (3.2.6) is that there is no division

by the length element in the weak form. Furthermore, there is an improvement in the

distribution of the length elements of the finite element approximation by comparing

Figure 3.2 to Figure 3.1, which is due to the added tangential motion.

(a) t = 0 (b) t = 0.05

(c) t = 0.1 (d) t = 0.15

Figure 3.2: Simulation of a dumbbell moving under curve shortening flow using the nu-

merical scheme presented in [37]. The top plot is the finite element approximation ~Xn

and the bottom is the distribution of the (normalised) length elements | ~Xn
ρ |. T = 0.15.

In [37, 52] the numerical analysis of curve shortening flow was only concerned with

closed curves. In [42] the authors consider curve shortening flow fixed to a boundary under

a normal contact condition, as in Model M1, which we restate for clarity

~xt −
~xρρ
|~xρ|2

= 0, (ρ, t) ∈ I × (0, T ], (3.2.13a)

F (~x(ρ, t)) = 0, (ρ, t) ∈ {0, 1} × (0, T ], (3.2.13b)

〈~xρ(ρ, t),∇⊥F (~x(ρ, t))〉 = 0, (ρ, t) ∈ {0, 1} × (0, T ], (3.2.13c)

~x(ρ, 0) = ~x 0(ρ), ρ ∈ I. (3.2.13d)

The weak form for (3.2.13a)–(3.2.13c) will differ to that of (3.2.9a)–(3.2.9b) due to the
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boundary conditions, we derive the weak form formally in Section 3.3. Multiplying

(3.2.13a) by |~xρ|2 and a test function ~ξ ∈ [H1(I)]2, using integration by parts and noting

(3.2.13c), the weak form of (3.2.13a)–(3.2.13c) is given by(
|~xρ|2 ~xt, ~ξ

)
+
(
~xρ, ~ξρ

)
=
[
〈~xρ,∇F (~x)〉〈~ξ,∇F (~x)〉

]ρ=1

ρ=0
, ∀ ~ξ ∈ [H1(I)]2. (3.2.14)

and the associated semi-discrete finite element approximation presented in [42] takes the

form(
|~xhρ |2~xht , ~ξ h

)h
+
(
~xhρ ,

~ξ hρ

)
=
[
〈~xhρ ,∇F (~xh)〉〈~ξ h,∇F (~xh)〉

]ρ=1

ρ=0
, ∀ ~ξ h ∈ [Sh]2. (3.2.15)

In [42] the authors prove the following theorem which provides finite element error estim-

ates for curve shortening flow attached normally to a fixed boundary [42, Theorem 2.1,

p. 639]. We see that the authors of [42] have improved on the L2-error estimates originally

derived by Theorem 3.2 and have made them optimal.

Theorem 3.4 (K. Deckelnick & C. M. Elliott, 1998). blah

Let ~x ∈ W 2+α,1+α
2 ([0, 1] × [0, T ]) be a solution of (3.2.13a)–(3.2.13d) with initial data

~x 0 ∈ C2+α([0, 1],R2) satisfying compatability conditions for ρ ∈ {0, 1}

F (~x 0(ρ)) = 0, 〈∇F (~x 0(ρ)), (~x 0(ρ))ρρ〉 = 0, 〈(~x 0(ρ))ρ,∇⊥F (~x 0(ρ))〉 = 0

and boundary ∂Ω ∈ C2+α where α ∈ (0, 1), 0 < c0 ≤ |~xρ|2 ≤ c1 and

~xt ∈ L∞(0, T ; [H1(I)]2) ∩ L2(0, T ; [H2(I)]2).

Then there exists an h0 depending on ~x and T such that for every h ∈ (0, h0] there exists

a unique solution ~xh ∈ H1(0, T ; [Sh]2) of (3.2.15) and

max
t∈[0,T ]

|~x− ~xh|21 +

∫ T

0
|~xt − ~xht |20 dt ≤ Ch2,

max
t∈[0,T ]

|~x− ~xh|20 ≤ Ch4,

where C depends on ~x and T .

A further study of curve shortening flow is the study of triple junctions which has

applications in material science such as grain boundary motion, for example, where grains

meet at junctions with angle conditions. Publications concerning mathematical models

involving triple junctions typically consider two different formulations. The first formula-

tion considers three curves attached to a fixed boundary and meeting at a triple junction,

see Figure 3.3. This setup requires following the boundary and triple junction conditions

F (~x i(1, t)) = 0, 〈~x iρ(1, t),∇⊥F (~x i(1, t))〉 = 0, for t ∈ [0, T ], i = 1, 2, 3,
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~x 1(0, t) = ~x 2(0, t) = ~x 3(0, t), for t ∈ [0, T ],

〈~τ 1(0, t), ~τ 2(0, t)〉 = cos θ1, 〈~τ 2(0, t), ~τ 3(0, t)〉 = cos θ2, for t ∈ [0, T ],

where ~x i denotes the i−th curve with ~τ i being the unit tangent vector of curve ~x i, and

θi denotes the angle between ~x i and ~x i+1, see [8, 42].

~x 1
~x 2

~x 3

~τ 1
~τ 2

~τ 3

θ1

θ2

Figure 3.3: Triple junction attached to a boundary. The grey dashed line depicts ∂Ω,

each black line depicts a curve ~x i with an arrow which depicts the corresponding tan-

gential vector ~τ i. The orientation of each vector is corresponding to the angle condition.

Inspiration from [8].

The other formulation, which is considered in [9, 98], is a closed curve formulation with

two triple junctions. The assumption that the tangent vectors of each of the curves point

away from one of the triple junctions and towards the other, see Figure 3.4, results in the

following conditions at the triple junctions

~x1(0, t) = ~x2(0, t) = ~x3(0, t), ~x1(1, t) = ~x2(1, t) = ~x3(1, t), for t ∈ [0, T ],

~τ1(ρ, t) + ~τ2(ρ, t) + ~τ3(ρ, t) = 0, for (ρ, t) ∈ {0, 1} × [0, T ].

For the second motivated formulation, finite element analysis has only recently been con-

ducted, in [98], for a regularised version, regularised in the sense of adding artificial tan-

gential motion, due to the difficulty of using (3.2.5a) as the basis for the curve shortening

flow.

Even though introducing a reparametrisation was designed to give the numerical

scheme tangential movement, it still did not solve the problem entirely, as demonstrated

by Figure 3.2c, because the redistribution timescale is much larger than that of the sim-

ulation timescale, see [59]. In a series of papers, including but not limited to [8, 9, 10],
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~x 2 ~x 3~x 1

~τ 2

~τ 1 ~τ 3

Figure 3.4: Triple junction occurring from collision of closed curves. Each black line

depicts a curve ~x i with an arrow which depicts the corresponding tangential vector ~τ i.

Inspiration from [8].

about geometric evolution equations, such as mean curvature flow and surface diffusion,

Barrett, Garcke and Nürnberg introduced a scheme that equidistributes the nodes of the

finite element approximation to curve shortening flow. Shown in [11], the derivation of

the scheme differs slightly from the original version that Dziuk proposed. Namely in [11]

the authors couple (1.1.1), using v := 〈~xt, ~ν〉, to (3.2.3), using ~κ = κ~ν, to result in a

coupled system for κ and ~x. Furthermore they assume that the parametrisation of Γ(t) is

equidistributed, i.e.

|Γ(t)| :=
∫

Γ(t)
1 ds =

∫
I
|~xρ(·, t)| dρ = |~xρ(ρ, t)| ∀ ρ ∈ I.

Multiplying (1.1.1) by ξ ∈ H1
per(I) and multiplying (3.2.3) by ~ξ ∈ [H1

per(I)]2, integrating

and using integration by parts in the second case, yields the following weak form

(〈~xt, ~ν〉, ξ)Γ(t) − (κ, ξ)Γ(t) = 0, ∀ ξ ∈ H1
per(I), (3.2.16a)(

κ~ν, ~ξ
)

Γ(t)
+
(
~xs, ~ξs

)
Γ(t)

= 0, ∀ ~ξ ∈ [H1
per(I)]2. (3.2.16b)

We note here that in fact one can eliminate κ from the above coupling to obtain(
〈~xt, ~ν〉~ν, ~ξ

)
Γ(t)

+
(
~xs, ~ξs

)
Γ(t)

= 0, ∀ ~ξ ∈ [H1
per(I)]2. (3.2.17)

To be consistent with the weak forms derived for curve shortening flow that we presented

earlier, the authors in [11] also present (3.2.16a)–(3.2.16b) using the normalised paramet-

risation in the following way(
〈~xt, ~x⊥ρ 〉, ξ

)
− |Γ(t)| (κ, ξ) = 0, ∀ ξ ∈ H1

per(I), (3.2.18a)(
κ~x⊥ρ ,

~ξ
)

+
1

|Γ(t)|

(
~xρ, ~ξρ

)
= 0, ∀ ~ξ ∈ [H1

per(I)]2. (3.2.18b)
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In [11] the authors present a fully discrete finite element approximation of (3.2.16a)–

(3.2.16b) however for consistency purposes we will state the equivalent formulations of the

finite element approximation associated to (3.2.18a)–(3.2.18b)

1

∆tn

(
〈 ~Xn − ~Xn−1, ( ~Xn

ρ )⊥〉, ξh
)h
− |Γn|

(
Kn, ξh

)h
= 0, ∀ ξh ∈ Shper, (3.2.19a)(

Kn ( ~Xn
ρ )⊥, ~ξ h

)h
+

1

|Γn|

(
~Xn
ρ ,
~ξ hρ

)
= 0, ∀ ~ξ h ∈ [Shper]

2. (3.2.19b)

In [11] the authors prove the following equidistributing property described in [11, The-

orem 2.3, p. 9]. Figure 3.5 demonstrates this equidistributing property, whereby we can

see that all the normalised length elements are equal to 1.

Theorem 3.5 (J. W. Barrett, H. Garcke & R. Nürnberg, 2011). blah

Let ( ~Xn,Kn)Nn=0 denote a solution to (3.2.19a)–(3.2.19b). Then it holds that

| ~Xn
j+1 − ~Xn

j | = | ~Xn
j − ~Xn

j−1|, j = 1, . . . , J − 1, n = 1, . . . , N.

In addition, ( ~Xn,Kn)Nn=0 is a solution to the associated fully discrete finite element form

of (3.2.16a)–(3.2.17). In particular the following stability result holds for all k = 1, . . . , N

|Γk|+
k−1∑
n=0

∆tn
(
Kn+1,Kn+1

)h
Γn+1 ≤ |Γ0|.

In [59] Elliott and Fritz derived a finite element approximation to curve shortening flow

that results in a good distribution of the nodes as well as allowing for analysis of finite

element error estimates. In [59] the authors reparametrise (3.2.5a) using a well-known

instrument in differential geometry called the De-Turck trick, [45]. The De-Turck trick

reparametrises the curve (or surface) by using the inverse of the solution to the harmonic

heat flow map. This introduces a constant α ∈ (0, 1] that provides a linear combination

between (3.2.9a) and (3.2.17). Namely, the authors in [59] present a parametrisation of

the form

α~xt + (1− α)〈~xt, ~ν〉~ν −
~xρρ
|~xρ|2

= 0, (ρ, t) ∈ I× (0, T ], (3.2.20a)

~x(0, t) = ~x(1, t), t ∈ (0, T ], (3.2.20b)

~x(ρ, 0) = ~x 0(ρ), ρ ∈ I. (3.2.20c)

Multiplying (3.2.20a) by |~xρ|2 and a test function ~ξ ∈ [H1
per(I)]2, using integration by parts

as well as the boundary condition (3.2.20b), the weak form of (3.2.20a)–(3.2.20b) is given

by (
|~xρ|2 [α~xt + (1− α)〈~xt, ~ν〉~ν] , ~ξ

)
+
(
~xρ, ~ξρ

)
= 0, ∀ ~ξ ∈ [H1

per(I)]2, (3.2.21)
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(a) t = 0 (b) t = 0.05

(c) t = 0.1 (d) t = 0.15

Figure 3.5: Simulation of a dumbbell moving under curve shortening flow using the nu-

merical scheme presented in [11]. The top plot is the finite element approximation ~Xn

and the bottom is the distribution of the (normalised) length elements | ~Xn
ρ |. T = 0.15.

and the associated semi-discrete finite element approximation presented in [59] takes the

form(
|~xhρ |2

[
α~xht + (1− α)〈~xht , ~νh〉~νh

]
, ~ξ h
)

+
(
~xhρ ,

~ξ hρ

)
= 0, ∀ ~ξ h ∈ [Shper]

2. (3.2.22)

In [59] the authors prove Theorem 3.6, [59, Theorem 3.5, p. 11], which provides finite

element error estimates for this new parametrisation of curve shortening flow.

Theorem 3.6 (C. M. Elliott & H. Fritz, 2016). blah

Let α ∈ (0, 1] and suppose that ~x ∈ C2,1(I× [0, T ],R2) is a solution of (3.2.20a)–(3.2.20c)

with

~xt ∈ L∞(0, T ; [H1
per(I)]2) ∩ L2(0, T ; [H2

per(I)]2),

|~xρ| ≥ c0 > 0, in I× [0, T ].

Then there exists a constant h0 > 0 depending on ~x and T such that for every h ∈ (0, h0]

there is a unique solution ~xh ∈ H1(0, T ; [Shper(I)]2) of the non-linear, semi-discrete problem
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(3.2.22) for all ~ξ h ∈ [Shper(I)]2, t ∈ (0, T ), with initial data ~xh(·, 0) = (Ih~x 0)(·) on I, and

max
t∈[0,T ]

|~x− ~xh|21 + α

∫ T

0
|~xt − ~xht |20 dt+ (1− α)

∫ T

0
|〈~xt − ~xht , ~νh〉|20 dt ≤ Ce

M
α
Th2.

The constants C and M depend on the continuous solution ~x and T .

The proof of Theorem 3.6 shows that one obtains convergence for α non zero. We can

see this numerically by looking at Figure 3.7, although the numerical scheme presented

in [11] has the equidistribution property, see Figure 3.7d, the numerical scheme presented

in [59] is closer to the “true” solution, see Figure 3.7c. Here we mean that the “true”

solution, depicted by the black line, is the numerical solution from the numerical scheme

presented in [37] using a significantly smaller value of h and ∆t. Although formally

choosing α = 0 will result in (3.2.17), the numerical scheme presented in [59] will not

equidistribute with α = 0 since, unlike the numerical scheme presented in [11], it is not

fully implicit; however, choosing α small does lead to a good distribution of the nodes of

the finite element approximation, as can be seen in Figure 3.6.

Briefly turning our attention to surfaces, Dziuk in [51] derived a finite element al-

gorithm for the mean curvature flow of surfaces. There has been no proof of error con-

vergence for this scheme due to the difficulty of the strong form equation, as explained

in [83]. The authors in [83] managed to prove convergence for the evolution of a surface

but used Huisken’s formulation of parametric mean curvature flow, see [77], rather than

Dziuk’s, and used higher order finite elements, not just linear finite elements.

3.2.2 Curve shortening flow coupled to a PDE on the curve

In studying the rice blast fungus we want to simulate a system consisting of a moving

curve coupled to a reaction-diffusion equation defined on the curve. Noting Definitions

A.4–A.7 such a system takes the form

v = κ+ f, on Γ(t), t ∈ (0, T ] (3.2.23a)

∂•tw − κvw − dwss = g, on Γ(t), t ∈ (0, T ], (3.2.23b)

where f and g are (coupling) functions and ∂•tw = wt + v 〈∇w,~ν〉, since ~vτ = 0.

In [97], Pozzi and Stinner produced the first finite element error analysis for such a

coupling. By considering Dziuk’s original method (3.2.5a) for closed curves and labelling
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(a) t = 0 (b) t = 0.05

(c) t = 0.1 (d) t = 0.15

Figure 3.6: Simulation of a dumbbell moving under curve shortening flow using the numer-

ical scheme presented in [59] with α = 0.1. The top plot is the finite element approximation

~Xn and the bottom is the distribution of the (normalised) length elements | ~Xn
ρ |. T = 0.15.

w̃(ρ, t) = w(~x(ρ, t), t), taking d = 1 and g = 0, the system (3.2.23a)–(3.2.23b) becomes

~xt −
1

|~xρ|

(
~xρ
|~xρ|

)
ρ

= f(w̃)~ν, (ρ, t) ∈ I× (0, T ], (3.2.24a)

w̃t + w̃
|~xρ|t
|~xρ|

− 1

|~xρ|

(
w̃ρ
|~xρ|

)
ρ

= 0, (ρ, t) ∈ I× (0, T ], (3.2.24b)

~x(0, t) = ~x(1, t), w̃(0, t) = w̃(1, t), t ∈ (0, T ], (3.2.24c)

~x(ρ, 0) = ~x 0(ρ), w̃(ρ, 0) = w̃0(ρ), ρ ∈ I. (3.2.24d)

The derivation of (3.2.24b) from (3.2.23b) is discussed in Section 3.4. Multiplying (3.2.24a)

by |~xρ| and a smooth periodic test function ~ξ as well as multiplying (3.2.24b) by |~xρ| and a

smooth periodic test function η constant in time, using integration by parts and boundary

conditions (3.2.24c), the weak form of (3.2.24a)–(3.2.24c) is given by(
|~xρ| ~xt, ~ξ

)
+

(
~xρ
|~xρ|

, ~ξρ

)
=
(
|~xρ| f(w̃)~ν, ~ξ

)
, for all smooth periodic ~ξ, (3.2.25a)
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(a) Simulation using (3.2.7) (b) Simulation using (3.2.12)

(c) Simulation using (3.2.22) (d) Simulation using (3.2.19a)–(3.2.19b)

Figure 3.7: Simulation of a dumbbell moving under curve shortening flow using the nu-

merical schemes presented in [52] in red, [37] in blue, [59] with α = 0.1 in pink, [11] in

green and the “true” solution in black, at T = 0.15. The top plot is the finite element

approximation ~XN and the bottom is the distribution of the (normalised) length elements

| ~XN
ρ |.

d

dt
(|~xρ| w̃, η) +

(
w̃ρ
|~xρ|

, ηρ

)
= 0, for all smooth periodic η, (3.2.25b)

and the associated semi-discrete finite element approximation presented in [97] takes the

form(
|~xhρ | ~xht , ~ξ h

)h
+

(
~xhρ
|~xhρ |

, ~ξ hρ

)
=
(
|~xhρ | f(w̃h)~νh, ~ξ h

)h
, ∀ ~ξ h ∈ [Shper]

2, (3.2.26a)

d

dt

(
|~xhρ | w̃h, ηh

)
+

(
w̃hρ
|~xhρ |

, ηhρ

)
= 0, ∀ ηh ∈ Shper. (3.2.26b)

In [97] the authors prove the following theorem which consists of semi-discrete finite ele-

ment error estimates for the system consisting of curve shortening flow coupled to lateral

diffusion on the curve [97, Theorem 1.1, p. 2].
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Theorem 3.7 (P. Pozzi & B. Stinner, 2015). blah

Under the assumptions that

‖f‖W 1,∞(R) ≤ C,

|~xρ| ≥ C > 0,

~x ∈W 1,∞(0, T ; [H2
per(I)]2),

w ∈W 1,∞(0, T ;H1
per(I)) ∩ L∞(0, T ;H2

per(I)),

there exist h0 > 0 such that for all h ∈ (0, h0] there exists a unique solution to (3.2.26a)–

(3.2.26b), and the error between the smooth solution and the discrete solutions can be

estimated as follows: ∫ T

0
|~xt − ~xht |20 + |w − wh|21 ≤ Ch2,

sup
t∈[0,T ]

[
|~τ − ~τh|20 + |w − wh|20 + ||~xρ| − |~xhρ ||20

]
≤ Ch2,

with constant C > 0. The constant C depends on the final time T , on the bounds

‖f‖W 1,∞(R) of the coupling function, on the regularity and bounds ‖~x‖W 1,∞(0,T ;[H2
per(I)]2),

‖w‖W 1,∞(0,T ;H1
per(I)) and ‖w‖L∞(0,T ;H2

per(I)) of the solution (which include the bounds ‖~x 0‖2

and ‖w0‖1 of the initial values), on the bound from below of the length element, and on

the grid regularity.

In [6] Barrett, Deckelnick and Styles derive a fully practical scheme and present fully

discrete error estimates to a coupled system similar to that considered by Pozzi and Stin-

ner. Rather than using (3.2.5a) for closed curves, the authors used (3.2.20a) to introduce

tangential motion to the nodes of the finite element approximation, resulting in the fol-

lowing slightly different formulation compared to (3.2.24a)–(3.2.24d)

α~xt + (1− α)〈~xt, ~ν〉~ν =
~xρρ
|~xρ|2

+ f(w̃)~ν, (ρ, t) ∈ I× (0, T ], (3.2.27a)

w̃t −
1

|~xρ|
ψ w̃ρ −

d

|~xρ|

(
w̃ρ
|~xρ|

)
ρ

− κ v w̃ = g(v, w̃), (ρ, t) ∈ I× (0, T ], (3.2.27b)

~x(0, t) = ~x(1, t), w̃(0, t) = w̃(1, t), t ∈ (0, T ], (3.2.27c)

~x(ρ, 0) = ~x 0(ρ), w̃(ρ, 0) = w̃0(ρ), ρ ∈ I. (3.2.27d)

By multiplying (3.2.27a) by |~xρ|2 and a test function ~ξ ∈ [H1
per(I)]2 as well as multiplying

(3.2.27b) by |~xρ| and a test function η ∈ H1
per(I) constant in time, using integration by

parts and (3.2.27c), the weak form of (3.2.27a)–(3.2.27c) is given by(
|~xρ|2 [α~xt + (1− α)〈~xt, ~ν〉~ν] , ~ξ

)
+
(
~xρ, ~ξρ

)
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=
(
|~xρ|2 f(w̃)~ν, ~ξ

)
, ∀ ~ξ ∈ [H1

per(I)]2, (3.2.28a)

d

dt
(|~xρ| w̃, η) + (ψ w̃, ηρ) + d

(
w̃ρ
|~xρ|

, ηρ

)
= (|~xρ| g(v, w̃), η) , ∀ η ∈ H1

per(I), (3.2.28b)

and the associated fully discrete finite element approximation presented in [6] takes the

form(
| ~Xn−1

ρ |2
[
αDt

~Xn + (1− α)〈Dt
~Xn, ~Vn−1〉~Vn−1

]
, ~ξ h
)h

+
(
~Xn
ρ ,
~ξ hρ

)
=
(
| ~Xn−1

ρ |2 f(Wn−1) ~Vn−1, ~ξ h
)
, ∀ ~ξ h ∈ [Shper]

2, (3.2.29a)

Dt

[(
| ~Xn

ρ |Wn, ηh
)h]

+
(

ΨnWn, ηhρ

)h
+ d

(
Wn
ρ

| ~Xn
ρ |
, ηhρ

)

=
(
| ~Xn

ρ | g(V n,Wn−1), ηh
)h
, ∀ ηh ∈ Shper. (3.2.29b)

In [6] the authors prove the following theorem which is the fully discrete finite element

error estimates for the coupled system of curve shortening flow with a reaction-diffusion

equation on the curve [6, Theorem 2.1, p. 5].

Theorem 3.8 (J. W. Barrett, K. Deckelnick & V. Styles, 2017). blah

Let ~x 0 = Ih~x 0 ∈ [Shper]
2 and W 0 = Ihw̃0 ∈ Shper. Under the assumptions that

f ∈ C1,1(R),

g ∈ C1,1(R2),

~x ∈W 1,∞(0, T ; [H2
per(I)]2) ∩H2(0, T ; [H1

per(I)]2) ∩W 2,∞(0, T ; [L2
per(I)]2),

w ∈ C([0, T ];H2
per(I)) ∩W 1,∞(0, T ;H1

per(I)) ∩H2(0, T ;L2
per(I)),

0 < m ≤ |~xρ| ≤M, on I× [0, T ],

then there exists h? > 0 such that for all h ∈ (0, h?] and ∆t ≤ C h the discrete problem

(3.2.29a)–(3.2.29b) has a unique solution ( ~Xn,Wn) ∈ [Shper]
2×Shper, n = 1, . . . , N , and the

following error bounds hold:

sup
n=0,...,N

[
|~xn − ~Xn|21 + |wn −Wn|20

]
+

N∑
n=1

∆tn

[
|~xnt −Dt

~Xn|20 + |wn −Wn|21
]
≤ C h2,

where ~xn := ~x(·, tn), wn := w(·, tn), ~xnt := ~xt(·, tn), n = 0, . . . , N .

Briefly turning our attention to surfaces, the authors of [83] have extended their result

of the convergence of the finite element approximation of mean curvature flow for surfaces

to a coupled system consisting of the mean curvature of surfaces coupled to a reaction-

diffusion equation on the surface in [82].
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Figure 3.8: Fixed Boundary Motivation. The green line represents ~x, in this instance the

line y = x, the black line describes F , in this instance the circle F (~p) =
√
~p 2

0 + ~p 2
1 −1, the

blue arrows describe ∇F and the red arrows describe ∇⊥F on ∂Ω, where here Ω is the

disk of radius 1. Hence, we can see that the blue arrows on the green line and red arrows

are orthogonal.

3.3 Finite element analysis of Model M1

In this section we look at Model M1 in more detail. We have supplied Figure 3.8 as

motivation for the condition (3.1.1c). To derive the weak form of ModelM1 we multiply

(3.1.1a) by |~xρ|2 and a test function ~ξ ∈ [H1(I)]2, using integration by parts, we arrive at

the form (
|~xρ|2 ~xt, ~ξ

)
+
(
~xρ, ~ξρ

)
=
[
〈~xρ, ~ξ〉

]ρ=1

ρ=0
.

Since F ∈ C2,1(R2), using a standard basis expansion in R2, we have that

~ξ = 〈~ξ,∇F (~x)〉∇F (~x) + 〈~ξ,∇⊥F (~x)〉∇⊥F (~x)

and, using (3.1.1c), we have

~xρ = 〈~xρ,∇F (~x)〉∇F (~x).

Thus, noting (3.1.1b) and (3.3.4d), we obtain the weak form of (3.1.1a)–(3.1.1c)

(
|~xρ|2 ~xt, ~ξ

)
+
(
~xρ, ~ξρ

)
=
[
〈~xρ,∇F (~x)〉〈~ξ,∇F (~x)〉

]ρ=1

ρ=0
∀ ~ξ ∈ [H1(I)]2. (3.3.1)

Alternatively, one can express the weak form as

(
|~xρ|2~xt, ~ξ

)
+
(
~xρ, ~ξρ

)
= 0, ∀ ~ξ ∈ [H1(I)]2, (3.3.2)
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with the additional property that 〈~ξ(ρ),∇F (~x(ρ, t))〉 = 0 for ρ ∈ {0, 1}. Using (3.1.1b),

we notice that this property is similar to

0 =
d

dt
F (~x(ρ, t)) = 〈~xt(ρ, t),∇F (~x(ρ, t))〉, for ρ ∈ {0, 1}. (3.3.3)

We persue the analysis using (3.3.1) since we do not want to restrict the test functions on

the boundary. Before introducing the finite element formulation we detail the assumptions

we need for the analysis.

Assumptions 3.9. blah

We assume that there is a unique solution ~x of Model M1 on the time interval [0, T ].

Furthermore we assume this unique solution and specified data satisfies

~x ∈W 1,∞(0, T ; [H2(I)]2) ∩W 2,∞(0, T ; [L2(I)]2), (3.3.4a)

m ≤ |~xρ| ≤M on [0, 1]× [0, T ], for some m, M ∈ R>0, (3.3.4b)

F ∈ C2,1(R2), (3.3.4c)

|∇F (~p)| = 1, for ~p ∈ {~p ∈ R2 : F (~p) = 0}. (3.3.4d)

We assign each element ~Xn ∈ [Sh]2 a piecewise constant discrete unit tangent and nor-

mal, denoted respectively by ~T n and ~Vn, approximating ~τ(·, tn) and ~ν(·, tn) respectively,

which take the form

~T n :=
~Xn
ρ

| ~Xn
ρ |
, ~Vn := (~T n)⊥, on σj , j = 1, . . . , J.

We are now in a position to introduce the fully discrete finite element form. Setting

~X0(·) := Ih~x 0(·) in [0, 1] and given ~Xn−1 ∈ [Sh]2, find ~Xn ∈ [Sh]2 such that for every

~ξ h ∈ [Sh]2 we have(
| ~Xn−1

ρ |2Dt
~Xn, ~ξ h

)h
+
(
~Xn
ρ ,
~ξ hρ

)
=
[
〈 ~Xn

ρ ,∇F ( ~Xn)〉〈~ξ h,∇F ( ~Xn)〉
]1

0
, (3.3.5a)

as well as the discrete equivalent of (3.1.1b)

F ( ~Xn(ρ)) = 0, for ρ ∈ {0, 1}. (3.3.5b)

A consequence of (3.3.5b) is that, in view of (3.3.4d), we have

|∇F ( ~Xn(ρ))| = 1, for ρ ∈ {0, 1}, (3.3.6)

and therefore, by taking ~ξ h = ∇F ( ~Xn
j )χj in (3.3.5a), for j = 0, J , we have

〈Dt
~Xn,∇F ( ~Xn)〉 = 0, for ρ ∈ {0, 1}, (3.3.7)
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which is the discrete equivalent of (3.3.3). Throughout the remainder of Section 3.3 we

make the assumption that a unique solution to (3.3.5a)–(3.3.5b) exists on the bounded

time interval [0, T ].

Remark 3.10. Existence of a solution can be proven relatively trivially for (3.3.5a) using

standard techniques but with a harsh constraint of ∆tn ≤ Ch
5
2 . To date we are unable to

improve this due to the non-linear boundary conditions; we note this is a similar problem

found in [11, Remark 2.4, p. 9].

Remark 3.11. We remark that the property (3.3.7) is vital for the analysis, specifically

for deriving the bound for T2 in (3.3.49). Indeed we hoped to generalise (3.3.5a) to use the

corresponding α-scheme from the De-Turck trick as in [59]. However this changes (3.3.7)

to

〈Dt
~Xn,∇F ( ~Xn)〉 =

α− 1

α
〈Dt

~Xn, ~Vn−1〉〈~Vn−1,∇F ( ~Xn)〉, for ρ ∈ {0, 1}.

In the continuous and semi-discrete setting, the equivalents of 〈~Vn−1,∇F ( ~Xn)〉 are zero

due to (3.1.1c); however, in the fully discrete setting, (3.1.1c) is in fact approximated, see

[42, Remark 3.2, p. 642]. In order to bound this new term using the current techniques we

would require a bound of the form |Dt
~Xn|0,∞ ≤ C. A similar problem occurs in the case

of forced curve shortening flow.

3.3.1 Stability bounds for Model M1

In this section we prove stability bounds for Model M1. Indeed, we look to prove the

following lemma.

Lemma 3.12. blah

Let h ∈ (0, h?]. Assuming h? is chosen appropriately so that 0 < cm ≤ | ~Xn−1
ρ |, for all

n− 1 = 0, . . . , N − 1, then we have

max
n=1,...,N

| ~Xn|21 +
N∑
n=1

[
| ~Xn − ~Xn−1|21

]
+ 2c2

m

N∑
n=1

∆tn|Dt
~Xn|20 ≤ | ~X 0|21.

Proof: Setting ~ξ h = Dt
~Xn in (3.3.5a), and noting (3.3.7), gives(

| ~Xn−1
ρ |2Dt

~Xn, Dt
~Xn
)h

+ ( ~Xn
ρ , Dt

~Xn
ρ ) =

[
〈 ~Xn

ρ ,∇F ( ~Xn)〉〈Dt
~Xn,∇F ( ~Xn)〉

]1

0
= 0.

Using a simple calculation, we can see that

2∆tn( ~Xn
ρ , Dt

~Xn
ρ ) = | ~Xn|21 + | ~Xn − ~Xn−1|21 − | ~Xn−1|21, (3.3.8)
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and hence, using (3.1.6a), we have

1

2
| ~Xn|21 +

1

2
| ~Xn − ~Xn−1|21 + c2

m∆tn|Dt
~Xn|20 ≤

1

2
| ~Xn−1|21.

The bound follows by summing from n = 1, . . . , N .

3.3.2 H1 error bounds for Model M1

In this section we prove optimal H1 error bounds for Model M1. Indeed, we look to

prove the following theorem.

Theorem 3.13. blah

Let ~X0 = Ih~x 0 ∈ [Sh]2. There exists h? > 0 and ∆t? > 0 such that for all h ∈ (0, h?]

and ∆t ∈ (0,∆t?], with ∆t ≤ Ch2, the fully-discrete problem (3.3.5a)–(3.3.5b) has the

following error bound

sup
n=0,...,N

|~xn − ~Xn|21 +
N∑
n=1

∆tn|~xnt −Dt
~Xn|20 ≤ Ch2,

for some C > 0 independent of h and ∆t.

The proof of this theorem combines some of the techniques presented in [6] with a fully

discrete version of the analysis presented in [42]. Before we begin the proof of the Theorem

3.13 we introduce some notation and the induction hypothesis that underpins the proof.

We define

~xn − ~Xn = (~xn − Ih~xn) + (Ih~xn − ~Xn) =: (I − Ih)~xn + ~En,

and assume for n− 1 ∈ {1, · · · , N − 1} that

sup
m=1,...,n−1

e−µtm | ~Em|21 +
n−1∑
m=1

∆tme
−µtm |Dt

~Em|20 ≤ C1h
2 for h ∈ (0, h?]. (3.3.9)

In order for the inductive proof to work the parameters need to be chosen carefully so

that there are no hidden relations. For example, if C1 depended on n, then as N became

large, the error bound in (3.3.9) would also become large defeating the point of the actual

bound. First, it is assumed that h? and ∆t? can be chosen appropriately small enough

independently of n, for the bounds in (3.3.10) and (3.3.55) respectively, which put inherent

bounds on h and ∆t. We first choose µ independent of n, h and ∆t, which depends only on

∆t?, bounds on the true solution ~x and the function F , inverse estimates and interpolation

results, and T . We then find C1 independent of n, h and ∆t, which depends only on µ,
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Grönwall’s inequality, and the aforementioned bounds and results. With the appropriate

bound on h?, this then finishes the proof.

The main part of the proof of Theorem 3.13 is split into the following two lemmas:

Lemma 3.14. blah

Let h ∈ (0, h?]. Then we have

1

2
| ~En|21 +

1

4
| ~En − ~En−1|21 + ∆tn

(
m2

8
− C∆tn

)
|Dt

~En|20

≤ 1

2
| ~En−1|21 +

∆tn
2
Dt

[
〈~xnρ ,∇F (~xn)〉 〈 ~En, D2F (~xn) ~En〉

]1

0

+ C∆tn

[
h2 + ∆tn + | ~En−1|20 + | ~En|20 + | ~En−1|21 + | ~En|21 + h−1| ~En−1|40,∞

]
.

Lemma 3.15. blah

Let h ∈ (0, h?] and ∆t ∈ (0,∆t?]. Then for small enough h? and ∆t?, with

µ∆t? ≤ 1

2
, and µ ≥ max

{
14C?
m2

, 1

}
, (3.3.10)

where C? is the constant in (3.3.53), we have

sup
m=1,...,n

e−µtm | ~Em|21 +
n∑

m=1

∆tme
−µtm |Dt

~Em|20 ≤ C1h
2.

Before proving Lemmas 3.14 and 3.15 and subsequently Theorem 3.13 we note some

useful results. Using (3.1.5a), (3.1.5d), (3.1.4a), (3.3.4a) and (3.3.9) we have that

|~xn−1 − ~Xn−1|1,∞ ≤ |(I − Ih)~xn−1|1,∞ + | ~En−1|1,∞

≤ C h
1
2 |~xn−1|2 + C h−

1
2 | ~En−1|1

≤ C h
1
2

(
‖~x‖W 0,∞(0,T ;[H2(I)]2) + e

µ
2
tn−1

)
≤ m

2
,

provided h? is chosen small enough. Thus we have

| ~Xn−1
ρ | ≤ |~xn−1

ρ − ~Xn−1
ρ |+ |~xn−1

ρ | ≤M +
m

2
≤ 2M,

and

| ~Xn−1
ρ | ≥ |~xn−1

ρ | − |~xn−1
ρ − ~Xn−1

ρ | ≥ m− m

2
≥ m

2
,

which combine to give

0 <
m

2
≤ | ~Xn−1

ρ | ≤ 2M. (3.3.11)

From (3.1.5b) and (3.3.4a), we see that

|~xn−1 − ~Xn−1|1 ≤ |(I − Ih)~xn−1|1 + | ~En−1|1
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≤ C h |~xn−1|2 + | ~En−1|1

≤ C h ‖~x‖W 0,∞(0,T ;[H2(I)]2) + | ~En−1|1 ≤ C
[
h+ | ~En−1|1

]
, (3.3.12)

and, with (3.3.12),

|~xn − ~Xn−1|1 ≤ |~xn − ~xn−1|1 + |~xn−1 − ~Xn−1|1

≤ ∆tn |Dt~x
n|1 + C

[
h+ | ~En−1|1

]
≤ ∆tn ‖~x‖W 1,∞(0,T ;[H1(I)]2) + C

[
h+ | ~En−1|1

]
≤ C

[
h+ ∆tn + | ~En−1|1

]
. (3.3.13)

Using (3.3.11), (3.3.4b) and (3.3.12), we see that∣∣∣∣∣ 1

|~xn−1
ρ |

− 1

| ~Xn−1
ρ |

∣∣∣∣∣
0

=

∣∣∣∣∣∣
∣∣∣|~xn−1

ρ | − | ~Xn−1
ρ |

∣∣∣
|~xn−1
ρ || ~Xn−1

ρ |

∣∣∣∣∣∣
0

≤ 2

m2
|~xn−1 − ~Xn−1|1 ≤ C

[
h+ | ~En−1|1

]
, (3.3.14)

and

|~τn−1 − ~T n−1|0 ≤
∣∣∣∣ 1

|~xn−1
ρ |

(~xn−1
ρ − ~Xn−1

ρ )

∣∣∣∣
0

+

∣∣∣∣∣ ~Xn−1
ρ

(
1

|~xn−1
ρ |

− 1

| ~Xn−1
ρ |

)∣∣∣∣∣
0

≤ 1

m
|~xn−1 − ~Xn−1|1 +

∣∣∣∣∣ ~Xn−1
ρ ( ~Xn−1

ρ − ~xn−1
ρ )

|~xn−1
ρ || ~Xn−1

ρ |

∣∣∣∣∣
0

≤ 2

m
|~xn−1 − ~Xn−1|1 ≤ C

[
h+ | ~En−1|1

]
,

which gives

|~τn−1 − ~T n−1|0 + |~νn−1 − ~Vn−1|0 ≤ C
[
h+ | ~En−1|1

]
. (3.3.15)

A Taylor’s expansion together with (3.3.4a) yields

|Dt~x
n − ~xnt |0 ≤ ∆tn sup

s∈[tn−1,tn]
|~xtt(·, s)|0 ≤ ∆tn ‖~x‖W 2,∞(0,T ;[L2(I)]2) ≤ C∆tn, (3.3.16)

and, using (3.3.4d), (3.1.11) and (3.3.4a), for ρ ∈ {0, 1}, we have

1

∆tn

∫ tn

tn−1

〈xtt(ρ, s),∇F (~x(ρ, s))〉(tn−1 − s) ds

≤ 1

∆tn

(∫ tn

tn−1

|〈xtt(ρ, s),∇F (~x(ρ, s))〉|2 ds

) 1
2
(∫ tn

tn−1

(tn−1 − s)2 ds

) 1
2

≤

(
∆tn

∫ tn

tn−1

|~xtt(ρ, s)|2 ds

) 1
2

≤

(
∆tn

∫ tn

tn−1

|~xtt(·, s)|20,∞ ds

) 1
2

≤ C ∆tn ‖~x‖W 2,∞(0,T ;[H1(I)]2) ≤ C∆tn. (3.3.17)
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Using B.4.1 and the inductive hypothesis (3.3.9), for µ > 0, we have that

| ~En−1|20 e−µtn−1 ≤
n−1∑
m=1

(
µ(∆tm)2 +

4

µ

)
∆tme

−µtm |Dt
~Em|20 ≤ C1

(
µ(∆t)2 +

4

µ

)
h2,

and so, using (3.1.9b) and choosing ε = 1, we see that

| ~En−1|20,∞e−µtn−1 ≤ ε | ~En−1|21 e−µtn−1 + C(ε) | ~En−1|20 e−µtn−1

≤ CC1

(
1 + µ(∆t)2 +

4

µ

)
h2. (3.3.18)

Proof of Lemma 3.14: Taking ~ξ = ~ξh in (3.3.1) and subtracting the resulting equation

from (3.3.5a) we have[(
|~xnρ |2 ~xnt , ~ξh

)
−
(
| ~Xn−1

ρ |2Dt
~Xn, ~ξh

)h]
+
[(
~xnρ ,

~ξhρ

)
−
(
~Xn
ρ ,
~ξhρ

)]
=
[
〈~xnρ ,∇F (~xn)〉〈~ξh,∇F (~xn)〉 − 〈 ~Xn

ρ ,∇F ( ~Xn)〉〈~ξh,∇F ( ~Xn)〉
]1

0
. (3.3.19)

First we note that, since ~ξh ∈ [Sh]2, we have that ~ξhρ is constant on each interval σj , and

so, by the fundamental theorem of calculus and (3.1.3), we have(
~xnρ − Ih~xnρ , ~ξhρ

)
=

J∑
j=1

∫
σj

〈~xnρ − Ihj ~xnρ , ~ξhρ 〉 dρ =
J∑
j=1

[
〈~xn − Ihj ~xn, ~ξhρ 〉

]ρj
ρj−1

= 0. (3.3.20)

Hence, setting ~ξh = ∆tnDt
~En in (3.3.19), we see that

∆tn

(
| ~Xn−1

ρ |2Dt
~En, Dt

~En
)h

+ ∆tn

(
~Enρ , Dt

~Enρ

)
= ∆tn

[(
| ~Xn−1

ρ |2Dt[I
h~xn], Dt

~En
)h
−
(
|~xnρ |2 ~xnt , Dt

~En
)]

+ ∆tn

[
〈~xnρ ,∇F (~xn)〉〈Dt

~En,∇F (~xn)〉 − 〈 ~Xn
ρ ,∇F ( ~Xn)〉〈Dt

~En,∇F ( ~Xn)〉
]1

0

=: ∆tn(S1 + S2). (3.3.21)

It is easy to see that, using (3.3.11) and (3.1.6a), we have(
| ~Xn−1

ρ |2Dt
~En, Dt

~En
)h
≥ m2

4
|Dt

~En|20.

Hence, noting (3.3.8), we have

∆tn

(
| ~Xn−1

ρ |2Dt
~En, Dt

~En
)h

+ ∆tn

(
~Enρ , Dt

~Enρ

)
≥ ∆tn

m2

4
|Dt

~En|20 +
1

2

[
| ~En|21 + | ~En − ~En−1|21 − | ~En−1|21

]
. (3.3.22)

We now bound S1 and S2 in (3.3.21). We begin with S1 in which we closely follow some

of the techniques presented in [6].

S1 =

[(
| ~Xn−1

ρ |2Dt[I
h~xn], Dt

~En
)h
−
(
|~xnρ |2 ~xnt , Dt

~En
)]
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=
([
| ~Xn−1

ρ |2 − |~xnρ |2
]
~xnt , Dt

~En
)

+
(
| ~Xn−1

ρ |2
[
Dt[I

h~xn]− ~xnt
]
, Dt

~En
)

+

[(
| ~Xn−1

ρ |2Dt[I
h~xn], Dt

~En
)h
−
(
| ~Xn−1

ρ |2Dt[I
h~xn], Dt

~En
)]

=:
3∑
i=1

S1,i. (3.3.23)

Using (3.3.11), (3.3.4b), (3.1.11), (3.3.13) and (3.3.4a), we see that

S1,1 =
([
| ~Xn−1

ρ |2 − |~xnρ |2
]
~xnt , Dt

~En
)

≤ |~xnt |0,∞
∣∣∣| ~Xn−1

ρ |+ |~xnρ |
∣∣∣
0,∞
|~xn − ~Xn−1|1 |Dt

~En|0

≤ C ‖~x‖W 1,∞(0,T ;[H1(I)]2) |~xn − ~Xn−1|1 |Dt
~En|0

≤ C
[
h+ ∆tn + | ~En−1|1

]
|Dt

~En|0. (3.3.24)

From (3.3.11), (3.1.5b), (3.3.13), (3.3.16) and (3.3.4a), we have

S1,2 =
(
| ~Xn−1

ρ |2
[
Dt[I

h~xn]− ~xnt
]
, Dt

~En
)

≤ 4M2 |Dt[I
h~xn]− ~xnt |0 |Dt

~En|0

≤ 4M2
[
|(I − Ih)Dt~x

n|0 + |Dt~x
n − ~xnt |0

]
|Dt

~En|0

≤ C [h |Dt~x
n|1 + ∆tn] |Dt

~En|0

≤ C
[
h ‖~x‖W 1,∞(0,T ;[H1(I)]2) + ∆tn

]
|Dt

~En|0 ≤ C [h+ ∆tn] |Dt
~En|0. (3.3.25)

Using (3.1.6b), (3.3.11), (3.1.5d) and (3.3.4a), we see that

S1,3 =
(
| ~Xn−1

ρ |2Dt[I
h~xn], Dt

~En
)h
−
(
| ~Xn−1

ρ |2Dt[I
h~xn], Dt

~En
)

≤ C h
J∑
j=1

|Dt[I
h~xn]|1,σj || ~Xn−1

ρ |2Dt
~En|0,σj

≤ C h |Dt~x
n|1 |Dt

~En|0 ≤ C h ‖~x‖W 1,∞(0,T ;[H1(I)]2) |Dt
~En|0 ≤ C h |Dt

~En|0, (3.3.26)

where |η|1,σj is the seminorm of the space H1(σj). Combining (3.3.23)–(3.3.26) and using

(3.1.8), we have

|S1| ≤
m2

16
|Dt

~En|20 + C
[
h2 + (∆tn)2 + | ~En−1|21

]
. (3.3.27)

To bound S2 we present a fully discrete version of the techniques presented in [42] for a

semi-discrete approximation. To this end we set

bn := 〈~xnρ ,∇F (~xn)〉 and bnh := 〈 ~Xn
ρ ,∇F ( ~Xn)〉. (3.3.28)

Using (3.3.7) and (3.1.7), we have

S2 =
[
〈~xnρ ,∇F (~xn)〉〈Dt

~En,∇F (~xn)〉 − 〈 ~Xn
ρ ,∇F ( ~Xn)〉〈Dt

~En,∇F ( ~Xn)〉
]1

0

=

[
bn〈Dt

~En,∇F (~xn)−∇F ( ~Xn)〉
]1

0

+

[
(bn − bnh)〈Dt~x

n,∇F ( ~Xn)−∇F (~xn)〉
]1

0
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+

[
(bn − bnh)〈Dt~x

n,∇F (~xn)〉
]1

0

=:
3∑
i=1

S2,i. (3.3.29)

We now note some not so obvious stability bounds useful for the analysis. Using (3.3.4a)–

(3.3.4d), and noting (3.1.7), for ρ ∈ {0, 1}, we have

|bn(ρ)| ≤M, (3.3.30a)

|Dt[∇F (~xn(ρ))]| ≤ L∇F |Dt~x
n(ρ)| ≤ C ‖~x‖W 1,∞(0,T ;[H1(I)]2) ≤ C, (3.3.30b)

|Dt[D
2F (~xn(ρ))]| ≤ LD2F |Dt~x

n(ρ)| ≤ C ‖~x‖W 1,∞(0,T ;[H1(I)]2) ≤ C. (3.3.30c)

With the addition of (3.1.7) we have

|Dt[∇F ( ~Xn(ρ))]| ≤ L∇F |Dt
~Xn(ρ)|

≤ C
[
‖~x‖W 1,∞(0,T ;[H1(I)]2) + |Dt

~En|0,∞
]

≤ C
[
1 + |Dt

~En|0,∞
]
, (3.3.30d)

as well as

|∇F (~xn(ρ))−∇F ( ~Xn(ρ))| ≤ L∇F |~xn(ρ)− ~Xn(ρ)| ≤ C| ~En|0,∞. (3.3.30e)

Moreover we have

|Dtb
n(ρ)| = 1

∆tn
|〈~xnρ (ρ),∇F (~xn(ρ))〉 − 〈~xn−1

ρ (ρ),∇F (~xn−1(ρ))〉|

≤ |〈Dt~x
n
ρ (ρ),∇F (~xn(ρ))〉|+ |〈~xn−1

ρ (ρ), Dt[∇F (~xn(ρ))]〉|

≤ C ‖~x‖W 1,∞(0,T ;[H2(I)]2) +M |Dt[∇F (~xn(ρ))]| ≤ C. (3.3.30f)

We now bound S2,i, i = 1, 2, 3. First, we split up S2,1 such that

S2,1 =
[
bn〈Dt

~En,∇F (~xn)−∇F ( ~Xn)〉
]1

0

=

[
bn〈Dt

~En,∇F (~xn)−∇F (~xn−1)〉
]1

0

+

[
bn〈Dt

~En,∇F ( ~Xn−1)−∇F ( ~Xn)〉
]1

0

+

[
bn〈Dt

~En,∇F (~xn−1)−∇F ( ~Xn−1)〉
]1

0

=:

3∑
i=1

S2,1,i. (3.3.31)

Using (3.3.30a) and (3.3.30b), we have

|S2,1,1| =
∣∣∣∣[bn〈Dt

~En,∇F (~xn)−∇F (~xn−1)〉
]1

0

∣∣∣∣ ≤ C∆tn|Dt
~En|0,∞. (3.3.32)

Similarly, using (3.3.30d), we have

|S2,1,2| =
∣∣∣∣[bn〈Dt

~En,∇F ( ~Xn−1)−∇F ( ~Xn)〉
]1

0

∣∣∣∣
≤ C∆tn|Dt

~En|0,∞
[
1 + |Dt

~En|0,∞
]
. (3.3.33)
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Using (3.1.13), (3.1.7), (3.3.4c), (3.3.30f), (3.3.30c), (3.1.5a), (3.1.4a) and noting

Dt

[
bn〈 ~En, D2F (~xn) ~En〉

]
=

1

∆tn

[
bn〈 ~En, D2F (~xn) ~En〉 − bn−1〈 ~En−1, D2F (~xn−1) ~En−1〉

]
= ∆tnb

n〈Dt
~En, D2F (~xn−1)Dt

~En〉

+ 2 bn〈Dt
~En, D2F (~xn−1) ~En−1〉

+ bn〈En, Dt[D
2F (~xn)]En〉

+Dt[b
n]〈 ~En−1, D2F (~xn−1) ~En−1〉,

we have

S2,1,3 =
[
bn〈Dt

~En,∇F (~xn−1)−∇F ( ~Xn−1)〉
]1

0

=

[
bn〈DtE

n, D2F (~xn−1) ~En−1〉

+ bn
∫ 1

0
〈Dt

~En, (D2F (s~xn−1 + (1− s) ~Xn−1)−D2F (~xn−1)) ~En−1〉 ds
]1

0

=

[
1

2
Dt

[
bn〈 ~En, D2F (~xn) ~En〉

]
− 1

2
Dt[b

n]〈 ~En−1, D2F (~xn−1) ~En−1〉

− 1

2
bn〈 ~En, Dt[D

2F (~xn)] ~En〉 − 1

2
∆tnb

n〈Dt
~En, D2F (~xn−1)Dt

~En〉

+ bn
∫ 1

0
〈Dt

~En, (D2F (s~xn−1 + (1− s) ~Xn−1)−D2F (~xn−1)) ~En−1〉 ds
]1

0

≤ 1

2
Dt

[
bn〈 ~En, D2F (~xn) ~En〉

]1

0

+ C
[
| ~En−1|20,∞ + | ~En|20,∞ + ∆tn|Dt

~En|20,∞
]

+ C|Dt
~En|0,∞| ~En−1|20,∞

∫ 1

0
|s− 1| ds

≤ 1

2
Dt

[
bn〈 ~En, D2F (~xn) ~En〉

]1

0

+ C
[(

1 + h−
1
2 |Dt

~En|0
)
| ~En−1|20,∞ + | ~En|20,∞ + ∆tn|Dt

~En|20,∞
]
. (3.3.34)

Combining (3.3.31) with (3.3.32)–(3.3.34), and using (3.1.9b) and (3.1.8), we have

|S2,1| ≤
1

2
Dt

[
bn〈 ~En, D2F (~xn) ~En〉

]1

0

+ C
[(

1 + h−
1
2 |Dt

~En|0
)
| ~En−1|20,∞ + | ~En|20,∞ + ∆tn

(
1 + |Dt

~En|0,∞
)
|Dt

~En|0,∞
]

≤ 1

2
Dt

[
bn〈 ~En, D2F (~xn) ~En〉

]1

0
+

1

4∆tn
| ~En − ~En−1|21 +

m2

24
|Dt

~En|20

+ C
[
∆tn + | ~En−1|20,∞ + | ~En|20,∞ + ∆tn|Dt

~En|20 + h−1| ~En−1|40,∞
]
. (3.3.35)

Taking ~ξ = (1− ρ)∇F (~xn(0)) in (3.3.1), and noting (3.3.4d), we see that

(
|~xnρ |2 ~xnt , (1− ρ)∇F (~xn(0))

)
−
(
~xnρ ,∇F (~xn(0))

)
=
[
〈~xnρ ,∇F (~xn)〉〈(1− ρ)∇F (~xn(0)),∇F (~xn)〉

]1
0

= −bn(0).
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Hence,

bn(0) =
(
~xnρ ,∇F (~xn(0))

)
−
(
|~xnρ |2 ~xnt , (1− ρ)∇F (~xn(0))

)
. (3.3.36)

Similarly, taking ~ξh = (1− ρ)∇F ( ~Xn(0)) in (3.3.5a), noting (3.3.6), we have

bnh(0) =
(
~Xn
ρ ,∇F ( ~Xn(0))

)
−
(
| ~Xn−1

ρ |2Dt
~Xn, (1− ρ)∇F ( ~Xn(0))

)h
. (3.3.37)

Denoting ~xn(0) by ~xn0 and ~Xn(0) by = ~Xn
0 , subtracting (3.3.37) from (3.3.36), we have

bn(0)− bnh(0) =
[(
~xnρ ,∇F (~xn0 )

)
−
(
~Xn
ρ ,∇F ( ~Xn

0 )
)]

+

[(
| ~Xn−1

ρ |2Dt
~Xn, (1− ρ)∇F ( ~Xn

0 )
)h
−
(
|~xnρ |2 ~xnt , (1− ρ)∇F (~xn0 )

)]
=: A1 +A2. (3.3.38)

We first bound A1. Using (3.3.20), (3.3.4b), (3.3.30e) and (3.3.6), we have

A1 =
(
~xnρ ,∇F (~xn0 )

)
−
(
~Xn
ρ ,∇F ( ~Xn

0 )
)

=
(
~xnρ ,∇F (~xn0 )−∇F ( ~Xn

0 )
)

+
(
~Enρ ,∇F ( ~Xn

0 )
)

≤ML∇F | ~En0 |0 + | ~En|1|∇F ( ~Xn
0 )|0 ≤ C| ~En|0,∞ + | ~En|1. (3.3.39)

We now bound A2

A2 =
(
| ~Xn−1

ρ |2Dt
~Xn, (1− ρ)∇F ( ~Xn

0 )
)h
−
(
|~xnρ |2 ~xnt , (1− ρ)∇F (~xn0 )

)
=
(
|~xnρ |2 ~xnt , (1− ρ)

[
∇F ( ~Xn

0 )−∇F (~xn0 )
])

+
([
| ~Xn−1

ρ |2 − |~xnρ |2
]
~xnt , (1− ρ)∇F ( ~Xn

0 )
)

+
(
| ~Xn−1

ρ |2 (Ih − I)~xnt , (1− ρ)∇F ( ~Xn
0 )
)

+
(
| ~Xn−1

ρ |2
[
Dt

~Xn − Ih~xnt
]
, (1− ρ)∇F ( ~Xn

0 )
)h

+

[(
| ~Xn−1

ρ |2 Ih~xnt , (1− ρ)∇F ( ~Xn
0 )
)h
−
(
| ~Xn−1

ρ |2 Ih~xnt , (1− ρ)∇F ( ~Xn
0 )
)]

=:

5∑
i=1

A2,i. (3.3.40)

Using (3.3.4b), (3.3.30e), (3.1.11) and (3.3.4a), we have

A2,1 =
(
|~xnρ |2 ~xnt , (1− ρ)

[
∇F ( ~Xn

0 )−∇F (~xn0 )
])

≤ C ‖~x‖W 1,∞(0,T ;[L2(I)]2) |1− ρ|0 | ~En|0,∞ ≤ C | ~En|0,∞. (3.3.41)

Using (3.1.11), (3.3.4b), (3.3.11), (3.3.4c) and (3.3.13), we have

A2,2 =
([
| ~Xn−1

ρ |2 − |~xnρ |2
]
~xnt , (1− ρ)∇F ( ~Xn

0 )
)
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≤ |~xnt |0,∞
∣∣∣| ~Xn−1

ρ |+ ||~xnρ |
∣∣∣
0,∞
|∇F ( ~Xn

0 )| |1− ρ|0 |~xn − ~Xn−1|1

≤ C ‖~x‖W 1,∞(0,T ;[H1(I)]2) |~xn − ~Xn−1|1 ≤ C
[
h+ ∆tn + | ~En−1|1

]
. (3.3.42)

Using (3.3.11), (3.3.6), (3.1.5b) and (3.3.4a), we see that

A2,3 =
(
| ~Xn−1

ρ |2 (Ih − I)~xnt , (1− ρ)∇F ( ~Xn
0 )
)

≤ 4M2 |∇F ( ~Xn−1
0 )| |(1− ρ)|0 |(I − Ih)~xnt |0

≤ C h |~xnt |1 ≤ C h ‖~x‖W 1,∞(0,T ;[H1(I)]2) ≤ Ch, (3.3.43)

and from (3.1.6a), (3.3.11), (3.3.6), (3.1.5d) and (3.3.16), we have

A2,4 =
(
| ~Xn−1

ρ |2
[
Dt

~Xn − Ih~xnt
]
, (1− ρ)∇F ( ~Xn

0 )
)h

≤ 4M2 |∇F ( ~Xn
0 )| ‖(1− ρ)‖h ‖Ih~xnt −Dt

~Xn‖h

≤ C
[
|Ih(~xnt −Dt~x

n)|0 + |Dt
~En|0

]
≤ C

[
∆tn + |Dt

~En|0
]
. (3.3.44)

Using the bound on (3.3.26) as well as (3.3.6) yields

A2,5 =
(
| ~Xn−1

ρ |2 Ih~xnt , (1− ρ)∇F ( ~Xn
0 )
)h
−
(
| ~Xn−1

ρ |2 Ih~xnt , (1− ρ)∇F ( ~Xn
0 )
)

≤ C h
J∑
j=1

|Ih~xnt |1,σj || ~Xn−1
ρ |2 (1− ρ)∇F ( ~Xn

0 )|0,σj

≤ C h |~xnt |1 ≤ C h ‖~x‖W 1,∞(0,T ;[H1(I)]2) ≤ Ch. (3.3.45)

Combining (3.3.38) with (3.3.39)–(3.3.45), we see that

|bn(0)− bnh(0)| ≤ C
[
h+ ∆tn + | ~En|0,∞ + |Dt

~En|0 + | ~En−1|1 + | ~En|1
]
.

We remark that this bound does not depend on ρ and so also holds for ρ = 1. Thus we

have

[|bn(ρ)− bnh(ρ)|]10 ≤ C
[
h+ ∆tn + | ~En|0,∞ + |Dt

~En|0 + | ~En−1|1 + | ~En|1
]
. (3.3.46)

Hence, using (3.1.11), (3.3.30e), (3.3.46), (3.3.4a), and (3.1.8), we have

|S2,2]| =
∣∣∣∣[(bn − bnh)〈(Dt~x

n,∇F ( ~Xn)−∇F (~xn)〉
]1

0

∣∣∣∣
≤ C ‖~x‖W 1,∞(0,T ;[H1(I)]2) | ~En|0,∞ [|bn(0)− bnh(0)|+ |bn(1)− bnh(1)|]

≤ C | ~En|0,∞
[
h+ ∆tn + | ~En|0,∞ + |Dt

~En|0 + | ~En−1|1 + | ~En|1
]

≤ m2

32
|Dt

~En|20 + C
[
h2 + (∆tn)2 + | ~En|20,∞ + | ~En−1|21 + | ~En|21

]
. (3.3.47)

Using the integral remainder of the Taylor’s expansion, (3.3.3), (3.3.17) and (3.3.46), we

have

|S2,3| =
∣∣∣[(bn − bnh)〈Dt~x

n,∇F (~xn)〉]10
∣∣∣
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=
1

∆tn

∣∣∣∣∣∣
[

(bn − bnh)

∫ tn

tn−1

〈~xtt(·, s),∇F (~xn(·))〉(tn−1 − s) ds

]1

0

∣∣∣∣∣∣
≤ C ∆tn [|bn(0)− bnh(0)|+ |bn(1)− bnh(1)|]

≤ C ∆tn

[
h+ ∆tn + | ~En|0,∞ + |Dt

~En|0 + | ~En−1|1 + | ~En|1
]

≤ m2

32
|Dt

~En|20 + C
[
h2 + (∆tn)2 + | ~En|20,∞ + | ~En−1|21 + | ~En|21

]
. (3.3.48)

Combining (3.3.35), (3.3.47) and (3.3.48), and using (3.1.9b), we see that

S2 ≤
1

2
Dt

[
bn〈 ~En, D2F (~xn) ~En〉

]1

0
+

1

4∆tn
| ~En − ~En−1|21 +

m2

16
|Dt

~En|20 + C∆tn|Dt
~En|20

+ C
[
h2 + ∆tn + | ~En−1|20 + | ~En|20 + | ~En−1|21 + | ~En|21 + h−1| ~En−1|40,∞

]
. (3.3.49)

Combining (3.3.21), (3.3.22), (3.3.27) and (3.3.49) yields the desired result.

Proof of Lemma 3.15: Multiplying the result in Lemma 3.14 by e−µtn , for some µ > 1,

and summing from 1 to n, noting the fact that | ~E0| = 0, gives

1

2

n∑
m=1

e−µtm | ~Em|21 +
1

4

n∑
m=1

e−µtm | ~Em − ~Em−1|21 +

(
m2

8
− C∆t

) n∑
m=1

∆tme
−µtm |Dt

~Em|20

≤ 1

2

n∑
m=1

e−µtm | ~Em−1|21 +
1

2

n∑
m=1

∆tme
−µtm Dt

[
〈~xnρ ,∇F (~xn)〉〈 ~Em, D2F (~xm) ~Em〉

]1

0

+ C

n∑
m=1

∆tme
−µtm

[
| ~Em−1|20 + | ~Em|20 + | ~Em−1|21 + | ~Em|21

]
+ C

n∑
m=1

∆tme
−µtm

[
h2 + ∆tm + h−1| ~Em−1|40,∞

]
≤ 1

2

n∑
m=1

e−µtm−1 | ~Em−1|21 +
1

2
e−µtn

[
〈~xnρ ,∇F (~xn)〉〈 ~En, D2F (~xn) ~En〉

]1

0

− 1

2

n∑
m=1

∆tm

[
〈~xn−1
ρ ,∇F (~xn−1)〉 〈 ~Em−1, D2F (~xm−1) ~Em−1〉

]1

0
Dte

−µtm

+ C

n∑
m=1

∆tme
−µtm

[
| ~Em−1|20 + | ~Em|20 + | ~Em−1|21 + | ~Em|21

]
+ C

n∑
m=1

∆tme
−µtm

[
h2 + ∆tm + h−1| ~Em−1|40,∞

]
. (3.3.50)

Using (3.3.30a), (3.3.4c), (3.1.9b), (B.4.1) and the fact that µ > 1, we see that

1

2
e−µtn

[
〈~xnρ ,∇F (~xn)〉〈 ~En, D2F (~xn) ~En〉

]1

0
≤ Ce−µtn | ~En|20,∞

≤ 1

4
e−µtn | ~En|21 + Ce−µtn | ~En|20

≤ 1

4
e−µtn | ~En|21 + C

n∑
m=1

(
µ(∆tm)2 +

4

µ

)
∆tme

−µtm |Dt
~Em|20. (3.3.51)
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Using (3.3.30a), (3.3.4c), (B.4.4), (B.4.2) and (3.1.4b), we have that

− 1

2

n∑
m=1

∆tm

[
〈~xn−1
ρ ,∇F (~xn−1)〉〈 ~Em−1, D2F (~xm−1) ~Em−1〉

]1

0
Dte

−µtm

≤ 1

2

n∑
m=1

∆tm

∣∣∣∣[〈~xn−1
ρ ,∇F (~xn−1)〉〈 ~Em−1, D2F (~xm−1) ~Em−1〉

]1

0

∣∣∣∣µe−µtm−1

≤ Cµ
n∑

m=1

∆tme
−µtm−1

[
| ~Em−1|21 + | ~Em−1|20

]
≤ Cµ

n∑
m=1

∆tme
−µtm | ~Em|21 + C

n∑
m=1

(
µ(∆tm)2 +

4

µ

)
∆tme

−µtm |Dt
~Em|20. (3.3.52)

Hence, combining (3.3.50)–(3.3.52) and using B.4.1, we have that

1

4
e−µtn | ~En|21 +

(
m2

8
− C?

[
∆t+ µ(∆t)2 + µ−1

]) n∑
m=1

∆tme
−µtm |Dt

~Em|20

≤ Cµ
n∑

m=1

∆tme
−µtm | ~Em|21 + C

n∑
m=1

∆tme
−µtm

[
h2 + ∆tm + h−1| ~Em−1|40,∞

]
. (3.3.53)

Setting C̄ = m2

8 −C?
[
∆t+ µ(∆t)2 + µ−1

]
, whereby C̄ > 0 by (3.3.10), and using Lemma

3.1, we have

1

4
sup

m=0,...,n
e−µtm | ~Em|21 + C̄

n∑
m=1

∆tme
−µtm |Dt

~Em|20

≤ C
n∑

m=1

∆tme
−µtm

[
h2 + ∆tm + h−1| ~Em−1|40,∞

]
+

n∑
k=1

Cµ
k∑

m=1

∆tme
−µtm

[
h2 + ∆tm + h−1| ~Em−1|40,∞

]
∆tm exp

(
Cµ

n∑
m=k

∆tm

)

≤ C
(
1 + µTeCµT

) n∑
m=1

∆tme
−µtm

[
h2 + ∆tm + h−1| ~Em−1|40,∞

]
.

By dividing both sides by min{C̄, 1
4}, we have that

sup
m=0,...,n

e−µtm | ~Em|21 +
n∑

m=1

∆tme
−µtm |Dt

~Em|20

≤ C1

2
h2 + Ch−1

n∑
m=1

∆tme
−µtm | ~Em−1|40,∞ (3.3.54)

for C1 ≥ 2CT and ∆t ≤ Ch2. Using (3.3.18), for some small h? > 0, we have

Ch−1
n∑

m=1

∆tme
−µtm−1 | ~Em−1|40,∞ = Ch−1

n∑
m=1

∆tm(e−µtm−1 | ~Em−1|20,∞)2eµtm−1

≤ CC1

(
1 + µ(∆t)2 +

1

µ

)2

h3eµT
n∑

m=1

∆tm

≤ Ch3 ≤ C1

2
h2. (3.3.55)
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Hence, combining (3.3.54) and (3.3.55), we have the desired result.

Proof of Theorem 3.13: Using (3.1.5b), (3.3.4a), Lemma 3.15 and (3.1.8), simple

calculations give us

sup
n=0,...,N

|~xn − ~Xn|21 ≤ 2 sup
n=0,...,N

[
|(I − Ih)~xn|21 + | ~En|21

]
≤ Ch2‖~x‖2W 0,∞(0,T ;[H2(I)]2) + 2C1h

2eµT ≤ Ch2,

and, in addition with (3.1.5d) and (3.3.16) whilst noting ∆t ≤ Ch2,

N∑
n=1

∆tn|~xnt −Dt
~Xn|20 ≤ 3

N∑
n=1

∆tn

[
|(I − Ih)~xnt |20 + |Ih(~xnt −Dt~x

n)|20 + |Dt
~En|20

]
≤ CTh2‖~x‖2W 0,∞(0,T ;[H2(I)]2) + CT (∆t)2 + 2C1h

2eµT ≤ Ch2.

Remark 3.16. We note that if we did not rewrite the term S2,1 in (3.3.31) into three

parts, S2,1 would yield a term of the form | ~En|40,∞ in (3.3.34), which we could not find

a way to bound. Rewriting S2,1 as we do results in the time step restriction ∆t ≤ C h2

rather than ∆t ≤ C h.

Remark 3.17. We note here the unconventional approach we use to obtain the bound,

(3.3.46), on |bn(ρ)− bnh(ρ)|. Indeed, approaching such a bound conventionally, by subtract-

ing bnh from bn, and noting (3.1.7), would give

bn − bnh = 〈~xnρ ,∇F (~xn)−∇F ( ~Xn)〉+ 〈 ~Enρ ,∇F ( ~Xn)〉

and hence, using (3.3.4b), (3.3.4c), (3.3.6) and (3.3.4a), we would have

S2,2 =
[
(bn − bnh)〈Dt~x

n,∇F (~xn)−∇F ( ~Xn)〉
]1

0
≤ C

[
| ~En|0,∞ + | ~En|1,∞

]
| ~En|0,∞.

This estimate is not desirable as an inverse estimate would be required that would not

result in the desired power of h we require for the result.

3.3.3 L2 error bounds for Model M1

In this section we present a fully discrete version of the arguments used in [42] to prove

optimal L2 error bounds for the scheme (3.3.5a). We look to prove the following theorem.

Theorem 3.18. blah

Let ~X0 = Ih~x 0 ∈ [Sh]2. There exists h? > 0 and ∆t? > 0 such that for all h ∈ (0, h?]
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and ∆t ∈ (0,∆t?], with ∆t ≤ C h2, the fully-discrete problem (3.3.5a)–(3.3.5b) has the

following error bound

sup
n=0,...,N

|~xn − ~Xn|20 ≤ Ch4,

for some C > 0 independent of h and ∆t, where ~xn := ~x(·, tn).

Before proving Theorem 3.18 we note some useful results. Using (3.3.4b), (3.1.5a),

(3.1.4a) and Theorem 3.13, we see that

| ~Xn
ρ |0,∞ ≤ |~xn|1,∞ + |~xn − ~Xn|1,∞ ≤M + C h−

1
2 |~xn − ~Xn|1 ≤M + C h

1
2 ≤ 2M

and similarly

| ~Xn
ρ |0,∞ ≥ |~xn|1,∞ − |~xn − ~Xn|1,∞ ≥ m− C h−

1
2 |~xn − ~Xn|1 ≥ m− C h

1
2 ≥ m

2
,

provided h? is chosen small enough, which combine to give

m

2
≤ | ~Xn

ρ | ≤ 2M. (3.3.56)

Using (3.3.4a), (3.1.5a), (3.1.4a), and Theorem 3.13, we see that

n∑
m=1

∆tn|Dt
~Xn|21 ≤ 2

n∑
m=1

[
∆tn |~xnt |21 + ∆tn |~xnt −Dt

~Xn|21
]

≤ C ‖~x‖2W 1,∞(0,T ;[H1(I)]2) + C h−2
n∑

m=1

∆tn |~xnt −Dt
~Xn|20 ≤ C. (3.3.57)

Recalling the definition of ~En, using (3.1.5b) and (3.3.4a), we have

|~xn − ~Xn|0 ≤ |(I − Ih)~xn|0 + | ~En|0

≤ C h2 |~xn|2 + | ~En|0

≤ C h2 ‖~x‖W 0,∞(0,T ;[H2(I)]2) + | ~En|0 ≤ C
[
h2 + | ~En|0

]
. (3.3.58)

We restate (3.3.16) for the ease of the reader, namely we have

|Dt~x
n − ~xnt |0 ≤ ∆tn sup

s∈[tn−1,tn]
|~xtt(·, s)|0 ≤ ∆tn ‖~x‖W 2,∞(0,T ;[L2(I)]2) ≤ C∆tn. (3.3.59)

Proof of Theorem 3.18: Noting (3.3.19) and (3.3.20), we have(
| ~Xn−1

ρ |2Dt
~En, ~ξh

)h
+
(
~Enρ ,

~ξhρ

)
=

[(
| ~Xn−1

ρ |2Dt[I
h~xn], ~ξh

)h
−
(
|~xnρ |2 ~xnt , ~ξh

)]
+
[
〈~xnρ ,∇F (~xn)〉〈~ξh,∇F (~xn)〉 − 〈 ~Xn

ρ ,∇F ( ~Xn)〉〈~ξh,∇F ( ~Xn)〉
]1

0
. (3.3.60)
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A simple calculation gives

Dt

[(
| ~Xn

ρ |2 ~En, ~En
)h]

=
(
Dt

[
| ~Xn

ρ |2
]
~En, ~En

)h
+ 2

(
| ~Xn−1

ρ |2Dt
~En, ~En

)h
−∆tn

(
| ~Xn−1

ρ |2Dt
~En, Dt

~En
)h

and hence, taking ~ξh = ∆tn ~E
n in (3.3.60), we see that

∆tn
2
Dt

[(
| ~Xn

ρ |2 ~En, ~En
)h]

+ ∆tn

(
~Enρ , ~E

n
ρ

)
≤ ∆tn

[(
| ~Xn−1

ρ |2Dt[I
h~xn], ~En

)h
−
(
|~xnρ |2 ~xnt , ~En

)]
+

∆tn
2

(
Dt

[
| ~Xn

ρ |2
]
~En, ~En

)h
+ ∆tn

[
〈~xnρ ,∇F (~xn)〉〈 ~En,∇F (~xn)〉 − 〈 ~Xn

ρ ,∇F ( ~Xn)〉〈 ~En,∇F ( ~Xn)〉
]1

0

=: ∆tn

5∑
i=3

Si. (3.3.61)

We first bound S3

S3 = ∆tn

[(
| ~Xn−1

ρ |2Dt[I
h~xn], ~En

)h
−
(
|~xnρ |2 ~xnt , ~En

)]
=

[(
| ~Xn−1

ρ |2Dt[I
h~xn], ~En

)h
−
(
| ~Xn−1

ρ |2Dt[I
h~xn], ~En

)]
+
(
|~xnρ |2

[
Dt[I

h~xn]− ~xnt
]
, ~En

)
+
([
| ~Xn

ρ |2 − |~xnρ |2
]
Dt[I

h~xn], ~En
)

+
([
| ~Xn−1

ρ |2 − | ~Xn
ρ |2
]
Dt[I

h~xn], ~En
)

=:
4∑
i=1

S3,i. (3.3.62)

Using (3.1.6b), (3.3.56), (3.1.5d) and (3.3.4a), we see that

S3,1 =
(
| ~Xn−1

ρ |2Dt[I
h~xn], ~En

)h
−
(
| ~Xn−1

ρ |2Dt[I
h~xn], ~En

)
≤ C h2

J∑
j=1

|Dt[I
h~xn]|1,σj | ~En|1,σj

≤ C h2 |Dt[I
h~xn]|1 | ~En|1

≤ C h2 ‖~x‖W 1,∞(0,T ;[H1(I)]2) | ~En|1 ≤ C h2 | ~En|1, (3.3.63)

where |η|1,σj is the seminorm of the space H1(σj), and from (3.3.4b), (3.1.5b), (3.3.59)

and (3.3.4a), we have

S3,2 =
(
|~xnρ |2

[
Dt[I

h~xn]− ~xnt
]
, ~En

)
≤ 4M2

[
|(I − Ih)Dt~x

n|0 + |Dt~x
n − ~xnt |0

]
| ~En|0

≤ C
[
h2 |Dt~x

n|2 + ∆tn
]
| ~En|0

≤ C
[
h2 ‖~x‖W 1,∞(0,T ;[H2(I)]2) + ∆tn

]
≤ C

[
h2 + ∆tn

]
| ~En|0. (3.3.64)



97

Integration by parts and (3.1.10) yield

S3,3 =
([
| ~Xn

ρ |2 − |~xnρ |2
]
Dt[I

h~xn], ~En
)

=
(
| ~Xn

ρ − ~xnρ |2Dt[I
h~xn], ~En

)
− 2

(
〈~xnρ , ~xnρ − ~Xn

ρ 〉Dt[I
h~xn], ~En

)
=
(
| ~Xn

ρ − ~xnρ |2Dt[I
h~xn], ~En

)
+ 2

(
〈~xnρ , ~xn − ~Xn〉Dt[I

h~xn], ~Enρ

)
+
[
2
(
〈~xnρρ, ~xn − ~Xn〉Dt[I

h~xn], ~En
)

+ 2
(
〈~xnρ , ~xn − ~Xn〉Dt[I

h~xnρ ], ~En
)]

+ 2
[
〈~xnρ , ~Xn − ~xn〉〈Dt[I

h~xn], ~En〉
]1

0
=:

4∑
i=1

S3,3,i. (3.3.65)

From (3.1.11), (3.3.4a) and Theorem 3.13, we have

S3,3,1 =
(
| ~Xn

ρ − ~xnρ |2Dt[I
h~xn], ~En

)
≤ |Dt[I

h~xn]|0,∞ | ~En|0,∞ |~xn − ~Xn|21

≤ C ‖~x‖W 1,∞(0,T ;[H1(I)]2) | ~En|0,∞ |~xn − ~Xn|21 ≤ C h2 | ~En|0,∞, (3.3.66)

and using (3.1.5d), (3.3.58) and (3.3.4a), we have

S3,3,2 = 2
(
〈~xnρ , ~xn − ~Xn〉Dt[I

h~xn], ~Enρ

)
≤ 2 |~xn|1,∞ |DtI

h~xn|0,∞ | ~En|1 |~xn − ~Xn|0

≤ C ‖~x‖W 0,∞(0,T ;[H2(I)]2) ‖~x‖W 1,∞(0,T ;[H1(I)]2) | ~En|1 |~xn − ~Xn|0

≤ C | ~En|1
[
h2 + | ~En|0

]
. (3.3.67)

Similarly we have

S3,3,3 = 2
(
〈~xnρρ, ~xn − ~Xn〉Dt[I

h~xn], ~En
)

+ 2
[
〈~xnρ , ~xn − ~Xn〉Dt[I

h~xnρ ], ~En
)

≤ 2 |~xn|2 |Dt[I
h~xn]|0,∞ | ~En|0,∞ |~xn − ~Xn|0 + 2 |~xn|1,∞ |DtI

h~xn|1,∞ | ~En|0 |~xn − ~Xn|0

≤ C ‖~x‖W 0,∞(0,T ;[H2(I)]2) ‖~x‖W 1,∞(0,T ;[H2(I)]2)

[
| ~En|0,∞ + | ~En|0

]
|~xn − ~Xn|0

≤ C
[
| ~En|0,∞ + | ~En|0

] [
h2 + | ~En|0

]
. (3.3.68)

Using (3.1.7), (3.3.4b), (3.1.5d), (3.1.11) and (3.3.4a), we see that

S3,3,4 = 2
[
〈~xnρ , ~Xn − ~xn〉〈Dt[I

h~xn], ~En〉〉
]1

0

≤ 2M |Dt[I
h~xn]|0,∞ | ~En|20,∞

≤ C ‖~x‖W 1,∞(0,T ;[H1(I)]2) | ~En|20,∞ ≤ C| ~En|20,∞. (3.3.69)

Hence, combining (3.3.65)–(3.3.69), we see that

S3,3 ≤ C
[
| ~En|0 + | ~En|1 + | ~En|0,∞

] [
h2 + | ~En|0 + | ~En|0,∞

]
. (3.3.70)
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Using (3.1.5d), (3.3.56) and (3.3.4a), we see that

S3,4 =
([
| ~Xn−1

ρ |2 − | ~Xn
ρ |2
]
Dt[I

h~xn], ~En
)

≤ |Dt[I
h~xn]|0,∞

∣∣∣| ~Xn
ρ |+ | ~Xn−1

ρ |
∣∣∣
0,∞
| ~En|0 | ~Xn − ~Xn−1|1

≤ C ‖~x‖W 1,∞(0,T ;[H1(I)]2) | ~En|0 | ~Xn − ~Xn−1|1 ≤ C ∆tn | ~En|0 |Dt
~Xn|1. (3.3.71)

Hence, combining (3.3.62) with (3.3.63), (3.3.64), (3.3.70) and (3.3.71), as well as using

(3.1.8) and (3.1.9b), we have

S3 ≤
1

6
| ~En|21 + C

[
h4 + (∆tn)2 +

(
1 + |Dt

~Xn|21
)
| ~En|20

]
. (3.3.72)

We now bound S4. Using (3.1.6a), (3.3.56), (3.1.8) and (3.1.9b), we have

S4 =
1

2

(
Dt

[
| ~Xn

ρ |2
]
~En, ~En

)h
≤ C

∣∣∣| ~Xn
ρ |+ | ~Xn−1

ρ |
∣∣∣
0,∞
| ~En|0,∞ |Dt

~Xn|1 | ~En|0

≤ 1

6
| ~En|21 + C

[
1 + |Dt

~Xn|21
]
| ~En|20. (3.3.73)

Now we bound S5. Denoting

bn := 〈~xnρ ,∇F (~xn)〉 and bnh := 〈 ~Xn
ρ ,∇F ( ~Xn)〉,

and using (3.3.4b), (3.3.4d), (3.3.56) and (3.3.6) yields

|bn(ρ)| ≤M, and |bnh(ρ)| ≤ 2M, for ρ ∈ {0, 1}. (3.3.74)

Using (3.1.12), (3.1.1b), (3.3.5b) and (3.1.7), we have

0 =
[
F (~xn)− F ( ~Xn)

]1

0
=
[
〈 ~En,∇F (~xn)〉

]1

0

+

[∫ 1

0
〈∇F (s~xn + (1− s) ~Xn)−∇F (~xn), ~En〉 ds

]1

0

and

0 =
[
F (~xn)− F ( ~Xn)

]1

0
=
[
〈 ~En,∇F ( ~Xn)〉

]1

0

+

[∫ 1

0
〈∇F (s ~Xn + (1− s)~xn)−∇F ( ~Xn), ~En〉 ds

]1

0

.

Hence, using (3.3.4c), we have∣∣∣∣[〈 ~En,∇F (~xn)〉
]1

0

∣∣∣∣ ≤ L∇F | ~En|20,∞ ∫ 1

0
|1− s| ds ≤ C| ~En|20,∞ (3.3.75)

and ∣∣∣∣[〈 ~En,∇F ( ~Xn)〉
]1

0

∣∣∣∣ ≤ L∇F | ~En|20,∞ ∫ 1

0
|1− s| ds ≤ C| ~En|20,∞. (3.3.76)
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Thus, using (3.3.30a), (3.3.74), (3.3.75), (3.3.76) and (3.1.9b), we have that

|S5| =
∣∣∣∣[bn〈 ~En,∇F (~xn)〉 − bnh〈 ~En,∇F ( ~Xn)〉

]1

0

∣∣∣∣
≤ C | ~En|20,∞ ≤

1

6
| ~En|21 + C| ~En|20. (3.3.77)

Combining (3.3.61) with (3.3.72), (3.3.73) and (3.3.77) gives

∆tn
2
Dt

[(
| ~Xn

ρ |2 ~En, ~En
)h]

+
∆tn

2
| ~En|21 ≤ C∆tn

[
h4 + (∆tn)2 + (1 + |Dt

~Xn|21)| ~En|20
]
.

Summing from n = 1, . . . , N , noting the fact that | ~E0| = 0, and using (3.1.6b) and (3.3.56),

we have
m2

8
| ~EN |20 +

1

2

N∑
n=1

∆tn | ~En|21

≤ C
N∑
n=1

∆tn
[
h4 + (∆tn)2

]
+ C

N∑
n=1

∆tn

(
1 + |Dt

~Xn|21
)
| ~En|20.

Next, using Lemma 3.1 and (3.3.57), and noting ∆t ≤ Ch2, we see that

sup
n=0,...,N

| ~En|20 +
N∑
n=1

∆tn | ~En|21 ≤ Ch4. (3.3.78)

Finally, using (3.1.5b) and (3.3.4a), a simple calculation gives us

sup
n=0,...,N

|~xn − ~Xn|20

≤ 2 sup
n=0,...,N

[
|(I − Ih)~xn|20 + | ~En|20

]
≤ Ch4‖~x‖2W 0,∞(0,T ;[H2(I)]2) + Ch4 ≤ Ch4

as desired.

3.4 Finite element analysis of Model M2

In this section we look at ModelM2 in more detail. We first discuss the De-Turck trick.

The author in [108] derives the reparametrised curve shortening flow using an Euler-

Lagrange formulation rather than the use of charts used by [59]; however, as mentioned in

[59], the formulation in [108] falls short to be able to discretise directly in space. We refer

readers to either [108] or [59] for the derivation of the reparametrised curve shortening

flow, and simply state the result they show. Namely, that the reparametrisation of (3.2.5a)

using the De-Turck trick is as follows

~xt =

(
I +

(
1

α
− 1

)
~τ ⊗ ~τ

)
~xρρ
|~xρ|2

. (3.4.1)
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Remark 3.19. In [59, 108] the authors consider a closed curve to derive the repara-

metrisation. The objective of this thesis was not to rigorously extend the result to the

orthogonal boundary conditions (3.1.2c) and (3.1.2d), rather just to use it under the as-

sumption that it does extend to this situation and to show analytical and numerical results

using it. Given that the transition from [37] to [42] was a simple change of boundary

conditions, we speculate this would be the same in our case of extending [59] to Model

M2.

Using Theorem B.4, since det(~τ ⊗ ~τ) = 0 and Tr(~τ ⊗ ~τ) = 1, we have that ~τ ⊗ ~τ is

idempotent. Hence, using Theorem B.5, taking T = ~τ ⊗ ~τ and β = 1−α
α , we see that(

I +

(
1

α
− 1

)
~τ ⊗ ~τ

)−1

= I − (1− α)~τ ⊗ ~τ

and hence, noting that ~τ ⊗~τ = I−~ν⊗~ν, we have (3.2.20a). Simply adding a forcing term

gives us (3.1.2a). We now turn our attention to (3.1.2b). Labelling w̃(ρ, t) = w(~x(ρ, t), t),

we see that

w̃t(ρ, t) = wt(~x, t) + 〈∇w(~x, t), ~xt〉

= wt(~x, t) + 〈∇w(~x, t), ~τ〉〈~τ , ~xt〉+ 〈∇w(~x, t), ~ν〉〈~ν, ~xt〉

= ∂•tw(~x, t) + ψws(~x, t) = ∂•tw(~x, t) + ψ
wρ(~x, t)

|~xρ|
.

Noting (3.2.8) and (3.2.2), we have

|~xρ|t = 〈~τ , (~xt)ρ〉 = (〈~τ , ~xt〉)ρ − 〈~τρ, ~xt〉 = ψρ − |~xρ|κv

and hence we can write (3.2.23b) as

(|~xρ| w̃)t − (ψ w̃)ρ − d
(
w̃ρ
|~xρ|

)
ρ

= |~xρ| g(v, w̃),

which is (3.2.27b) in variational form.

Remark 3.20. In the case of [97], since they are using (3.2.5a), the authors have the

property that ψ = 0, which leads them to the slightly different formulation (3.2.24b).

We drop the tilde over the w now for ease of notation. We refer the readers to (3.3.1)

for the derivation of the weak formulation of (3.1.2a) and instead look to derive the weak

formulation of (3.1.2b). By multiplying (3.1.2b) by a test function η ∈ H1
0 (I), using

integration by parts and (3.1.2e), we have

((|~xρ|w)t, η) + (ψw, ηρ) + d

(
wρ
|~xρ|

, ηρ

)
=

[(
wρ
|~xρ|

+ ψw

)
η

]1

0

+ (|~xρ| g(v, w), η)
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= (|~xρ| g(v, w), η) .

Thus, we have the following weak form of (3.1.2a)–(3.1.2e)(
|~xρ|2 [α~xt + (1− α)〈~xt, ~ν〉~ν] , ~ξ

)
+
(
~xρ, ~ξρ

)
=
(
|~xρ|2 f(w)~ν, ~ξ

)
+
[
〈~xρ,∇F (~x)〉〈~ξ,∇F (~x)〉

]1

0
, ∀ ~ξ ∈ [H1(I)]2, (3.4.2a)

((|~xρ|w)t, η) + d

(
wρ
|~xρ|

, ηρ

)
+ (ψw, ηρ) = (|~xρ| g(v, w), η) , ∀ η ∈ H1

0 (I). (3.4.2b)

We also restate the property derived from (3.1.2c) for the ease of the reader, that is (3.3.3)

〈~xt(ρ, t),∇F (~x(ρ, t))〉 = 0, for ρ ∈ {0, 1}. (3.4.3)

We note that, unlike in the fully discrete case, (3.4.3) is independent of α and f . Before

introducing the finite element formulation we detail the assumptions we will need for the

analysis.

Assumptions 3.21. blah

We assume that there is a unique solution (~x,w) of ModelM2 on the time interval [0, T ].

Furthermore we assume this unique solution and specified data satisfies

~x ∈W 1,∞(0, T ; [H2(I)]2) ∩W 2,∞(0, T ; [L2(I)]2), (3.4.4a)

w ∈ C([0, T ];H2(I)) ∩W 1,∞(0, T ;H1(I)), (3.4.4b)

f ∈ C1,1(R), (3.4.4c)

g ∈ C1,1(R2), (3.4.4d)

m ≤ |~xρ| ≤M in [0, 1]× [0, T ], for some m, M ∈ R>0, (3.4.4e)

F ∈ C2,1(R2), (3.4.4f)

|∇F (~p)| = 1, for ~p ∈ {~p ∈ R2 : F (~p) = 0}. (3.4.4g)

We assign each element ~xh ∈ [Sh]2 a piecewise constant discrete unit tangent and nor-

mal, denoted respectively by ~τh and ~νh, approximating ~τ and ~ν respectively, and on each

σj we approximate the tangential velocity and the normal velocity, denoted respectively

by ψh and vh, approximating ψ and v respectively, which take the form

~τh :=
~xhρ
|~xhρ |

, ~νh := (~τh)⊥, ψh := 〈~xht , ~τh〉, vh := 〈~xht , ~νh〉, on σj , j = 1, . . . , J.

We are now in a position to introduce the semi-discrete finite element form of (3.4.2a)–

(3.4.2b). Find ~xh : [0, 1]× [0, T ]→ R2 and wh : [0, 1]× [0, T ]→ R such that ~xh(·, t) ∈ [Sh]2

and wh(·, t)− wb ∈ Sh0 , for t ∈ [0, T ], and(
|~xhρ |2

[
α~xht + (1− α)〈~xht , ~νh〉~νh

]
, ~ξ h

)h
+
(
~xhρ ,

~ξ hρ

)
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=
(
|~xhρ |2 f(wh)~νh, ~ξ h

)h
+
[
〈~xhρ ,∇F (~xh)〉〈~ξ h,∇F (~xh)〉

]1

0
, ∀ ~ξ h ∈ [Sh]2, (3.4.5a)(

(|~xhρ |wh)t, η
h
)h

+ d

(
whρ
|~xhρ |

, ηhρ

)
+
(
ψhwh, ηhρ

)h
=
(
|~xhρ | g(vh, wh), ηh

)h
, ∀ ηh ∈ Sh0 , (3.4.5b)

as well as the semi-discrete equivalent of (3.1.2c)

F (~xh(ρ, t))) = 0, for ρ ∈ {0, 1}, t ∈ [0, T ]. (3.4.5c)

Similar to Model M1, a consequence of (3.4.5c) is that, in view of (3.4.4g), we have

|∇F (~xh(ρ, t))| = 1, for ρ ∈ {0, 1}, t ∈ [0, T ] (3.4.6)

and, by taking the time derivative of (3.4.5c), we have

〈~xht (ρ, t),∇F (~xh(ρ, t))〉 = 0, for ρ ∈ {0, 1}, t ∈ [0, T ] (3.4.7)

which is the semi-discrete equivalent of (3.4.3).

Remark 3.22. Standard ODE theory implies that there exists a unique solution (~xh, wh)

of (3.4.5a)–(3.4.5b) on some time interval [0, Th], Th > 0, [42, 97].

3.4.1 H1 error bounds for Model M2

In this section we will prove the H1 error bounds for Model M2. We look to prove the

following theorem.

Theorem 3.23. blah

Let ~xh(·, 0) = Ih~x 0(·) ∈ [Sh]2 and wh(·, 0) = Ihw0(·) ∈ Sh. There exists h? > 0 such

that for all h ∈ (0, h?] the semi-discrete problem (3.4.5a)–(3.4.5c) has the following error

bounds

sup
t∈[0,T ]

[
|~x− ~xh|21 + |w − wh|20

]
+

∫ T

0

[
|~xt − ~xht |20 + |w − wh|20

]
dt ≤ C h2, (3.4.8)

for some C > 0 independent of h.

This is work presented in [110], but here we use more detail, if necessary, for the

calculations. The proof of this theorem combines some of the techniques used in [6] and

an extension of the techniques used in [42], as well as ideas from [40, 97]. Before we
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begin with the proof of Theorem 3.23 we introduce some notation and the parameter that

underpins the proof. We define

~x− ~xh = (~x− Ih~x) + (Ih~x− ~xh) =: (I − Ih)~x+ ~θh,

w − wh = (w − Ihw) + (Ihw − wh) =: (I − Ih)w + ζh,

and we adapt arguments presented in [40] to define

T ?h := sup

{
t ∈ [0, T ] : (~xh, wh) solves (3.4.5a), (3.4.5c) and (3.4.5b),

m

2
≤ |~xhρ | ≤ 2M in [0, 1]× [0, t],

‖wh‖C([0,t];L∞(I)) ≤ 2Cw‖w‖C([0,T ];H1(I)), and

sup
s∈[0,t]

e−γs
[
|~θh|21 + |ζh|20

]
+

∫ t

0
e−γs

[
|~θht |20 + |ζh|21

]
ds < 2C1h

2

}
.

Moreover, we set

eγT (h?)
1
2 ≤ min

{
1

2C1
, β

}
and γ ≥ max

{
1,

32C2

m2α

}
. (3.4.9)

In order to prove Theorem 3.23 we prove (3.4.12a)–(3.4.12c) on [0, T ?h ], for C independent

of T ?h , thus enabling us to show that T ?h = T and hence proving the theorem. One can see

this argument as a continuous version of an inductive proof. In order to do this we need to

make sure the parameters are chosen carefully so that there are no hidden relations. First

it is assumed that h? and β can be chosen appropriately small independently of T ?h , for the

bound in (3.4.9) and (3.4.102), which puts a bound on h. We first define C2 independently

of T ?h , h, β, h? and γ, as a constant that depends on bounds on the true solutions ~x and w

and the function F , inverse estimates and interpolation results, and T . We use C2 to find

the bound on γ in (3.4.9) which is independent T ?h , h and h?. In a similar way to C2, we

define C3 as a constant that is independent T ?h , h, β and γ. We use C3 to find a bound on

ω independent of T ?h , h, β and γ, which enables us to combine the results in Lemmas 3.24

and 3.25. In a similar way to the proof of Theorem 3.13, we find C1 independent of T ?h , h

and β. Finally, in order to prove that T = T ?h , we choose β appropriately independently

of T ?h and h.

The main part of the proof of Theorem 3.23 is split into the following two lemmas:

Lemma 3.24. blah

For t ∈ [0, T ?h ), we have

1

4
e−γt |~θh|21 +

m2α

16

∫ t

0
e−γs |~θht |20 ds

≤ C2

∫ t

0
e−γs

[
h2 + |ζh|20 + |~θh|21 + h−1|~θh|40,∞

]
ds. (3.4.10)
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Lemma 3.25. blah

For h ∈ (0, h?] and t ∈ [0, T ?h ), we have

m

4
e−γt |ζh|20 +

1

4M

∫ t

0
e−γs |ζh|21 ds ≤ C3

∫ t

0
e−γs

[
h2 + |~θht |20 + |ζh|20 + |~θh|21

]
ds. (3.4.11)

Before proving Lemmas 3.24 and 3.25 and subsequently Theorem 3.23 we note some

useful results. By the definition of T ?h we have the following bounds

m

2
≤ |~xhρ | ≤ 2M in [0, 1]× [0, T ?h ), (3.4.12a)

‖wh‖C([0,T ?h );L∞(I)) ≤ 2Cw‖w‖C([0,T ];H1(I)), (3.4.12b)

sup
s∈[0,T ?h )

e−γs
[
|~θh|21 + |ζh|20

]
+

∫ T ?h

0
e−γs

[
|~θht |20 + |ζh|21

]
ds < 2C1h

2. (3.4.12c)

Using (3.1.5b) and (3.4.4a), we have

|~x− ~xh|1 ≤ |(I − Ih)~x|1 + |~θh|1

≤ C h |~x|2 + |~θh|1 ≤ C h ‖~x‖W 0,∞(0,T ;[H2(I)]2) + |~θh|1 ≤ C
[
h+ |~θh|1

]
, (3.4.13)

as well as

|~xt − ~xht |0 ≤ |(I − Ih)~xt|0 + |~θht |0

≤ C h |~xt|1 + |~θht |0 ≤ C h ‖~x‖W 1,∞(0,T ;[H1(I)]2) + |~θht |0 ≤ C
[
h+ |~θht |0

]
. (3.4.14)

Using (3.1.6a), (3.4.4a), (3.1.5a) and (3.1.4a), we have

|~xht |s ≤ |Ih~xt|s + |~θht |s

≤ ‖~x‖W 1,∞(0,T ;[Hs(I)]2) + C h−s |~θht |0 ≤ C
[
1 + h−s|~θht |0

]
, for s = 0, 1. (3.4.15)

Using (3.1.5b) and (3.4.4b), we have

|w − wh|0 ≤ |(I − Ih)w|0 + |ζh|0

≤ C h |w|1 + |ζh|0 ≤ C h ‖w‖C([0,T ];H1(I)) + |ζh|0 ≤ C
[
h+ |ζh|0

]
. (3.4.16)

Using (3.1.6a), (3.4.4a), (3.1.5a) and (3.1.4a), we have

|wh|1 ≤ |Ihw|1 + |ζh|1

≤ ‖w‖C([0,T ];H1(I)) + C h−1 |ζh|0 ≤ C h−1
[
h+ |ζh|0

]
. (3.4.17)

Using (3.4.4e), (3.4.12a) and (3.4.13), we have∣∣∣∣ 1

|~xρ|
− 1

|~xhρ |

∣∣∣∣
0

≤

∣∣∣∣∣ |~xρ| − |~xhρ ||~xρ| |~xhρ |

∣∣∣∣∣
0

≤ 4

m2
|~x− ~xh|1 ≤ C

[
h+ |~θh|1

]
. (3.4.18)
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Using (3.4.4e) and (3.4.13), we have

|~τ − ~τh|0 ≤

∣∣∣∣∣~xhρ |~xhρ | − |~xρ||~xρ| |~xhρ |

∣∣∣∣∣
0

+

∣∣∣∣ 1

|~xρ|
(~xρ − ~xhρ)

∣∣∣∣
0

≤ 2

m
|~x− ~xh|1 ≤ C

[
h+ |~θh|1

]
and hence is can be seen that

|~τ − ~τh|0 + |~ν − ~νh|0 ≤ C
[
h+ |~θh|1

]
. (3.4.19)

Using (3.4.19), (3.4.14), (3.1.11) and (3.4.4a), we have

|ψ − ψh|0 = |〈~xt, ~τ〉 − 〈~xht , ~τh〉|0

≤ |〈~xt, ~τ − ~τh〉|0 + |〈~xt − ~xht , ~τh〉|0

≤ |~xt|0,∞|~τ − ~τh|0 + |~xt − ~xht |0

≤ C ‖~x‖W 1,∞(0,T ;[H1(I)]2)

[
h+ |~θh|1

]
+ C

[
h+ |~θht |0

]
≤ C

[
h+ |~θht |0 + |~θh|1

]
and hence it can be seen that

|ψ − ψh|0 + |v − vh|0 ≤ C
[
h+ |~θht |0 + |~θh|1

]
. (3.4.20)

Proof of Lemma 3.24: Taking ~ξ = ~ξh and subtracting (3.4.5a) from (3.4.2a) we have[(
|~xρ|2 [α~xt + (1− α)〈~xt, ~ν〉~ν] , ~ξh

)
−
(
|~xhρ |2

[
α~xht + (1− α)〈~xht , ~νh〉~νh

]
, ~ξh

)h]
+
[(
~xρ, ~ξ

h
ρ

)
−
(
~xhρ ,

~ξhρ

)]
=

[(
|~xρ|2 f(w)~ν, ~ξh

)
−
(
|~xhρ |2 f(wh)~νh, ~ξh

)h]
+
[
〈~xρ,∇F (~x)〉〈~ξ,∇F (~x)〉 − 〈~xhρ ,∇F (~xh)〉〈~ξh,∇F (~xh)〉

]1

0
.

Noting (3.3.20), which states that (
~xρ − Ih~xρ, ~ξhρ

)
= 0,

by setting ξh = ~θht , we have(
|~xhρ |2

[
α ~θht + (1− α)〈~θht , ~νh〉~νh

]
, ~θht

)h
+
(
~θhρ,t,

~θht

)
=

[(
|~xhρ |2

[
α Ih~xt + (1− α)〈Ih~xt, ~νh〉~νh

]
, ~θht

)h
−
(
|~xρ|2 [α~xt + (1− α)〈~xt, ~ν〉~ν] , ~θht

)]
+

[(
|~xρ|2 f(w)~ν, ~θht

)
−
(
|~xhρ |2 f(wh)~νh, ~θht

)h]
+
[
〈~xρ,∇F (~x)〉〈~θht ,∇F (~x)〉 − 〈~xhρ ,∇F (~xh)〉〈~θht ,∇F (~xh)〉

]1

0
=:

3∑
i=1

Ti. (3.4.21)
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It is easy to see that, using (3.4.12a) and (3.1.6a), we have

(
|~xhρ |2

[
α ~θht + (1− α)〈~θht , ~νh〉~νh

]
, ~θht

)h
+
(
~θhρ,t,

~θht

)
≥ m2

4

[
α ‖~θht ‖2h + (1− α)‖〈~θht , ~νh〉‖2h

]
+

1

2

d

dt
|~θh|21 ≥

m2α

4
|~θht |20 +

1

2

d

dt
|~θh|21. (3.4.22)

We now proceed to bound T1, T2 and T3 in (3.4.21), beginning with T1.

T1 =
(
|~xhρ |2

[
α Ih~xt + (1− α)〈Ih~xt, ~νh〉~νh

]
, ~θht

)h
−
(
|~xρ|2 [α~xt + (1− α)〈~xt, ~ν〉~ν] , ~θht

)
=

[([
|~xhρ |2 − |~xρ|2

]
[α~xt + (1− α)〈~xt, ~ν〉~ν] , ~θht

)
+ (1− α)

(
|~xhρ |2

[
〈~xt, ~νh − ~ν〉~ν + 〈~xt, ~νh〉

(
~νh − ~ν

)]
, ~θht

)]
+

[(
|~xhρ |2

[
α Ih~xt + (1− α)〈Ih~xt, ~νh〉~νh

]
, ~θht

)h
−
(
|~xhρ |2

[
α Ih~xt + (1− α)〈Ih~xt, ~νh〉~νh

]
, ~θht

)]
+
(
|~xhρ |2

[
α (Ih − I)~xt + (1− α)〈(Ih − I)~xt, ~ν

h〉~νh
]
, ~θht

)
=:

3∑
i=1

T1,i. (3.4.23)

Using (3.4.4a), (3.4.4e), (3.4.12a), (3.4.13), (3.1.11) and (3.4.19), we see that

T1,1 =
([
|~xhρ |2 − |~xρ|2

]
[α~xt + (1− α)〈~xt, ~ν〉~ν] , ~θht

)
+ (1− α)

(
|~xhρ |2

[
〈~xt, ~νh − ~ν〉~ν + 〈~xt, ~νh〉

(
~νh − ~ν

)]
, ~θht

)
≤ |~xt|0,∞

[∣∣∣|~xρ|+ |~xhρ |∣∣∣
0,∞
|~x− ~xh|1 + 8M2(1− α) |~ν − ~νh|0

]
|~θht |0

≤ C ‖~x‖W 1,∞(0,T ;[H1(I)]2)

[
h+ |~θh|1

]
≤ C

[
h+ |~θh|1

]
|~θht |0. (3.4.24)

Using (3.1.6b), (3.1.5d), (3.4.12a) and (3.4.4a), we see that

T1,2 =
(
|~xhρ |2

[
α Ih~xt + (1− α)〈Ih~xt, ~νh〉~νh

]
, ~θht

)h
−
(
|~xhρ |2

[
α Ih~xt + (1− α)〈Ih~xt, ~νh〉~νh

]
, ~θht

)
≤ C h

J∑
j=1

∣∣∣Ihj ~xt∣∣∣
1,σj

∣∣∣|~xhρ |2 [~θht + 〈~θht , ~νh〉~νh
]∣∣∣

0,σj

≤ C h |~xt|1 |~θht |0 ≤ C h ‖~x‖W 1,∞(0,T ;[H1(I)]2) |~θht |0 ≤ C h |~θht |0, (3.4.25)

where |η|1,σj is the seminorm of the space H1(σj). Using (3.4.12a), (3.1.5b) and (3.4.4a),

we see that

T1,3 =
(
|~xhρ |2

[
α (Ih − I)~xt + (1− α)〈(Ih − I)~xt, ~ν

h〉~νh
]
, ~θht

)
≤ C h |~xt|1 |~θht |0 ≤ C h ‖~x‖W 1,∞(0,T ;[H1(I)]2) |~θht |0 ≤ C h |~θht |0. (3.4.26)
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Combining (3.4.23)–(3.4.26) and using (3.1.8) we have

|T1| ≤
m2α

24
|~θht |20 + C

[
h2 + |~θh|21

]
. (3.4.27)

We now bound T2.

T2 =
(
|~xρ|2 f(w)~ν, ~θht

)
−
(
|~xhρ |2 f(wh)~νh, ~θht

)h
=
([
|~xρ|2 − |~xhρ |2

]
f(w)~ν + |~xhρ |2 f(w)

[
~ν − ~νh

]
, ~θht

)
+
(
|~xhρ |2

[
f(w)− f(wh)

]
~νh, ~θht

)
+

[(
|~xhρ |2

[
(I − Ih)f(wh)

]
~νh, ~θht

)
+
(
|~xhρ |2

[
(Ih − I)f(wh)

]
~νh, ~θht

)h]
+

[(
|~xhρ |2 Ih(f(wh))~νh, ~θht

)
−
(
|~xhρ |2 Ih(f(wh))~νh, ~θht

)h]
=:

4∑
i=1

T2,i. (3.4.28)

Using (3.4.4e), (3.4.12a), (3.4.13), (3.4.4c), (3.4.19) and (3.4.16), we see that

T2,1 =
([
|~xρ|2 − |~xhρ |2

]
f(w)~ν + |~xhρ |2 f(w)

[
~ν − ~νh

]
, ~θht

)
≤ |f |0,∞

[∣∣∣|~xρ|+ |~xhρ |∣∣∣
0,∞
|~x− ~xh|1 + 4M2|~ν − ~νh|0

]
|~θht |0

≤ C
[
h+ |~θh|1

]
|~θht |0, (3.4.29)

and

T2,2 =
(
|~xhρ |2

[
f(w)− f(wh)

]
~νh, ~θht

)
≤ 4M2 Lf |w − wh|0 |~θht |0 ≤ C

[
h+ |ζh|0

]
|~θht |0. (3.4.30)

Using (3.4.12a), (3.1.6a), (3.1.6b), (3.1.5b), (3.4.12b), (3.4.4c), and (3.4.17), we see that

T2,3 =
(
|~xhρ |2

[
(I − Ih)f(wh)

]
~νh, ~θht

)
+
(
|~xhρ |2

[
(Ih − I)f(wh)

]
~νh, ~θht

)h
≤ C h |f(wh)|1 |~θht |0 ≤ C h |f ′(wh)|0,∞ |wh|1 |~θht |0 ≤ C

[
h+ |ζh|0

]
|~θht |0. (3.4.31)

and

T2,4 =
(
|~xhρ |2 Ih(f(wh))~νh, ~θht

)
−
(
|~xhρ |2 Ih(f(wh))~νh, ~θht

)h
≤ C h

J∑
j=1

∣∣∣Ih(f(wh))
∣∣∣
1,σj

∣∣∣|~xhρ |2〈~θht , ~νh〉∣∣∣
0,σj

≤ C h |f(wh)|1 |~θht |0 ≤ C
[
h+ |ζh|0

]
|~θht |0. (3.4.32)

Combining (3.4.28)–(3.4.32) and using (3.1.8), we have

|T2| ≤
m2α

24
|~θht |20 + C

[
h2 + |ζh|20 + |~θh|21

]
. (3.4.33)

We now bound T3, to this end we set

b := 〈~xρ,∇F (~x)〉, bh := 〈~xhρ ,∇F (~xh)〉
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and thus, using (3.4.3), (3.4.7) and (3.1.7), we see that

T3 =
[
b 〈~θht ,∇F (~x)〉 − bh 〈~θht ,∇F (~xh)〉

]1

0

=
[
b 〈~θht ,∇F (~x)−∇F (~xh)〉

]1

0
+
[
(b− bh)〈~xt,∇F (~xh)−∇F (~x)〉

]1

0

=: T3,1 + T3,2. (3.4.34)

Using (3.4.4a), (3.4.4e)–(3.4.4g), and noting (3.1.7), for ρ ∈ {0, 1} and t ∈ [0, T ], we obtain

|b(ρ, t)| ≤M, (3.4.35a)

|bt(ρ, t)| ≤ |~xρ,t(ρ, t)|+M |D2F (~x(ρ, t)) ~xt(ρ, t)| ≤ C ‖~x‖W 1,∞(0,T ;[H1(I)]2) ≤ C, (3.4.35b)

as well as

|∇F (~x(ρ, t))−∇F (~xh(ρ, t))| ≤ L∇F |~x(ρ, t)− ~xh(ρ, t)| ≤ C |~θh(·, t)|0,∞. (3.4.35c)

We now bound T3,1. Using (3.1.13), (3.4.35a), (3.4.35b), (3.4.4f), (3.1.5a) and (3.1.4a), we

see that

T3,1 =
[
b 〈~θht ,∇F (~x)−∇F (~xh)〉

]1

0

=

[
b 〈~θht , D2F (~x) ~θh〉+ b

∫ 1

0
〈~θht , (D2F (s~x+ (1− s)~xh)−D2F (~x))~θh〉 ds

]1

0

=

[
1

2

d

dt

(
b 〈~θh, D2F (~x) ~θh〉

)
− 1

2
bt 〈~θh, D2F (~x) ~θh〉 − 1

2
b 〈~θh, d

dt
(D2F (~x)) ~θh〉

+ b

∫ 1

0
〈~θht , (D2F (s~x+ (1− s)~xh)−D2F (~x))~θh〉 ds

]1

0

≤ 1

2

d

dt

[
b 〈~θh, D2F (~x) ~θh〉

]1

0
+ C|~θh|20,∞

[
1 + |~θht |0,∞

]
≤ 1

2

d

dt

[
b 〈~θh, D2F (~x) ~θh〉

]1

0
+ C |~θh|20,∞

[
1 + h−

1
2 |~θht |0

]
. (3.4.36)

Denoting ~x(0, t) := ~x0(t), taking ~ξ = (1−ρ)∇F (~x0) in (3.4.2a) and using (3.4.4g), we have(
|~xρ|2 [α~xt + (1− α)〈~xt, ~ν〉~ν] , (1− ρ)∇F (~x0)

)
− (~xρ,∇F (~x0))

=
(
|~xρ|2 f(w)~ν, (1− ρ)∇F (~x0)

)
+ [(1− ρ)〈~xρ,∇F (~x)〉〈∇F (~x0),∇F (~x)〉]10

=
(
|~xρ|2 f(w)~ν, (1− ρ)∇F (~x0)

)
− b(0, t),

and hence

b(0, t) = (~xρ,∇F (~x0)) +
(
|~xρ|2 f(w)~ν, (1− ρ)∇F (~x0)

)
−
(
|~xρ|2 [α~xt + (1− α)〈~xt, ~ν〉~ν] , (1− ρ)∇F (~x0)

)
. (3.4.37)

Similarly, denoting ~xh(0, t) := ~xh0(t) and taking ~ξh = (1 − ρ)∇F (~xh0) in (3.4.5a), using

(3.4.6), we see that

bh(0, t) =
(
~xhρ ,∇F (~xh0)

)
+
(
|~xhρ |2 f(wh)~νh, (1− ρ)∇F (~xh0)

)h
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−
(
|~xhρ |2

[
α~xht + (1− α)〈~xht , ~νh〉~νh

]
, (1− ρ)∇F (~xh0)

)h
. (3.4.38)

Hence, we have

b(0, t)− bh(0, t) =
[
(~xρ,∇F (~x0))−

(
~xhρ ,∇F (~xh0)

)]
+

[(
|~xρ|2 f(w)~ν, (1− ρ)∇F (~x0)

)
−
(
|~xhρ |2 f(wh)~νh, (1− ρ)∇F (~xh0)

)h]
+

[(
|~xhρ |2

[
α~xht + (1− α)〈~xht , ~νh〉~νh

]
, (1− ρ)∇F (~xh0)

)h
−
(
|~xρ|2 [α~xt + (1− α)〈~xt, ~ν〉~ν] , (1− ρ)∇F (~x0)

)]
=:

3∑
i=1

Bi. (3.4.39)

Starting with B1, using (3.3.20), (3.4.4a), (3.4.35c) and (3.4.6), we have

B1 = (~xρ,∇F (~x0))−
(
~xhρ ,∇F (~xh0)

)
=
(
~xρ,∇F (~x0)−∇F (~xh0)

)
+
(
~θhρ ,∇F (~xh0)

)
≤ C |~x|1 |~θh|0,∞ + |~θh|1

≤ C ‖~x‖W 0,∞(0,T ;[H1(I)]2) |~θh|0,∞ + |~θh|1 ≤ C
[
|~θh|0,∞ + |~θh|1

]
. (3.4.40)

We now bound B2.

B2 =
(
|~xρ|2 f(w)~ν, (1− ρ)∇F (~x0)

)
−
(
|~xhρ |2 f(wh)~νh, (1− ρ)∇F (~xh0)

)h
=
(
|~xρ|2 f(w)~ν, (1− ρ)

[
∇F (~x0)−∇F (~xh0)

])
+
(
|~xhρ |2

[
f(w)− f(wh)

]
~νh, (1− ρ)∇F (~xh0)

)
+
([
|~xρ|2 − |~xhρ |2

]
f(w)~ν + |~xhρ |2 f(w)

[
~ν − ~νh

]
, (1− ρ)∇F (~xh0)

)
+

[(
|~xhρ |2

[
(I − Ih)f(wh)

]
~νh, (1− ρ)∇F (~xh0)

)
+
(
|~xhρ |2

[
(Ih − I)f(wh)

]
~νh, (1− ρ)∇F (~xh0)

)h]
+

[(
|~xhρ |2 Ih(f(wh))~νh, (1− ρ)∇F (~xh0)

)
−
(
|~xhρ |2 Ih(f(wh))~νh, (1− ρ)∇F (~xh0)

)h]
=:

5∑
i=1

B2,i. (3.4.41)

Using (3.4.4e), (3.4.4c), (3.4.4a) and (3.4.35c), we have

B2,1 =
(
|~xρ|2 f(w)~ν, (1− ρ)

[
∇F (~x0)−∇F (~xh0)

])
≤M2|f(w)|0|1− ρ|0

∣∣∣∇F (~x0)−∇F (~xh0)
∣∣∣ ≤ C |~θh|0,∞. (3.4.42)

Using similar arguments to prove (3.4.29)–(3.4.32), and using (3.4.6), we have

B2,2 =
(
|~xhρ |2

[
f(w)− f(wh)

]
~νh, (1− ρ)∇F (~xh0)

)
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≤ C |f(w)− f(wh)|0 |1− ρ|0 ≤ C
[
h+ |ζh|0

]
, (3.4.43)

B2,3 =
([
|~xρ|2 − |~xhρ |2

]
f(w)~ν + |~xhρ |2 f(w)

[
~ν − ~νh

]
, (1− ρ)∇F (~xh0)

)
≤ C

[
|~xρ − ~xhρ |0 + |~ν − ~νh|0

]
|1− ρ|0 ≤ C

[
h+ |~θh|1

]
, (3.4.44)

B2,4 =
(
|~xhρ |2

[
(I − Ih)f(wh)

]
~νh, (1− ρ)∇F (~xh0)

)
+
(
|~xhρ |2

[
(Ih − I)f(wh)

]
~νh, (1− ρ)∇F (~xh0)

)h
≤ C |(I − Ih)f(wh)|0 |1− ρ|0 ≤ C

[
h+ |ζh|0

]
, (3.4.45)

B2,5 =
(
|~xhρ |2 Ih(f(wh))~νh, (1− ρ)∇F (~xh0)

)
−
(
|~xhρ |2 Ih(f(wh))~νh, (1− ρ)∇F (~xh0)

)h
≤ C h |f(wh)|1 |1− ρ|0 ≤ C

[
h+ |ζh|0

]
. (3.4.46)

Now we bound B3.

B3 =
(
|~xhρ |2

[
α~xht + (1− α)〈~xht , ~νh〉~νh

]
, (1− ρ)∇F (~xh0)

)h
−
(
|~xρ|2

[
α~xt + (1− α)〈~xt, ~ν〉~ν

]
, (1− ρ)∇F (~x0)

)
=
(
|~xρ|2 [α~xt + (1− α)〈~xt, ~ν〉~ν] , (1− ρ)

[
∇F (~xh0)−∇F (~x0)

])
+
(
|~xhρ |2

[
α
(
~xht − Ih~xt

)
+ (1− α)〈~xht − Ih~xt, ~νh〉~νh

]
, (1− ρ)∇F (~xh0)

)h
+

[([
|~xhρ |2 − |~xρ|2

]
[α~xt + (1− α)〈~xt, ~ν〉~ν] , (1− ρ)∇F (~xh0)

)
+ (1− α)

(
|~xhρ |2

[
〈xt, ~νh − ~ν〉~ν + 〈xt, ~νh〉

(
~νh − ~ν

)]
, (1− ρ)∇F (~xh0)

)]
+
(
|~xhρ |2

[
α (Ih − I)~xt + (1− α)〈(Ih − I)~xt, ~ν

h〉~νh
]
, (1− ρ)∇F (~xh0)

)
+

[(
|~xhρ |2

[
α Ih~xt + (1− α)〈Ih~xt, ~νh〉~νh

]
, (1− ρ)∇F (~xh0)

)h
−
(
|~xhρ |2

[
α Ih~xt + (1− α)〈Ih~xt, ~νh〉~νh

]
, (1− ρ)∇F (~xh0)

)]
=:

5∑
i=1

B3,i. (3.4.47)

Using (3.4.4e), (3.4.4a) and (3.4.35c), we have

B3,1 =
(
|~xρ|2 [α~xt + (1− α)〈~xt, ~ν〉~ν] , (1− ρ)

[
∇F (~xh0)−∇F (~x0)

])
≤M2 |~xt|0 |1− ρ|0

∣∣∣∇F (~xh0)−∇F (~x0)
∣∣∣ ≤ C |~θh|0,∞. (3.4.48)

Using (3.4.12a), (3.4.6) and (3.1.6a), we have

B3,2 =
(
|~xhρ |2

[
α
[
~xht − Ih~xt

]
+ (1− α)〈~xht − Ih~xt, ~νh〉~νh

]
, (1− ρ)∇F (~xh0)

)h
≤ C ‖~θht ‖h ‖1− ρ‖h ≤ C |~θht |0. (3.4.49)
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Using similar arguments to prove (3.4.24)–(3.4.26), and using (3.4.6), we have

B3,3 =
([
|~xhρ |2 − |~xρ|2

]
[α~xt + (1− α)〈~xt, ~ν〉~ν] , (1− ρ)∇F (~xh0)

)
+ (1− α)

(
|~xhρ |2

[
〈xt, ~νh − ~ν〉~ν + 〈xt, ~νh〉

(
~νh − ~ν

)]
, (1− ρ)∇F (~xh0)

)
≤ C

[
|~xρ − ~xhρ |0 + |~ν − ~νh|0

]
|1− ρ|0 ≤ C

[
h+ |~θh|1

]
, (3.4.50)

B3,4 =
(
|~xhρ |2

[
α (Ih − I)~xt + (1− α)〈(Ih − I)~xt, ~ν

h〉~νh
]
, (1− ρ)∇F (~xh0)

)
≤ C |(I − Ih)~xt|0 |1− ρ|0 ≤ C h, (3.4.51)

B3,5 =
(
|~xhρ |2

[
α Ih~xt + (1− α)〈Ih~xt, ~νh〉~νh

]
, (1− ρ)∇F (~xh0)

)h
−
(
|~xhρ |2

[
α Ih~xt + (1− α)〈Ih~xt, ~νh〉~νh

]
, (1− ρ)∇F (~xh0)

)
≤ C h |~xt|1 |1− ρ|0 ≤ C h. (3.4.52)

Combining (3.4.39) with (3.4.40)–(3.4.52), for t ∈ [0, T ?h ), we have

|b(0, t)− bh(0, t)| ≤ C
[
h+ |~θh|0,∞ + |~θht |0 + |ζh|0 + |~θh|1

]
.

We remark that this bound does not depend on ρ and so also holds for ρ = 1 and hence,

for t ∈ [0, T ?h ), we have

|b(0, t)− bh(0, t)|+ |b(1, t)− bh(1, t)| ≤ C
[
h+ |~θh|0,∞ + |~θht |0 + |ζh|0 + |~θh|1

]
. (3.4.53)

Hence, using (3.1.11), (3.4.35c), (3.4.53) and (3.4.4a), we have

T3,2 =
[
(b− bh)〈~xt,∇F (~x)−∇F (~xh)〉

]1

0

≤ C ‖w‖W 1,∞(0,T ;[H1(I)]2) |~θh|0,∞
[
|b(0, t)− bh(0, t)|+ |b(1, t)− bh(1, t)|

]
≤ C |~θh|0,∞

[
h+ |~θh|0,∞ + |~θht |0 + |ζh|0 + |~θh|1

]
. (3.4.54)

Hence, combining (3.4.34) with (3.4.36) and (3.4.54), and using (3.1.8), we have

T3 ≤
1

2

d

dt

[
〈~xρ,∇F (~x)〉〈~θh, D2F (~x) ~θh〉

]1

0
+
m2α

24
|~θht |20

+ C
[
h2 + |~θh|20,∞ + |ζh|20 + |~θh|21 + h−1 |~θh|40,∞

]
. (3.4.55)

Combining (3.4.22), (3.4.27), (3.4.33) and (3.4.55), we have

1

2

d

dt
|~θh|21 +

m2α

8
|~θht |20 ≤

1

2

d

dt

[
〈~xρ,∇F (~x)〉〈~θh, D2F (~x) ~θh〉

]1

0

+ C
[
h2 + |~θh|20,∞ + |ζh|20 + |~θh|21 + h−1 |~θh|40,∞

]
. (3.4.56)

Multiplying (3.4.56) by e−γs , for γ ≥ 1 and integrating with respect to s ∈ (0, t) with

t ≤ T ?h , and noting |~θh(·, 0)| = 0, we have

1

2
e−γt |~θh|21 +

γ

2

∫ t

0
e−γs |~θh|21 ds+

m2α

8

∫ t

0
e−γs |~θht |20 ds
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≤ 1

2
e−γt

[
〈~xρ,∇F (~x)〉〈~θh, D2F (~x) ~θh〉

]1

0
+
γ

2

∫ t

0
e−γs

[
〈~xρ,∇F (~x)〉〈~θh, D2F (~x) ~θh〉

]1

0
ds

+ C

∫ t

0
e−γs

[
h2 + |~θh|20,∞ + |ζh|20 + |~θh|21 + h−1 |~θh|40,∞

]
ds

=: (I1 + I2) + C

∫ t

0
e−γs

[
h2 + |~θh|20,∞ + |ζh|20 + |~θh|21 + h−1 |~θh|40,∞

]
ds. (3.4.57)

Using (3.4.35a), (3.4.4f) and (3.1.9b), we see that

I1 + I2 =
1

2
e−γt

[
〈~xρ,∇F (~x)〉〈~θh, D2F (~x) ~θh〉

]1

0

+
γ

2

∫ t

0
e−γs

[
〈~xρ,∇F (~x)〉〈~θh, D2F (~x) ~θh〉

]1

0
ds

≤M e−γt |D2F |0,∞ |~θh|20,∞ +M γ

∫ t

0
e−γs |D2F |0,∞|~θh|20,∞ ds

≤ 1

4
e−γt |~θh|21 + Ce−γt |~θh|20 +

γ

4

∫ t

0
e−γs |~θh|21 ds+ C γ

∫ t

0
e−γs |~θh|20 ds. (3.4.58)

Substituting (3.4.58) into (3.4.57), and using (3.1.9b), gives

1

4
e−γt |~θh|21 +

γ

4

∫ t

0
e−γs |~θh|21 ds+

m2α

8

∫ t

0
e−γs |~θht |20 ds

≤ Ce−γt |~θh|20 +
Cγ

2

∫ t

0
e−γs |~θh|20 ds

+ C2

∫ t

0
e−γs

[
h2 + |ζh|20 + |~θh|21 + h−1 |~θh|40,∞

]
ds. (3.4.59)

Since |~θh(·, 0)| = 0, we have

e−γt |~θh(·, t)|20 =

∫ t

0

d

ds

(
e−γs |~θh|20

)
ds

≤ −γ
∫ t

0
e−γs |~θh|20 ds+ 2

∫ t

0
e−γs |~θh|0 |~θht |0 ds

≤ −γ
2

∫ t

0
e−γs |~θh|20 ds+

2

γ

∫ t

0
e−γs |~θht |20 ds,

and hence the first two terms on the right hand side of (3.4.59) can be bounded as follows

Ce−γt |~θh(·, t)|20 +
Cγ

2

∫ t

0
e−γs |~θh|20 ds ≤

2C2

γ

∫ t

0
e−γs |~θht |20 ds. (3.4.60)

Combining (3.4.59) and (3.4.60), with γ chosen large enough such that γ ≥ max
{

1, 32C2
m2α

}
,

yields the desired result.

Proof of Lemma 3.25: In the proof of this lemma we follow the techniques used in [6].

We first start with a useful estimate specifically for the proof of this lemma. Using (3.4.9)

and (3.4.12c), for h ∈ (0, h?] and t ∈ [0, T ?h ), we have

|~θh|21 + |ζh|20 ≤ 2C1h
2eγt ≤ 2C1(h?)

1
2h

3
2 eγT ≤ h

3
2 , (3.4.61)



113

while (3.1.11), (3.4.4b) and (3.4.12b) yield

|ζh|0,∞ ≤ |Ihw|0,∞ + |wh|0,∞ ≤ C ‖w‖C([0,T ];H1(I)) ≤ C. (3.4.62)

Taking η = ηh and subtracting (3.4.5b) from (3.4.2b) we have[(
∂

∂t
(|~xρ|w) , ηh

)
−
(
∂

∂t

(
|~xhρ |wh

)
, ηh
)h]

+ d

[(
wρ
|~xρ|

, ηhρ

)
−

(
whρ
|~xhρ |

, ηhρ

)]

+

[(
ψw, ηhρ

)
−
(
ψhwh, ηhρ

)h]
=

[
(|~xρ| g(v, w), η)−

(
|~xhρ | g(vh, wh), ηh

)h]
.

Using the identity
d

dt
(fg) g =

1

2

d

dt
(fg2) +

1

2

df

dt
g2,

noting (3.3.20), setting ηh = ζh, we have

1

2

d

dt

(
|~xhρ | ζh, ζh

)h
+ d

(
1

|~xhρ |
ζhρ , ζ

h
ρ

)
= −1

2

(
|~xhρ |t ζh, ζh

)h
+

[((
|~xhρ | Ihw

)
t
, ζh
)h
−
(

(|~xρ|w)t , ζ
h
)]

+ d

(
wρ

[
1

|~xhρ |
− 1

|~xρ|

]
, ζhρ

)
+

[(
ψhwh, ζhρ

)h
−
(
ψw, ζhρ

)]

+

[(
|~xρ| g(v, w), ζh

)
−
(
|~xhρ | g(vh, wh), ζh

)h]
=:

8∑
i=4

Ti. (3.4.63)

Using (3.4.12a) we see that the left hand side of (3.4.63) is bounded below by

d

dt

(
|~xhρ | ζh, ζh

)h
+ d

(
1

|~xhρ |
ζhρ , ζ

h
ρ

)
≥ d

dt

(
|~xhρ | ζh, ζh

)h
+

d

2M
|ζh|21. (3.4.64)

Now we bound Ti, i = 4, . . . , 8. Noting that |~xhρ |t = 〈~xhρ,t, ~τh〉 and ζh ∈ Sh0 , using integra-

tion by parts we have

T4 = −1

2

(
|~xhρ |t ζh, ζh

)h
=

1

2

(
〈~xhρ,t, τ − ~τh〉 ζh, ζh

)
+

[
1

2

(
〈~xht , ~τρ〉 ζh, ζh

)
+
(
〈~xht , ~τ〉 ζh, ζhρ

)]
+

1

2

[(
〈~xhρ,t, ~τh〉 ζh, ζh

)
−
(
〈~xhρ,t, ~τh〉 ζh, ζh

)h]
=:

3∑
i=1

T4,i. (3.4.65)

Using (3.4.4a), (3.4.15), (3.4.19), (3.4.61) and (3.1.9a), we see that

T4,1 =
1

2

(
〈~xhρ,t, τ − ~τh〉 ζh, ζh

)
≤ 1

2
|ζh|20,∞ |~xht |1 |~τ − ~τh|0

≤ C ‖~x‖W 1,∞(0,T ;[H1(I)]2) |ζh|20,∞
[
1 + h−1|~θht |0

] [
h+ |~θh|1

]
≤ C h

3
4 |ζh|20,∞ + C h−

1
4 |ζh|0 ‖ζh‖1 |~θht |0 ≤ C h

3
4 |ζh|20,∞ + C h

1
2 ‖ζh‖1 |~θht |0. (3.4.66)



114

Using (3.4.4a) and (3.4.15), we have

T4,2 =
1

2

(
〈~xht , ~τρ〉 ζh, ζh

)
+
(
〈~xht , ~τ〉 ζh, ζhρ

)
≤
[

1

2
|~τ |1 |ζh|20,∞ + |ζh|0,∞ |ζh|1

]
|~xht |0

≤ C ‖~x‖W 0,∞(0,T ;[H2(I)]2)

[
1 + |~θht |0

] [
|ζh|20,∞ + |ζh|0,∞ |ζh|1

]
≤ C

[
1 + |~θht |0

] [
|ζh|20,∞ + |ζh|0,∞ |ζh|1

]
, (3.4.67)

while (3.1.6b), (3.4.62) and (3.4.15) yield

2T4,3 =
(
〈~xhρ,t, ~τh〉 ζh, ζh

)
−
(
〈~xhρ,t, ~τh〉 ζh, ζh

)h
≤ C h

J∑
j=1

|ζh|1,σj |〈~xhρ,t, ~τh〉 ζh|0,σj

≤ C h |ζh|0,∞ |~xht |1 |ζh|1 ≤ C
[
h+ |~θht |0

]
|ζh|1. (3.4.68)

Thus, noting (3.4.62), combining (3.4.65) with (3.4.66)–(3.4.68), and using (3.1.9b), we

have

|T4| ≤
d

16M
|ζh|21 + C

[
h2 + |~θht |20 + |ζh|20

]
. (3.4.69)

We prove two useful identities to be able to bound T5. Namely, noting |~xhρ | = 〈~xhρ , ~τ〉, we

have

〈~τh, ~τht 〉 =
1

2

d

dt
|~τh|2 = 0, (3.4.70a)

as well as

1

2
|~xhρ | |~τ − ~τh|2 =

1

2
|~xhρ |〈~τ − ~τh, ~τ − ~τh〉

= 〈~xhρ , ~τh〉
(

1− 〈~τ , ~τh〉
)

= 〈~xhρ − 〈~xhρ , ~τh〉~τ , ~τh〉 = 〈~τh − ~τ , ~xhρ〉. (3.4.70b)

Hence, using (3.4.70a)–(3.4.70b), as well as noting that |~xρ| = 〈~xρ, ~τ〉, we have(
w
(
|~xhρ | − |~xρ|

)
t
, ζh
)

=
(
w
(
〈~xhρ − ~xρ, ~τ〉

)
t
, ζh
)

+
(
w
(
〈~xhρ , ~τh − ~τ〉

)
t
, ζh
)

=
(
w 〈~xhρ − ~xρ, ~τt〉, ζh

)
+
(
w 〈(~xhρ − ~xρ)t, ~τ〉, ζh

)
+

1

2

(
w
(
|~xhρ | |~τ − ~τh|2

)
t
, ζh
)

=
(
w 〈~xhρ − ~xρ, ~τt〉, ζh

)
+
(
w 〈(~xhρ − ~xρ)t, ~τ〉, ζh

)
+

1

2

(
w |~xhρ |t |~τ − ~τh|2, ζh

)
+
(
w |~xhρ | 〈~τ − ~τh, ~τt − ~τht 〉, ζh

)
=
(
w 〈~xhρ − ~xρ, ~τt〉, ζh

)
+
(
w 〈(~xhρ − ~xρ)t, ~τ〉, ζh

)
+

1

2

(
w |~xhρ |t |~τ − ~τh|2, ζh

)
+
(
w |~xhρ | 〈~τ − ~τh, ~τt〉, ζh

)
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−
(
w |~xhρ | 〈~τ , ~τh〉, ζh

)
(3.4.71)

and hence

T5 =
((
|~xhρ | Ihw

)
t
, ζh
)h
−
(

(|~xρ|w)t , ζ
h
)

=
(
wt

[
|~xhρ | − |~xρ|

]
, ζh
)

+
(
w
(
|~xhρ | − |~xρ|

)
t
, ζh
)

+
[(
|~xhρ | (Ih − I)wt, ζ

h
)

+
(
|~xhρ |t (Ih − I)w, ζh

)]
+

[((
|~xhρ | Ihw

)
t
, ζh
)h
−
((
|~xhρ | Ihw

)
t
, ζh
)]

=
(
wt

[
|~xhρ | − |~xρ|

]
, ζh
)

+
[(
w 〈~xhρ − ~xρ, ~τt〉, ζh

)
+
(
w 〈(~xhρ − ~xρ)t, ~τ〉, ζh

)]
+

1

2

(
w |~xhρ |t |~τ − ~τh|2, ζh

)
+
(
w |~xhρ | 〈~τ − ~τh, ~τt〉, ζh

)
−
(
w |~xhρ | 〈~τ , ~τh〉, ζh

)
+
[(
|~xhρ | (Ih − I)wt, ζ

h
)

+
(
|~xhρ |t (Ih − I)w, ζh

)]
+

[((
|~xhρ | Ihw

)
t
, ζh
)h
−
((
|~xhρ | Ihw

)
t
, ζh
)]

=:

7∑
i=1

T5,i. (3.4.72)

Using (3.1.11), (3.4.4b) and (3.4.13), we have

T5,1 =
(
wt

[
|~xhρ | − |~xρ|

]
, ζh
)

≤ |wt|0,∞ |~x− ~xh|1 |ζh|0

≤ C ‖w‖W 1,∞(0,T ;H1(I))

[
h+ |~θh|1

]
|ζh|0 ≤ C

[
h+ |~θh|1

]
|ζh|0. (3.4.73)

Using integration by parts with (3.1.11), (3.4.4a), (3.4.4b), (3.4.14), (3.4.13), and noting

that ζh ∈ Sh0 , we have

T5,2 =
(
w 〈~xhρ − ~xρ, ~τt〉, ζh

)
+
(
w 〈(~xhρ − ~xρ)t, ~τ〉, ζh

)
=
(
w 〈~xhρ − ~xρ, ~τt〉, ζh

)
+
(
〈(~x− ~xh)t, (~τ w)ρ〉, ζh

)
+
(
w 〈(~x− ~xh)t, ~τ〉, ζhρ

)
≤ |w|0,∞ |~τt|0 |~x− ~xh|1 |ζh|0,∞ + |~xt − ~xht |0 |~τ w|1 |ζh|0,∞ + |w|0,∞ |~xt − ~xht |0 |ζh|1

≤ C~x ‖w‖C([0,T ];H1(I))

[
h+ |~θht |0 + |~θh|1

] [
|ζh|0,∞ + |ζh|1

]
≤ C

[
h+ |~θht |0 + |~θh|1

] [
|ζh|0,∞ + |ζh|1

]
, (3.4.74)

where C~x := 1 + ‖~x‖W 1,∞(0,T ;[H1(I)]2) + ‖~x‖W 0,∞(0,T ;[H2(I)]2). From (3.1.11), (3.4.4b),

(3.1.5a), (3.1.4a), (3.4.19), (3.4.15) and (3.4.61), we have that

T5,3 =
1

2

(
w |~xhρ | |~τ − ~τh|2, ζh

)
≤ 1

2
|w|0,∞ |~τ − ~τh|0,∞ |~xht |1 |~τ − ~τh|0 |ζh|0,∞

≤ C ‖w‖C([0,T ];H1(I))

[
h

1
2 + h−

1
2 |~θh|1

] [
1 + h−1|~θht |0

] [
h+ |~θh|1

]
|ζh|0,∞
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≤ C
[
h+ |~θht |0

]
|ζh|0,∞, (3.4.75)

while, with the addition of (3.4.12a),

T5,4 =
(
w |~xhρ | 〈~τ − ~τh, ~τt〉, ζh

)
≤ C |w|0,∞ |~τ − ~τh|0 |~τt|0 |ζh|0,∞

≤ C ‖w‖C([0,T ];H1(I)) ‖~x‖W 1,∞(0,T ;[H1(I)]2)

[
h+ |~θh|1

]
|ζh|0,∞

≤ C
[
h+ |~θh|1

]
|ζh|0,∞. (3.4.76)

Setting P h := I − ~τh ⊗ ~τh and noting

|~xhρ |~τht = ~xhρ,t − 〈~xhρ,t, ~τh〉~τh = P h~xhρ,t

yields

T5,5 = −
(
w |~xhρ | 〈~τ , ~τh〉, ζh

)
= −

(
w 〈~τ , P h~xhρ,t〉, ζh

)
=
(
w 〈~τ , P h~θhρ,t〉, ζh

)
−
(
w 〈~τ , P hIh~xρ,t〉, ζh

)
=: T5,5,1 + T5,5,2. (3.4.77)

By definition P h is constant each sub-interval σj , so, using integration by parts over each

sub-interval and noting that ζh ∈ Sh0 , we have

T5,5,1 =
(
w 〈~τ , P h~θhρ,t〉, ζh

)
=

J∑
j=1

∫
σj

w 〈~τ , P h~θhρ,t〉 ζh dρ

=

J∑
j=1

[
w 〈~τ , P h~θht 〉 ζh

]ρj
ρj−1

−
J∑
j=1

∫
σj

〈(w~τ ζh)ρ, P
h~θht 〉 dρ

= −
J−1∑
j=1

[
w(ρj , t) 〈~τ(ρj , t), (P

h
|σj+1

− P h|σj )
~θht (ρj , t)〉 ζh(ρj , t)

]
−
[(
〈(w~τ)ρ, P

h~θht 〉, ζh
)

+
(
w 〈~τ , P h~θht 〉, ζhρ

)]
=: T5,5,1,1 + T5,5,1,2. (3.4.78)

To bound the first term in (3.4.78) we note

P h|σj+1
− P h|σj = (I − ~τh|σj+1

⊗ ~τh|σj+1
)− (I − ~τh|σj

⊗ ~τh|σj )

= ~τh|σj+1
⊗ (~τh|σj

− ~τh|σj+1
) + (~τh|σj

− ~τh|σj+1
)⊗ ~τh|σj ,

and

~τh|σj+1
− ~τh|σj

=
(~xhρ)|σj+1

|(~xhρ)|σj+1
|
−

(~xhρ)|σj
|(~xhρ)|σj |
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=
1

|(~xhρ)|σj+1
|

(
(~xhρ)|σj+1

− (~xhρ)|σj

)
+

~τh|σj
|(~xhρ)|σj+1

|

(
|(~xhρ)|σj | − |(~x

h
ρ)|σj+1

|
)
.

For any ~p ∈ R2, for j = 1, . . . , J − 1, we set ~ξh = χj ~p in (3.4.5a) to obtain

〈(~xhρ)|σj+1
− (~xhρ)|σj , ~p〉 = −

(
hj+1 |(~xhρ)|σj+1

|2 〈~νh|σj+1
, ~p〉+ hj |(~xhρ)|σj |

2 〈~νh|σj , ~p〉
)
f(wh(ρj , t))

+ α
(
hj+1 |(~xhρ)|σj+1

|2 + hj |(~xhρ)|σj |
2
)
〈~xht (ρj , t), ~p〉

+ (1− α)
[
hj+1 |(~xhρ)|σj+1

|2 〈~xht (ρj , t), ~ν
h
|σj+1
〉〈~νh|σj+1

, ~p〉

+hj |(~xhρ)|σj |
2 〈~xht (ρj , t), ~ν

h
|σj
〉〈~νh|σj , ~p〉

]
.

Combining the three equations above and using (3.4.12a), (3.1.4a), (3.4.12b), (3.4.4c) and

(3.4.4a), we have

|P h|σj+1
− P h|σj | ≤ C |(~x

h
ρ)|σj+1

− (~xhρ)|σj |

≤ C h
[
|f(wh)|0,∞ + |~xht (ρj , t)|

]
≤ C h

[
|f(wh)|0,∞ + |Ih~xt|0,∞ + |~θht (ρj , t)|

]
≤ C h

[
1 + |~θht (ρj , t)|

]
. (3.4.79)

Hence, using (3.4.79), (3.1.4a), (3.1.11), (3.4.4b), (3.1.5a) and (3.4.61), we have

T5,5,1,1 = −
J−1∑
j=1

[
w(ρj , t) 〈~τ(ρj , t), (P

h
|σj+1

− P h|σj )
~θht (ρj , t)〉 ζh(ρj , t)

]

≤ C h |w|0,∞ |ζh|0,∞
J−1∑
j=1

[
1 + |~θht (ρj , t)|

]
|~θht (ρj , t)|

≤ C ‖w‖C([0,T ];H1(I)) |ζh|0,∞

J−1∑
j=1

hj |~θht (ρj , t)|+
J−1∑
j=1

hj |~θht (ρj , t)|2


≤ C |ζh|0,∞
[
|~θht |0,1 + |~θht |20

]
≤ C |~θht |0 |ζh|0,∞ + C h−

1
2 |~θht |20 |ζh|0 ≤ C |~θht |0 |ζh|0,∞ + C |~θht |20. (3.4.80)

Using (3.4.12a), (3.1.11), (3.4.4b) and (3.4.4a), we have

T5,5,1,2 = −
(
〈(w~τ)ρ, P

h~θht 〉, ζh
)
−
(
w 〈~τ , P h~θht 〉, ζhρ

)
≤ |P h|0,∞ |w~τ |1 |~θht |0 |ζh|0,∞ + |w|0,∞ |P h|0,∞ |~θht |0 |ζh|1

≤ C ‖w‖C([0,T ];H1(I))

[
1 + ‖~x‖W 0,∞(0,T ;[H2(I)]2)

] [
|ζh|0,∞ + |ζh|1

]
|~θht |0

≤ C
[
|ζh|0,∞ + |ζh|1

]
|~θht |0. (3.4.81)

To bound T5,5,2, noting (3.4.70b), we utilise the following bound

P h~τ = ~τ − 〈~τ , ~τh〉~τh = ~τ −
(

1− 1

2
|~τ − ~τh|2

)
~τh = ~τ − ~τh +

1

2
|~τ − ~τh|2 ~τh
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as well as noting that P h is symmetric and using (3.1.11), (3.4.4b), (3.1.5d), (3.4.4a),

(3.4.19) and the fact that |~τ − ~τh| ≤ |~τ |+ |~τh| = 2 to give

T5,5,2 = −
(
w 〈~τ , P hIh~xρ,t〉, ζh

)
= −

(
w 〈P h~τ , Ih~xρ,t〉, ζh

)
=
(
w 〈~τh − ~τ , Ih~xρ,t〉, ζh

)
− 1

2

(
w |~τ − ~τh|2 〈~τh, Ih~xρ,t〉, ζh

)
≤ 2 |w|0,∞ |~τ − ~τh|0 |Ih~xt|1 |ζh|0,∞

≤ C ‖w‖C([0,T ];H1(I)) ‖~x‖W 1,∞(0,T ;[H1(I)]2)

[
h+ |~θh|1

]
|ζh|0,∞

≤ C
[
h+ |~θh|1

]
|ζh|0,∞. (3.4.82)

Thus, combining (3.4.77) with (3.4.80)–(3.4.82), we have

T5,5 ≤ C
[
h+ |~θht |0 + |~θh|1

] [
|ζh|0,∞ + |ζh|0 + |ζh|1

]
+ C |~θht |20. (3.4.83)

Using (3.4.12a), (3.1.11), (3.1.5b), (3.4.4b) and (3.4.15), we have

T5,6 =
(
|~xhρ |(Ih − I)wt, ζ

h
)

+
(
|~xhρ |t(Ih − I)w, ζh

)
≤ C

[
h |wt|1 + |(I − Ih)w|1 |~xht |1

]
|ζh|0

≤ C
[
h ‖w‖W 1,∞(0,T ;H1(I)) + h |w|2

[
1 + h−1|~θht |0

]]
|ζh|0

≤ C
[
h+ ‖w‖C([0,T ];H2(I))

[
h+ |~θht |0

]]
|ζh|0 ≤ C

[
h+ |~θht |0

]
|ζh|0. (3.4.84)

Using (3.1.6b), (3.4.12a), (3.1.5d), (3.1.11), (3.4.4b) and (3.4.15), we have

T5,7 =
((
|~xhρ | Ihw

)
t
, ζh
)h
−
((
|~xhρ | Ihw

)
t
, ζh
)

≤ C h
J∑
j=1

|ζh|1,σj |(|~xhρ | Ihw)t|0,σj

≤ C h
[
|Ihw|0,∞ |~xht |1 + |Ihwt|0

]
|ζh|1

≤ C h
[
‖w‖C([0,T ];H1(I))

[
1 + h−1|~θht |0

]
+ ‖w‖W 1,∞(0,T ;L2(I))

]
|ζh|1

≤ C
[
h+ |~θht |0

]
|ζh|1. (3.4.85)

Combining (3.4.72) with (3.4.73)–(3.4.76) and (3.4.83)–(3.4.85), using (3.1.8) and (3.1.9b),

we have

|T5| ≤
d

16M
|ζh|21 + C

[
h2 + |~θht |20 + |ζh|20 + |~θh|21

]
. (3.4.86)

Using (3.1.11), (3.4.4b), (3.4.18) and (3.1.8), we have

T6 = d

(
wρ

[
1

|~xhρ |
− 1

|~xρ|

]
, ζhρ

)
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≤ d |w|1,∞
∣∣∣∣ 1

|~xρ|
− 1

|~xhρ |

∣∣∣∣
0

|ζh|1

≤ C d ‖w‖C([0,T ];H2(I))

[
h+ |~θh|1

]
|ζh|1 ≤

d

16M
|ζh|21 + C

[
h2 + |~θh|21

]
. (3.4.87)

We now bound T7.

T7 =
(
ψhwh, ζhρ

)h
−
(
ψw, ζhρ

)
=
([
ψh − Ihψ

]
wh + Ih(ψ)

[
wh − Ihw

]
, ζhρ

)h
+

[(
Ih(ψ) Ih(w), ζhρ

)h
−
(
Ih(ψ) Ih(w), ζhρ

)]
+
[([

(Ih − I)ψ
]
Ih(w), ζhρ

)
+
(
ψ
[
(Ih − I)w

]
, ζhρ

)]
=:

3∑
i=1

T7,i. (3.4.88)

From (3.1.11), (3.4.12b), (3.4.4b), (3.4.4a), (3.1.6a), (3.1.5b) and (3.4.20) we have

T7,1 =
([
ψh − Ihψ

]
wh + Ih(ψ)

[
wh − Ihw

]
, ζhρ

)h
≤ max

{
|wh|0,∞, |Ihψ|0,∞

}[
‖(I − Ih)ψ‖h + ‖ψ − ψh‖h + ‖ζh‖h

]
‖ζhρ ‖h

≤ C max
{
‖w‖C([0,T ];H1(I)), ‖~x‖W 1,∞(0,T ;[H1(I)]2)

} [
C~x h+ |~θht |0 + |ζh|0 + |~θh|1

]
|ζh|1

≤ C
[
h+ |~θht |0 + |ζh|0 + |~θh|1

]
|ζh|1, (3.4.89)

where C~x := 1 +
√

2(‖~x‖W 1,∞(0,T ;[H1(I)]2) + ‖~x‖W 1,∞(0,T ;[L∞(I)]2) ‖~x‖W 0,∞(0,T ;[H2(I)]2)). Us-

ing (3.1.6b), (3.1.5d), (3.4.4b) and (3.4.4a), we have

T7,2 =
(
Ih(ψ) Ih(w), ζhρ

)h
−
(
Ih(ψ) Ih(w), ζhρ

)
≤ C h

J∑
j=1

|Ihj (ψ)Ihj (w)|1,σj |ζhρ |0,σj

≤ C h
[
C~x ‖w‖C([0,T ];L∞(I)) + ‖~x‖W 1,∞(0,T ;[L∞(I)]2) ‖w‖C([0,T ];H1(I))

]
|ζh|1

≤ C h |ζh|1, (3.4.90)

while with the addition of (3.1.5b) we obtain

T7,3 =
[([

(Ih − I)ψ
]
Ih(w), ζhρ

)
+
(
ψ
[
(Ih − I)w

]
, ζhρ

)]
≤ max

{
|Ihw|0,∞, |ψ|0,∞

}[
|(I − Ih)ψ|0 + |(I − Ih)w|0

]
|ζh|1

≤ C max
{
‖w‖C([0,T ];H1(I)), ‖~x‖W 1,∞(0,T ;[H1(I)]2)

} [
C~x + ‖w‖C([0,T ];H1(I))

]
|ζh|1

≤ C h |ζh|1, (3.4.91)

where C~x := ‖~x‖W 1,∞(0,T ;[H1(I)]2) + ‖~x‖W 1,∞(0,T ;[L∞(I)]2) ‖~x‖W 0,∞(0,T ;[H2(I)]2). Combining

(3.4.88) with (3.4.89)–(3.4.91) and using (3.1.8), we have

|T7| ≤
d

16M
|ζh|21 + C

[
h2 + |~θht |20 + |ζh|20 + |~θh|21

]
. (3.4.92)
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We now bound T8. Using the continuity of g we have

T8 =
(
|~xρ| g(v, w), ζh

)
−
(
|~xhρ | g(vh, wh), ζh

)h
=
([
|~xρ| − |~xhρ |

]
g(v, w), ζh

)
+
(
|~xhρ |(I − Ih)g(v, w), ζh

)
+

[(
|~xhρ |Ihg(v, w), ζh

)
−
(
|~xhρ |Ihg(v, w), ζh

)h]
+
(
|~xhρ |

([
g(Ihv, Ihw)− g(Ihv, wh)

]
+
[
g(Ihv, wh)− g(vh, wh)

])
, ζh
)h

=:

4∑
i=1

T8,i. (3.4.93)

Using (3.4.4d) and (3.4.13), gives

T8,1 =
([
|~xρ| − |~xhρ |

]
g(v, w), ζh

)
≤ |g|0,∞ |~x− ~xh|1 |ζh|0 ≤ C

[
h+ |~θh|1

]
|ζh|0. (3.4.94)

Using (3.4.12a), (3.1.5b), (3.4.4d), (3.4.4a) and (3.4.4b), we have

T8,2 =
(
|~xhρ |(I − Ih)g(v, w), ζh

)
≤ C h |g(v, w)|1 |ζh|0 ≤ C h |g(v, w)|0,∞

[
C~x + ‖w‖C([0,T ];H1(I))

]
|ζh|0

≤ C h |ζh|0, (3.4.95)

whilst with the addition of (3.1.6b) and (3.1.5d) we obtain

T8,3 =

[(
|~xhρ |Ihg(v, w), ζh

)
−
(
|~xhρ |Ihg(v, w), ζh

)h]
≤ C h

J∑
j=1

|g(v, w)|1,σj
∣∣∣|~xhρ |ζh∣∣∣

0,σj
≤ C h |Ihg(v, w)|1 |ζh|0 ≤ C h |ζh|0, (3.4.96)

where C~x := ‖~x‖W 1,∞(0,T ;[H1(I)]2)+‖~x‖W 1,∞(0,T ;[L∞(I)]2) ‖~x‖W 0,∞(0,T ;[H2(I)]2). Using (3.4.12a),

(3.4.4d), (3.4.4a), (3.4.12b), (3.1.5b), (3.1.6b), (3.4.20) and (3.4.16), we have

T8,4 =
(
|~xhρ |

([
g(Ihv, Ihw)− g(Ihv, wh)

]
+
[
g(Ihv, wh)− g(vh, wh)

])
, ζh
)h

≤ 2MLg

[
‖ζh‖h + ‖Ihv − vh‖h

]
‖ζh‖h

≤ C
[
|ζh|0 + |(I − Ih)v|0 + |v − vh|0

]
|ζh|0

≤ C
[
h+ |~θht |0 + |ζh|0 + |~θh|1

]
|ζh|0. (3.4.97)

Combining (3.4.93) with (3.4.94)–(3.4.97) and using (3.1.8), we have

|T8| ≤ C
[
h2 + |~θht |20 + |ζh|20 + |~θh|21

]
. (3.4.98)

We now combine (3.4.63) with (3.4.64), (3.4.69), (3.4.86), (3.4.87), (3.4.92) and (3.4.98)

to obtain

1

2

d

dt

(
|~xhρ | ζh, ζh

)h
+

d

4M
|ζh|21 ≤ C

[
h2 + |~θht |20 + |ζh|20 + |~θh|21

]
. (3.4.99)



121

Multiplying (3.4.99) by e−γs , for γ ≥ 1 and integrating with respect to s ∈ (0, t) with

t ≤ T ?h , and noting |ζh(·, 0)| = 0, we have

1

2
e−γt

(
|~xhρ | ζh, ζh

)h
+
γ

2

∫ t

0
e−γs

(
|~xhρ | ζh, ζh

)h
ds+

d

4M

∫ t

0
e−γs |ζh|21 ds

≤ C3

∫ t

0
e−γs

[
h2 + |~θht |20 + |ζh|20 + |~θh|21

]
ds. (3.4.100)

From (3.4.12a) and (3.1.6a), we have

1

2
e−γt

(
|~xhρ | ζh, ζh

)h
+
γ

2

∫ t

0
e−γs

(
|~xhρ |ζh, ζh

)h
ds ≥ m

4
e−γt |ζh|20 +

γ m

4

∫ t

0
e−γs |ζh|20 ds,

which, together with (3.4.100), yields the desired result.

Proof of Theorem 3.23: Multiplying (3.4.11) by ω, where ω is chosen such that C3ω ≤
m2α
32 , and adding the resulting inequality to (3.4.10), for t ∈ [0, T ?h ), we have

1

4
e−γt |~θh|21 +

mω

4
e−γt |ζh|20 +

m2α

32

∫ t

0
e−γs |~θht |20 ds+

dω

4M

∫ t

0
e−γs |ζh|21 ds

≤ C(1 + ω)

∫ t

0
e−γs

[
h2 + |ζh|20 + |~θh|21 + h−1|~θh|40,∞

]
ds.

An application of Gronwall’s lemma then gives

sup
s∈[0,T ?h ]

[
1

4
e−γs |~θh|21 +

mω

4
e−γs |ζh|20

]
+
m2α

32

∫ T ?h

0
e−γs |~θht |20 ds+

dω

4M

∫ T ?h

0
e−γs |ζh|21 ds

≤ Cω,γ,T
∫ T ?h

0
e−γs

[
h2 + h−1|~θh|40,∞

]
ds,

where Cω,γ,T depends on ω, γ and T but not on T ?h . Dividing by min{1
4 ,

mω
4 , m

2α
32 , dω4M }

gives

sup
s∈[0,T ?h ]

[
e−γs |~θh|21 + e−γs |ζh|20

]
+

∫ T ?h

0
e−γs

[
|~θht |20 + |ζh|21

]
ds

≤ C1h
2 + C h−1

∫ T ?h

0
e−γs |~θh|40,∞ ds. (3.4.101)

Using (3.1.9b), (3.4.60) and (3.4.12c), for t ∈ [0, T ?h ), we have

e−γt |~θh|20,∞ ≤ e−γt |~θh|21 + Ce−γt |~θh|20 ≤ CC1h
2,

and hence, for t ∈ [0, T ?h ), we have

C h−1

∫ t

0
e−γs |~θh|40,∞ ds ≤ C h−1 eγT

∫ t

0

(
e−γs |~θh|20,∞

)2
ds ≤ C(C1)2TeγTh3,

which, together with (3.3.78), and on noting (3.4.9), yields

sup
s∈[0,T ?h ]

[
e−γs |~θh|21 + e−γs |ζh|20

]
+

∫ T ?h

0
e−γs

[
|~θht |20 + |ζh|21

]
ds
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≤ C1h
2 + C(C1)2TeγTh3 ≤ C1h

2 + CC1Th
5
2 ≤ C1h

2 +
1

2
C1h

2 ≤ 3

2
C1h

2. (3.4.102)

We now follow the argument in [40] to show that T ?h = T . If it were not the case that

T ?h = T , we would have T ?h < T , and using (3.4.4e), (3.1.5c), (3.1.5a), (3.1.4a), (3.4.4a),

(3.4.102) and (3.4.9), for ρ ∈ I, we would have

|~xhρ(ρ, T ?h )| ≤ |~xρ(ρ, T ?h )|+ |~xρ(ρ, T ?h )− ~xhρ(ρ, T ?h )|

≤M + |(I − Ih)~x(·, T ?h )|1,∞ + |~θh(·, T ?h )|1,∞

≤M + C h
1
2 |~x(·, T ?h )|2 + C h−

1
2 |~θh(·, T ?h )|1

≤M + C h
1
2

[
‖~x‖W 0,∞(0,T ;[H2(I)]2) + e

γ
2
T
]
≤M + Cβ ≤ 3

2
M,

provided β is chosen small enough, and similarly

|~xhρ(ρ, T ?h )| ≥ |~xρ(ρ, T ?h )| − |~xρ(ρ, T ?h )− ~xhρ(ρ, T ?h )| ≥ 3m

4
.

Using (3.1.5d), (3.1.5c), (3.4.4b), (3.1.5b), (3.1.4a), (3.4.102), (3.1.11) and (3.4.9), we see

that

|wh(·, T ?h )|0,∞ ≤ |Ihw(·, T ?h )|0,∞ + |Ihw(·, T ?h )− wh(·, T ?h )|0,∞

≤ ‖w‖C([0,T ];L∞(I)) + C h−
1
2 |ζh(·, T ?h )|0

≤ Cw‖w‖C([0,T ];H1(I)) + C h
1
2 e

γ
2
T

≤ (Cw + Cβ)‖w‖C([0,T ];H1(I)) ≤
3

2
Cw‖w‖C([0,T ];H1(I)),

provided β is chosen small enough. Thus we could then extend the discrete solution to an

interval [0, T ?h + δ], for some δ > 0, with
m

2
≤ |~xhρ | ≤ 2M in I × [0, T ?h + δ]

‖wh‖C([0,T ?h+δ];L∞(I)) ≤ 2Cw‖w‖C([0,T ];H1(I))

sup
s∈[0,T ?h+δ]

e−γs
[
|~θh|21 + |ζh|20

]
+

∫ T ?h+δ

0
e−γs

[
|~θht |20 + |ζh|21

]
ds < 2C1h

2

which contradicts the definition of T ?h . Therefore T ?h = T and from (3.1.5b), (3.4.4a),

(3.4.4b), (3.4.9) and (3.4.12c), for t ∈ [0, T ], we have

sup
t∈[0,T ]

[
|~x− ~xh|21 + |w − wh|20

]
≤ 2 sup

t∈[0,T ]

[
|(I − Ih)~x|21 + |~θh|21 + |(I − Ih)w|20 + |ζh|20

]
≤ Ch2

[
‖~x‖2W 0,∞(0,T ;[H2(I)]2) + ‖w‖2C([0,T ];H1(I))

]
+ 4C1h

2eγT

≤ Ch2,

and∫ T

0

[
|~xt − ~xht |20 + |w − wh|21

]
ds ≤ 2

∫ T

0

[
|(I − Ih)~xt|20 + |~θht |20 + |(I − Ih)w|21 + |ζh|21

]
ds
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≤ CTh2
[
‖~x‖2W 1,∞(0,T ;[H1(I)]2) + ‖w‖2C([0,T ];H2(I))

]
+ 4C1h

2eγT ≤ Ch2.

Remark 3.26. We note that the progression from the bound on the sums in (3.4.80)

comes about from utilising the fact that the rectangle rule underestimates the L1(I) integral

because |~θht (·, t)| is positive, and also that it underestimates the L2(I) integral because

|~θht (·, t)|2 is convex.

Remark 3.27. We note here the unconventional approach to splitting (3.4.71) used to

bound T5, specifically the reason why we split this bound into five parts. Without splitting

the bound this way, the terms needed to be bound would be(
w
(
|~xhρ | − |~xρ|

)
t
, ζh
)

=
(
w 〈~xhρ,t − ~xρ,t, ~τ〉, ζh

)
+
(
w 〈~xhρ,t, ~τh − ~τ〉, ζh

)
.

The first term is part of T5,2; however, using (3.1.11), (3.4.4b), (3.4.15), (3.4.19) and

(3.4.61), the second term would yield(
w 〈~xhρ,t, ~τh − ~τ〉, ζh

)
≤ |w|0,∞ |~xht |1 |~τ − ~τh|0 |ζh|0,∞

≤ C
[
h+ |~θht |0 + |~θh|1 + h−

1
4 |~θht |0

]
|ζh|0,∞,

which would not result in the desired power of h we require for the result.

3.5 Numerical results for Model M1 and Model M2

In this section we look to computationally analyse ModelM1 and ModelM2. We first

concentrate on Model M1 and compare it to the numerical scheme introduced in [42].

Namely the authors in [42] chose to approximate F (~x) = 0 by using a slight variant on

(3.3.7). They don’t use F ( ~Xn(ρ)) = 0, for ρ ∈ {0, 1}, but rather assume that

〈Dt
~Xn
j ,∇F ( ~Xn−1

j )〉 = 0, for j = 0, J,

as part of their approximation. This leads to a first order approximation of both (3.3.3)

and F ( ~Xn) = 0, such that for their scheme

|F ( ~Xn)| ≤ C∆tn. (3.5.1)

This means that ∆tn needs to be chosen appropriately small for the approximation ~Xn

to stay close to the boundary for long time simulations. Although we do not prove fully
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discrete finite element error bounds using the α parameter, see Remark 3.11, we neverthe-

less derive the numerical scheme of Model M1 with the α parameter used and a forcing

term on the right hand side. We shall still refer to this as Model M1 though. In the

settings of closed curves, typically one chooses ~ξ h = χj~ek to derive the finite element

numerical scheme, where ~ek, for k = 0, 1, provides the standard basis for R2; however,

due to the boundary conditions, considering the restrictions on (3.3.2), we choose to use

~ξ h = ∇⊥F ( ~Xn
j )χj for j = 0, J and ~ξ h = χj~ek for j = 1, · · · , J − 1. Thus, by considering

a uniform spatial mesh, the finite element numerical scheme for Model M1 is

α

2

(
(qn−1
j )2 + (qn−1

j+1 )2
) 1

∆tn

(
~Xn
j − ~Xn−1

j

)
+
(
− ~Xn

j+1 + 2 ~Xn
j − ~Xn

j−1

)
+

1− α
2

1

∆tn

(〈
~Xn
j − ~Xn−1

j , ~N n−1
j−1

〉
~N n−1
j−1 +

〈
~Xn
j − ~Xn−1

j , ~N n−1
j

〉
~N n−1
j

)
=

1

2

(
qn−1
j

~N n−1
j−1 + qn−1

j+1
~N n−1
j

)
fnj (3.5.2a)

α

2
(qn−1

0 )2 1

∆tn

〈
~Xn

0 − ~Xn−1
0 ,∇⊥F ( ~Xn

0 )
〉

+
〈
~Xn

0 − ~Xn
1 ,∇⊥F ( ~Xn

0 )
〉

+
1− α

2

1

∆tn

〈
~Xn

0 − ~Xn−1
0 , ~N n−1

0

〉〈
~N n−1

0 ,∇⊥F ( ~Xn
0 )
〉

=
1

2
qn−1

0 fn0

〈
~N n−1

0 ,∇⊥F ( ~Xn
0 )
〉

(3.5.2b)

α

2
(qn−1
J−1)2 1

∆tn

〈
~Xn
J − ~Xn−1

J ,∇⊥F ( ~Xn
J )
〉

+
〈
~Xn
J − ~Xn

J−1,∇⊥F ( ~Xn
J )
〉

+
1− α

2

1

∆tn

〈
~Xn
J − ~Xn−1

J , ~N n−1
J−1

〉〈
~N n−1
J−1 ,∇

⊥F ( ~Xn
J )
〉

=
1

2
qn−1
J−1 f

n
J

〈
~N n−1
J−1 ,∇

⊥F ( ~Xn
J )
〉

(3.5.2c)

F ( ~Xn
0 ) = 0, F ( ~Xn

J ) = 0, (3.5.2d)

where qnj = | ~Xn
j − ~Xn

j−1| for j = 1, . . . , J and ~N n
j =

(
~Xn
j+1 − ~Xn

j

)⊥
for j = 0, . . . , J−1. We

use a Newton’s scheme to attend to the non-linear components in the following manner.

By setting ~Xn,i+1 := ~Xn,i + ~δi, with ~Xn,0 := ~Xn−1, we replace all occurrences of ~Xn

with ~Xn,i+1 and rearrange to solve for ~δi. We neglect terms which have more than one ~δi

term, hence gaining the name quadratic approximation, and we then iteratively solve until

|F ( ~Xn,i+1)| < τ , for some predetermined tolerance τ . Thus, (3.5.2a)–(3.5.2d) become

α

2

(
(qn−1
j )2 + (qn−1

j+1 )2
) 1

∆tn
~δij +

(
−~δij+1 + 2~δij − ~δij−1

)
+

1− α
2

1

∆tn

(〈
~δij ,

~N n−1
j−1

〉
~N n−1
j−1 +

〈
~δij ,

~N n−1
j

〉
~N n−1
j

)
=

1

2

(
qn−1
j

~N n−1
j−1 + qn−1

j+1
~N n−1
j

)
fnj −

(
− ~Xn,i

j+1 + 2 ~Xn,i
j − ~Xn,i

j−1

)
− 1− α

2

1

∆tn

(〈
~Xn,i
j − ~Xn−1

j , ~N n−1
j−1

〉
~N n−1
j−1 +

〈
~Xn,i
j − ~Xn−1

j , ~N n−1
j

〉
~N n−1
j

)
− α

2

(
(qn−1
j )2 + (qn−1

j+1 )2
) 1

∆tn

(
~Xn,i
j − ~Xn−1

j

)
(3.5.3a)
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α

2
(qn−1

0 )2 1

∆tn

〈
~δi0,∇⊥F ( ~Xn,i

0 )
〉

+
α

2
(qn−1

0 )2 1

∆tn

〈
~Xn,i

0 − ~Xn−1
0 , D2

⊥F ( ~Xn,i
0 )~δi0

〉
+
〈
~δi0 − ~δi1,∇⊥F ( ~Xn,i

0 )
〉

+
〈
~Xn,i

0 − ~Xn,i
1 , D2

⊥F ( ~Xn,i
0 )~δi0

〉
+

1− α
2

1

∆tn

〈
~δi0, ~N n−1

0

〉〈
~N n−1

0 ,∇⊥F ( ~Xn,i
0 )
〉

+
1− α

2

1

∆tn

〈
~Xn,i

0 − ~Xn−1
0 , ~N n−1

0

〉〈
~N n−1

0 , D2
⊥F ( ~Xn,i

0 )~δi0

〉
− 1

2
qn−1

0 fn0

〈
~N n−1

0 , D2
⊥F ( ~Xn,i

0 )~δi0

〉
=

1

2
qn−1

0 fn0

〈
~N n−1

0 ,∇⊥F ( ~Xn,i
0 )
〉
−
〈
~Xn,i

0 − ~Xn,i
1 ,∇⊥F ( ~Xn,i

0 )
〉

− α

2
(qn−1

0 )2 1

∆tn

〈
~Xn,i

0 − ~Xn−1
0 ,∇⊥F ( ~Xn,i

0 )
〉

− 1− α
2

1

∆tn

〈
~Xn,i

0 − ~Xn−1
0 , ~N n−1

0

〉〈
~N n−1

0 ,∇⊥F ( ~Xn,i
0 )
〉

(3.5.3b)

α

2
(qn−1
J−1)2 1

∆tn

〈
~δiJ ,∇⊥F ( ~Xn,i

J )
〉

+
〈
~δiJ − ~δiJ−1,∇⊥F ( ~Xn,i

J )
〉

+
α

2
(qn−1
J−1)2 1

∆tn

〈
~Xn,i
J − ~Xn−1

J , D2
⊥F ( ~Xn,i

J )~δiJ

〉
+
〈
~Xn,i
J − ~Xn,i

J−1, D
2
⊥F ( ~Xn,i

J )~δiJ

〉
+

1− α
2

1

∆tn

〈
~δiJ ,

~N n−1
J−1

〉〈
~N n−1
J−1 ,∇

⊥F ( ~Xn,i
J )
〉

+
1− α

2

1

∆tn

〈
~Xn,i
J − ~Xn−1

J , ~N n−1
J−1

〉〈
~N n−1
J−1 , D

2
⊥F ( ~Xn,i

J )~δiJ

〉
− 1

2
qn−1
J−1 f

n
J

〈
~N n−1
J−1 , D

2
⊥F ( ~Xn,i

J )~δiJ

〉
=

1

2
qn−1
J−1 f

n
J

〈
~N n−1
J−1 ,∇

⊥F ( ~Xn,i
J )
〉
−
〈
~Xn,i
J − ~Xn,i

J−1,∇
⊥F ( ~Xn,i

J )
〉

− α

2
(qn−1
J−1)2 1

∆tn

〈
~Xn,i
J − ~Xn−1

J ,∇⊥F ( ~Xn,i
J )
〉

− 1− α
2

1

∆tn

〈
~Xn,i
J − ~Xn−1

J , ~N n−1
J−1

〉〈
~N n−1
J−1 ,∇

⊥F ( ~Xn,i
J )
〉

(3.5.3c)

F ( ~Xn,i
0 ) = −〈∇F ( ~Xn,i

0 ), ~δi0〉, F ( ~Xn,i
J ) = −〈∇F ( ~Xn,i

J ), ~δiJ〉, (3.5.3d)

where D2
⊥ = RD2, with R being the anti-clockwise rotation matrix around π

2 and D being

the second order differential operator. We state that this is work already conducted in

[109], in which α is set to 1 for easy of presentation. We begin our numerical computations

with two examples, one showing the benefit of the α parameter and the other showing the

benefit of the Newton’s scheme. In these two examples we monitor the following errors:

E1 := sup
n=0,...,N

|Ih(~xn)− ~Xn|20, E2 :=
N∑
n=1

∆tn|Ih(~xn)− ~Xn|21, (3.5.4)

E3 := sup
n=0,...,N

|Ih(~xn)− ~Xn|21, E4 :=
N∑
n=1

∆tn|Dt(I
h(~xn)− ~Xn)|20, (3.5.5)
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and quantify them using

eoci,j :=
ln(Ei,j+1)− ln(Ei,j)
ln(hi,j+1)− ln(hi,j)

. (3.5.6)

Example 1

For our first example we consider a shrinking semi circle. Indeed setting Ω := R×R>0

and taking Γ(0) to be a semi-circle with radius one centred at 0, with f(ρ, t) = 0, the

explicit solution to Model M1 is given by

~x(ρ, t) =
√

1− 2t (cos(πρ), sin(πρ))T , ρ ∈ [0, 1], t ∈ [0, T ].

We set T = 0.4 and consider a uniform time discretisation. The following Tables 3.1–3.6

were produced using MATLAB R2019a [92] installed on a 2015 Apple iMac 21.5” with

an i5-3.1 GHz processor which has 4 cores. Typically MATLAB uses only one core when

executing user developed code.

Tables 3.1–3.4 display the errors for the Newton’s scheme (3.5.3a)–(3.5.3d). The errors

obtaining by taking ∆t = h2 and α = 1 are displayed in Table 3.1 while the errors obtained

by taking ∆t = h2 and α = 0.5 are displayed in Table 3.2. Tables 3.3 and 3.4 display the

errors obtained by taking ∆t = 0.1h and α = 1 and ∆t = 0.1h and α = 0.5 respectively.

Tables 3.5 and 3.6 display the errors for the numerical scheme presented in [42], the results

in Table 3.5 were obtained by setting ∆t = h2 while the results in Table 3.6 were obtained

by setting ∆t = 0.1h. For E3 and E4 we see a similar experimental order of convergence

for both α = 1 and α < 1, for both cases of ∆t = C h and ∆t = C h2. Indeed, we see eocs

of close to 4 for both α = 1 and α < 1 with ∆t = C h2, and we see eocs of close to 2 for

both α = 1 and α < 1 with ∆t = C h. Considering ∆t = C h, all the errors are exhibiting

the eocs expected from [6] however not proven in our setting in which the closed curve

setting of [42] has been replaced by a curve attached orthogonally to a fixed boundary.

Numerically, we see that both attain the desired convergence. We also see that E1 and E2

exhibit eocs of close to 4 for both α = 1 and α < 1 with ∆t = C h2, and exhibit eocs close

to 2 for both α = 1 and α < 1 with ∆t = C h. Considering ∆t = C h2, all of the errors

are exhibiting greater levels of convergence than what Theorems 3.13 and 3.18 predict. As

described in Example 1 in Section 2.4.1, one might expect an eoc of 4 for E1 and E4 since

they are L2 type errors. Similarly, as described in Example 1 in Section 2.4.1 and [6], E2

and E3 are exhibiting superconvergence since they are H1 type errors. Interestingly, we

still see superconvergence when using a non-uniform mesh in this example, but we didn’t

investigate this property further.
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Next, we look at how α effects the errors. Comparing Tables 3.1 and 3.2 we can that

the results in Table 3.2 give three to four times the amount of precision opposed to the

results presented in Table 3.1. Another interesting result to note is that the finite element

scheme presented in [42] and (3.5.3a)–(3.5.3d) give identical errors. Indeed we remark that

the Newton’s step only requires one solve and so the schemes are actually identical for this

example. The reason for the one step convergence is because the (important) boundary

term is solved exactly. In particular, noting that in this example ∇F (~p) = (0, 1)T , for

~p ∈ R2, equations (3.5.3b) and (3.5.3d) decouple and (3.5.3d) gives

F ( ~Xn,i
0 ) = −(~δi0)0

which, due to the initial condition, will always be 0. Since the stopping criteria for the

Newton’s scheme is |F ( ~Xn,i+1)| ≤ τ , and since in this case |F ( ~Xn,1)| = 0, the iteration

will stop after one step. Thus, since ~Xn,0 = ~Xn−1 and F is linear, the schemes are the

same.

Finally, we look at the computational time of some of the results. Considering the

setting of α = 1, taking J = 10 and M = 40 and using (3.5.3a)–(3.5.3d) results in

approximately 0.011 seconds of execution time whilst using the scheme presented in [42]

results in approximately 0.004 seconds of execution time. Taking J = 160 and M = 10240

and using (3.5.3a)–(3.5.3d) results in approximately 21.4 seconds of execution time whilst

using the scheme presented in [42] results in approximately 23.6 seconds of execution

time. Considering the setting of α = 0.5, taking J = 10 and M = 40 and using (3.5.3a)–

(3.5.3d) results in approximately 0.012 seconds of execution time whilst taking J = 160 and

M = 10240 and using (3.5.3a)–(3.5.3d) results in approximately 25.1 seconds of execution

time. Given what is discussed in the previous paragraph, it makes sense that the execution

time for the scheme presented in [42] and (3.5.3a)–(3.5.3d) with α = 1 solve at almost the

same speed, the slightly greater execution time when considering α < 1 is likely due to

the extra terms which need to be computed for the system matrix.
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J M E1 × 105 eoc1 E2 × 106 eoc2 E3 × 104 eoc3 E4 × 105 eoc4

10 40 46.95 - 299.3 - 46.72 - 201.6 -

20 160 4.042 3.54 2.255 3.73 39.97 3.55 18.59 3.44

40 640 0.2760 3.87 0.1481 3.93 2.726 3.87 1.298 3.84

80 2560 0.01765 3.97 0.009377 3.98 0.1742 3.97 0.08347 3.96

160 10240 0.001110 3.99 0.0005880 4.00 0.01095 3.99 0.005254 3.99

Table 3.1: Errors for (3.5.3a)–(3.5.3d), with ∆t = h2 and α = 1, for Example 1.

J M E1 × 105 eoc1 E2 × 106 eoc2 E3 × 104 eoc3 E4 × 105 eoc4

10 40 15.97 - 79.91 - 15.89 - 88.84 -

20 160 1.405 3.51 6.093 3.71 1.389 3.52 8.302 3.42

40 640 0.09635 3.87 0.4013 3.92 0.09514 3.87 0.5798 3.84

80 2560 0.006167 3.97 0.02542 3.98 0.006087 3.97 0.03729 3.96

160 10240 0.0003877 3.99 0.001594 4.00 0.0003827 3.99 0.002348 3.99

Table 3.2: Errors for (3.5.3a)–(3.5.3d), with ∆t = h2 and α = 0.5, for Example 1.

J M E1 × 105 eoc1 E2 × 106 eoc2 E3 × 104 eoc3 E4 × 105 eoc4

10 40 46.95 - 299.3 - 46.72 - 201.6 -

20 80 14.51 1.69 84.74 1.82 14.35 1.70 65.05 1.63

40 160 4.054 1.84 22.58 1.91 4.003 1.84 18.65 1.80

80 320 1.073 1.92 5.832 1.95 1.060 1.92 5.009 1.90

160 640 0.2763 1.96 1.482 1.98 0.2727 1.96 1.299 1.95

Table 3.3: Errors for (3.5.3a)–(3.5.3d), with ∆t = 0.1h and α = 1, for Example 1.

J M E1 × 105 eoc1 E2 × 106 eoc2 E3 × 104 eoc3 E4 × 105 eoc4

10 40 15.97 - 79.91 - 15.89 - 88.84 -

20 80 9.159 0.80 48.77 0.71 9.058 0.81 45.11 0.98

40 160 3.267 1.49 17.46 1.48 3.226 1.49 15.66 1.53

80 320 0.9664 1.76 5.149 1.76 0.9540 1.76 4.598 1.77

160 640 0.2624 1.88 1.394 1.89 0.2589 1.88 1.245 1.88

Table 3.4: Errors for (3.5.3a)–(3.5.3d), with ∆t = 0.1h and α = 0.5, for Example 1.
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J M E1 × 105 eoc1 E2 × 106 eoc2 E3 × 104 eoc3 E4 × 105 eoc4

10 40 46.95 - 299.3 - 46.72 - 201.6 -

20 160 4.042 3.54 22.55 3.73 3.997 3.55 18.59 3.44

40 640 0.2760 3.87 1.481 3.93 0.2726 3.87 1.298 3.84

80 2560 0.01765 3.97 0.09377 3.98 0.01742 3.97 0.08347 3.96

160 10240 0.001110 3.99 0.005880 4.00 0.001095 3.99 0.005254 3.99

Table 3.5: Errors for the numerical scheme presented in [42], with ∆t = h2, for Example

1.

J M E1 × 105 eoc1 E2 × 106 eoc2 E3 × 104 eoc3 E4 × 105 eoc4

10 40 46.95 - 299.3 - 46.72 - 201.6 -

20 80 14.51 1.69 84.74 1.82 14.35 1.70 65.05 1.63

40 160 4.054 1.84 22.58 1.91 4.003 1.84 18.65 1.80

80 320 1.073 1.92 5.832 1.95 1.060 1.92 5.009 1.90

160 640 0.2763 1.96 1.482 1.98 0.2727 1.96 1.299 1.95

Table 3.6: Errors for the numerical scheme presented in [42], with ∆t = 0.1h, for Example

1.

Example 2

Considering

Ω := {~p ∈ R2 : |~p|2 < 1}

and taking Γ(0) to be the line ~p1 = ~p0, such that Γ(0) is the diameter of the circle produced

by Ω, as well as

f(ρ, t) =
4(ρ− 1

2)

(1− 2t)2 + 1
,

gives rise to the explicit solution of Model M1 to be

~x(ρ, t) =
2(ρ− 1

2)√
(1− 2t)2 + 1

(1− 2t, 1)T , ρ ∈ [0, 1], t ∈ [0, T ].

Given the result of (3.5.1) we also monitor the error

E5 := sup
n=0,...,N

sup
j=0,J

|F ( ~Xn
j )|, with eoc5,j =

ln(E5,j+1)− ln(E5,j)

ln(∆tj+1)− ln(∆tj)
. (3.5.7)

This example does not automatically satisfy |∇F (~p)| = 1, for ~p ∈ R2, nor is F linear, and

hence enables the superiority of the Newton’s scheme (3.5.2a)–(3.5.2d) to be observed.
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Similary to Example 1, we produce the results in Tables 3.7–3.14 and Figure 3.9 using

MATLAB on the iMac computer.

We consider T = 0.5. We see (3.5.3a)–(3.5.3d) is significantly more precise than the nu-

merical scheme presented in [42] regardless of the choice of α. Tables 3.7–3.10 display the

errors for the Newton’s scheme. We note that we don’t demonstrate (3.5.7) for the New-

ton’s scheme (3.5.3a)–(3.5.3d) since the stopping criteria is set to be supj=0,J |F ( ~Xn
j )| < τ .

The errors obtained by taking ∆t = h2 and α = 1 are displayed in Table 3.7 whilst the

errors obtained by taking ∆t = h2 and α = 0.5 are displayed in Table 3.8. Tables 3.9 and

3.10 display the errors obtained by taking ∆t = 0.1h and α = 1 and ∆t = 0.1h and α = 0.5

respectively. Tables 3.11–3.14 display the errors for the numerical scheme presented in [42],

the results in Tables 3.11 and 3.13 were obtained by setting ∆t = h2 while the results in

Tables 3.12 and 3.14 were obtained by setting ∆t = 0.1h. We see practically the same

convergence results for this example as in Example 1. One can easily see the difference in

magnitudes for all the errors comparing (3.5.3a)–(3.5.3d) to the numerical scheme presen-

ted in [42]. Indeed comparing Table 3.7 to Tables 3.11 and 3.13 and comparing Table 3.9

to Tables 3.12 and 3.14 we see that Tables 3.7 and 3.9 are between twenty to thirty times

the precision of the errors in the respective tables for the numerical scheme presented in

[42]. In Figure 3.9 we see the effect that (3.5.1) has on the numerical scheme produced in

[42], in particular there is a noticeable gap between the end points of the curve ~Xn and

the boundary. Considering the setting of α = 1, taking J = 10 and M = 50 and using

(3.5.3a)–(3.5.3d) results in approximately 0.024 seconds of execution time whilst using the

scheme presented in [42] results in approximately 0.005 seconds of execution time. Taking

J = 160 and M = 12800 and using (3.5.3a)–(3.5.3d) results in approximately 71.8 seconds

of execution time whilst using the scheme presented in [42] results in approximately 31.5

seconds of execution time. As one can see, the Newton’s scheme takes over twice as long

to complete the computation but gains a significant increase in precision. Similarly to

Example 1, taking α < 1 doesn’t change the computational time much.

Remark 3.28. We note that the choice of F hardly changes the errors from each scheme,

further highlighting that the choice of linear F is what resulted in the errors being the same

for each scheme rather than |∇F | = 1. Indeed taking

F (~p) = |~p| − 1 or F (~p) = |~p|2 − 1

had next to no effect on the errors for both schemes considered.
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Figure 3.9: Demonstrating (3.5.1). The black line is the boundary, the red line is the

numerical approximation from the numerical solution presented in [42] and the blue line

is the approximation from (3.5.3a)–(3.5.3d).

J M E1 × 107 eoc1 E2 × 106 eoc2 E3 × 105 eoc3 E4 × 106 eoc4

10 50 107.9 - 27.70 - 14.40 - 30.40 -

20 200 6.797 3.99 1.796 3.95 0.9198 3.97 1.925 3.98

40 800 0.4256 4.00 0.1133 3.99 0.05780 3.99 0.1207 4.00

80 3200 0.02661 4.00 0.007100 4.00 0.003617 4.00 0.007552 4.00

160 12800 0.001664 4.00 0.000440 4.00 0.0002262 4.00 0.0004721 4.00

Table 3.7: Errors (3.5.4)–(3.5.5) for (3.5.3a)–(3.5.3d), with ∆t = h2 and α = 1, for

Example 2.

blah
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J M E1 × 107 eoc1 E2 × 106 eoc2 E3 × 105 eoc3 E4 × 106 eoc4

10 50 95.38 - 23.73 - 11.81 - 27.10 -

20 200 5.997 3.99 1.525 3.96 0.7459 3.98 1.716 3.98

40 800 0.3752 4.00 0.09596 3.99 0.04673 4.00 0.1076 4.00

80 3200 0.02346 4.00 0.006008 4.00 0.002923 4.00 0.006727 4.00

160 12800 0.001466 4.00 0.0003757 4.00 0.0001827 4.00 0.0004205 4.00

Table 3.8: Errors (3.5.4)–(3.5.5) for (3.5.3a)–(3.5.3d), with ∆t = h2 and α = 0.5, for

Example 2.

J M E1 × 107 eoc1 E2 × 106 eoc2 E3 × 105 eoc3 E4 × 106 eoc4

10 50 107.9 - 27.70 - 14.40 - 30.40 -

20 100 27.25 1.99 7.140 1.96 3.680 1.97 7.695 1.98

40 200 6.823 2.00 1.805 1.98 0.9250 1.99 1.931 1.99

80 400 1.705 2.00 0.4532 1.99 0.2316 2.00 0.4832 2.00

160 800 0.4261 2.00 0.1135 2.00 0.05790 2.00 0.1208 2.00

Table 3.9: Errors (3.5.4)–(3.5.5) for (3.5.3a)–(3.5.3d), with ∆t = 0.1h and α = 1, for

Example 2.

J M E1 × 107 eoc1 E2 × 106 eoc2 E3 × 105 eoc3 E4 × 106 eoc4

10 50 95.38 - 23.73 - 11.81 - 27.10 -

20 100 24.00 1.99 6.060 1.97 2.984 1.98 6.846 1.99

40 200 6.008 2.00 1.528 1.99 0.7480 2.00 1.718 1.99

80 400 1.502 2.00 0.3835 1.99 0.1871 2.00 0.4301 2.00

160 800 0.3755 2.00 0.09603 2.00 0.04678 2.00 0.1076 2.00

Table 3.10: Errors (3.5.4)–(3.5.5) for (3.5.3a)–(3.5.3d), with ∆t = 0.1h and α = 0.5, for

Example 2.

blah
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J M E1 × 107 eoc1 E2 × 106 eoc2

10 50 2839 - 71.71 -

20 200 203.4 3.80 51.83 3.79

40 800 13.24 3.94 3.379 3.94

80 3200 0.8383 3.98 0.2140 3.98

160 12800 0.05264 3.99 0.01343 3.99

Table 3.11: Errors (3.5.4) for the numerical scheme presented in [42], with ∆t = h2, for

Example 2.

J M E1 × 107 eoc1 E2 × 106 eoc2

10 50 2839 - 717.1 -

20 100 788.9 1.85 201.7 1.83

40 200 206.9 1.93 52.94 1.93

80 400 52.91 1.97 13.53 1.97

160 800 13.38 1.98 3.416 1.99

Table 3.12: Errors (3.5.4) for the numerical scheme presented in [42], with ∆t = 0.1h, for

Example 2.

J M E3 × 105 eoc3 E4 × 106 eoc4 E5 × 104 eoc5

10 50 438.3 - 762.0 - 57.71 -

20 200 31.75 3.79 54.42 3.81 15.63 0.94

40 800 2.076 3.93 3.542 3.94 3.989 0.99

80 3200 0.1317 3.98 0.2243 3.98 1.003 1.00

160 12800 0.008275 3.99 0.01409 3.99 0.2509 1.00

Table 3.13: Errors (3.5.5) and (3.5.7) for the numerical scheme presented in [42], with

∆t = h2, for Example 2.

Now that we have demonstrated the effectiveness of taking α < 1 and using our

Newton’s scheme we show the experimental order of convergence for the coupled system

in Model M2. The fully discrete finite element form of the reaction-diffusion equation

takes the form

Dt

[(
| ~Xn

ρ |Wn, ηh
)h]

+
(

ΨnWn, ηhρ

)h
+ d

(
Wn
ρ

| ~Xn
ρ |
, ηhρ

)



134

J M E3 × 105 eoc3 E4 × 106 eoc4 E5 × 104 eoc5

10 50 438.3 - 762.0 - 57.71 -

20 100 123.4 1.83 211.2 1.85 30.41 0.92

40 200 32.49 1.93 55.34 1.93 15.63 0.96

80 400 8.319 1.97 14.15 1.97 7.923 0.98

160 800 2.104 1.98 3.577 1.98 3.989 0.99

Table 3.14: Errors (3.5.5) and (3.5.7) for the numerical scheme presented in [42], with

∆t = 0.1h, for Example 2.

=
(
| ~Xn

ρ | g(V n,Wn−1), ηh
)h
, ∀ ηh ∈ Sh0 , (3.5.8a)

Wn
0 = wd, Wn

J = wd, (3.5.8b)

where Ψn(·) and V n(·) are the approximations to the tangential velocity ψ(·, tn) and the

normal velocity v(·, tn) respectively, on each σj , which take the form

Ψn := 〈Dt
~Xn, ~T n〉, V n := 〈Dt

~Xn, ~Vn〉, on σj , j = 1, . . . , J.

For this coupled system as well as monitoring the errors in (3.5.5) we also monitor

E6 := sup
n=0,...,N

|Ih(wn)−Wn|20, E7 :=
N∑
n=1

∆tn|Ih(wn)−Wn|21, (3.5.9)

and quantify them using (3.5.6).

Example 3

Setting Ω := R × R>0 and taking Γ(0) to be a semi-circle with radius one centred

around 0, with

f(w) = −1

2

w2

(1− t)
5
2

− 1

2

cos2(πρ)√
1− t

, g(v, w) = −1

2

w

1− t

and d = 1, the explicit solutions to Model M2 are then given by

~x(ρ, t) =
√

1− t (cos(πρ), sin(πρ))T , w(ρ, t) = (1− t) sin(πρ), ρ ∈ [0, 1], t ∈ [0, T ].

As in Examples 1 and 2, we produce the results in Tables 3.15 – 3.18 using MATLAB on

the iMac computer.

Table 3.15 displays the errors for ∆t = h2 and α = 1 whilst Table 3.16 displays the

errors for ∆t = h2 and α = 0.5. Table 3.17 displays the errors for ∆t = 0.1h and α = 1

whilst Table 3.18 displays the errors for ∆t = 0.1h and α = 0.5. We see that E3 and
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E4 are following the same convergence rate as in Examples 1 and 2 for both α = 1 and

α < 1 with ∆t = C h2 and ∆t = C h. We also see that E6 and E7 exhibit eocs of close to

4 for both α = 1 and α < 1 with ∆t = C h2, and exhibit close to 2 for both α = 1 and

α < 1 with ∆t = C h. Considering ∆t = C h, the errors E6 and E7 are exhibiting the eocs

expected from [6] but again not proven in our setting. As with E4, one expects the eoc

of E6 to be 4 when ∆t = C h2 since it is an L2 type error. As with E3, E7 is exhibiting

superconvergence for ∆t = C h2 since it is an H1 type error. Considering the setting of

α = 1, taking J = 10 and M = 80 results in approximately 0.011 seconds of execution time

whilst taking J = 160 and M = 20480 results in approximately 63.3 seconds of execution

time.

J M E3 × 105 eoc3 E4 × 105 eoc4 E6 × 106 eoc6 E7 × 106 eoc7

10 80 445.4 - 147.0 - 11.23 - 55.22 -

20 320 37.90 3.55 13.34 3.46 0.6858 4.03 3.491 3.99

40 1280 2.577 3.88 0.9244 3.85 0.04296 4.00 0.2186 4.00

80 5120 0.1645 3.97 0.05933 3.96 0.002686 4.00 0.01367 4.00

160 20480 0.01034 3.99 0.003733 3.99 0.0001679 4.00 0.0008549 4.00

Table 3.15: Errors (3.5.5) and (3.5.9) for (3.5.3a)–(3.5.3d) and (3.5.8a)–(3.5.8b), with

∆t = h2 and α = 1, for Example 3.

J M E3 × 105 eoc3 E4 × 105 eoc4 E6 × 106 eoc6 E7 × 106 eoc7

10 80 63.93 - 42.01 - 17.13 - 86.67 -

20 320 5.587 3.52 3.634 3.53 1.088 3.98 5.478 3.98

40 1280 0.3812 3.87 0.2478 3.87 0.06828 3.99 0.3433 4.00

80 5120 0.02436 3.97 0.01584 3.97 0.004272 4.00 0.02147 4.00

160 20480 0.001531 3.99 0.0009954 3.99 0.0002670 4.00 0.001342 4.00

Table 3.16: Errors (3.5.5) and (3.5.9) for (3.5.3a)–(3.5.3d) and (3.5.8a)–(3.5.8b), with

∆t = h2 and α = 0.5, for Example 3.
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J M E3 × 105 eoc3 E4 × 105 eoc4 E6 × 106 eoc6 E7 × 106 eoc7

10 80 445.4 - 147.0 - 11.23 - 55.22 -

20 160 182.5 1.29 56.70 1.37 1.197 3.23 3.353 4.04

40 320 57.53 1.67 17.61 1.69 0.1544 2.95 0.2024 4.05

80 640 16.11 1.84 4.911 1.84 0.02446 2.66 0.01592 3.67

160 1280 4.259 1.92 1.297 1.92 0.004616 2.41 0.002560 2.64

Table 3.17: Errors (3.5.5) and (3.5.9) for (3.5.3a)–(3.5.3d) and (3.5.8a)–(3.5.8b), with

∆t = 0.1h and α = 1, for Example 3.

J M E3 × 105 eoc3 E4 × 105 eoc4 E6 × 106 eoc6 E7 × 106 eoc7

10 80 63.93 - 42.01 - 17.13 - 86.67 -

20 160 98.45 -0.63 34.68 0.28 1.141 3.91 5.145 4.07

40 320 44.07 1.16 14.08 1.30 0.1496 2.93 0.2967 4.12

80 640 14.21 1.63 4.411 1.67 0.02406 2.64 0.01948 3.93

160 1280 4.008 1.82 1.231 1.84 0.004587 2.39 0.002489 2.97

Table 3.18: Errors (3.5.5) and (3.5.9) for (3.5.3a)–(3.5.3d) and (3.5.8a)–(3.5.8b), with

∆t = 0.1h and α = 0.5, for Example 3.
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Chapter 4

Mathematical modelling and

numerical discretisation of models

focused on the rice blast fungus

In this chapter we review the mathematical model of the rice blast fungus derived in [102]

and derive and discretise a diffuse interface approximation to this model. We chose to

derive a diffuse interface approximation to this model purely for mathematical interest.

There are mathematical elements in the sharp interface model described in [102] which

don’t have a clear representation in a phase field setting, such as the repulsion of two

evolving surfaces. We only postulate ways to address the terms which don’t have a clear

representation in the phase field setting, rigorous mathematical proof is still required

to show that the postulated terms do indeed approximate the sharp interface versions

correctly such as by completing asymptotic analysis. First we briefly introduce the life

cycle of the fungus.

The life cycle of the fungus can be broken up into seven stages in a fairly standard

biological way, see [119]. Namely we have

1. Eruption: After consuming the plant, the fungus erupts out of a leaf and grows to

infect more plants;

2. Spore tip mucilage1: A spore finds a new plant (via a leaf) and begins the processing

1Mucilage is a thin viscous pool of liquid that binds the tip of a spore, that has erupted from a fungus,

to a surface, [121].
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of infection;

3. Germ tube2 formation: A germ tube is released by the spore and covers an area of

the leaf;

4. Melanin-lined appressorium3 cell wall: Growth of the fungus puts pressure on the

cell wall of the leaf;

5. Penetration peg: A part of the tumour penetrates the pressured leaf allowing for

infection of the whole plant;

6. Primary invasive hyphae4: Upon puncturing through the cell wall, the fungus injects

hyphae to infect the whole plant;

7. Tissue colonisation5: The fungus spreads around the plant until the majority of the

leaf cells have been consumed.

Each of these stages matches an equivalent stage in Figure 4.1. The mathematical

model in [102] focuses on stages four and five above. It describes the growth of the fungus

and the penetration of the leaf as the result of the growth of the penetration peg.

The mathematical model presented in [102] comprises of six components. The fungus

and leaf are each modelled as hypersurfaces in R3. The mechanics describing the growth

of the fungus and its peg are dependent on four molecular species living on the fungus

surface. These species are Melanin, F-actin, Septins (a group of different Septin proteins)

and a turgor sensor Sln1 (interchangeably referred to as TS). Initially, it is assumed that

the fungus has grown to some given size before recruitment of the species begins. Each of

the species satisfies a reaction-diffusion equation on the surface of the fungus. Moreover,

each of the species is localised to specific parts of the surface of the fungus, detailed in

Assumptions 4.1. The fungus can be split into two parts; the bulk and the appressorium.

The bulk represents the interior of the fungus where the species are recruited from and

the appressorium is the surface of the fungus. We interchangeably use fungus and ap-

pressorium to represent the same object. Furthermore we split the appressorium into two

sections, the appressorium dome and the pore. The pore describes the part of the fungus

2A germ tube is an outgrowth in a spore produced by a fungus, [1].
3An appressorium is a pressing organ of a fungus from which an infection peg grows and punctures the

host, [76].
4A hypha is a long, branching filamentous structure of a fungus, [90].
5In biology, colonisation is the process by which a species spreads to new areas, [106].
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Figure 4.1: Life cycle of the rice blast fungus. Image created by Dr. George Littlejohn

and Marian Littlejohn, University of Plymouth.

where the penetration peg will form. The assumptions of the model presented in [102] are

defined in Assumptions 4.1.

Assumptions 4.1. blah

The authors in [102] assume the following when deriving the mathematical model:

1. Each molecular species is recruited to the surface from the bulk which is initially

full; [102]

2. Bulk concentration of each species is taken to be spatially constant; [102]

3. The total amount, surface concentration and bulk concentration combined, of each

species is conserved; [102]

4. Melanin is only recruited away from the pore; [21]

5. Melanin recruitment is positively correlated with increasing turgor pressure and is

inhibited by the presence of Sln1 in the bulk; [31]
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6. Sln1 recruitment to the surface is inhibited by the presence of Melanin in the bulk

and can only be recruited once there is enough Melanin on the surface; [21]

7. F-actin and Sln1 are initially recruited to an annular region of the pore and diffuse

into other parts of the pore over time; [35]

8. Significant recruitment of Septins and F-actin can only happen once there is a pres-

ence of Sln1; [35]

9. The Septins are recruited to a smaller, but further out from the centre, annular

region of the pore to act as a diffusion barrier for the other species; [35]

10. The appressorium dome inflates due to turgor pressure, which is assumed to be an

increasing function of the amount of Melanin on the surface; [36]

11. The interaction of the leaf and the fungus is in an annular region within the pore;

[102]

12. F-actin is recruited to the pore to magnify turgor pressure; [35]

13. The Septins and Melanin are positively correlated with the rigidity of the appress-

orium; [35]

14. Once the leaf has formally been ruptured, it no longer resists penetration and no

longer influences the motion of the fungus. [102]

4.1 Mathematical model introduced in [102]

This section will closely follow the supplementary information provided in [102]. The

authors introduce the model with the biological values for parameters and then non-

dimensionalise, here we give the non-dimensionalised values. They also consider two types

of models, a wild type and a mutant type lacking the turgor sensor Sln1. In this setup,

we only consider the wild type.

Let Γ(t) be the evolving surface describing the fungus. The fungus is initially taken

to be dome shaped with radius R = 0.2 that is cut off at a certain depth and made flat

to model the pore area which has a diameter of R0 = 0.176. Let ΓL(t) be the evolving

surface describing the leaf. The leaf initially is taken to be a planar surface that is a square

with sides of length 1. We first introduce the SRDEs satisfied by the concentrations of
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the molecular species. The concentration of each of the molecular species is assumed to

satisfy a mass conservation law, which is Assumption 3, and takes the following form

1 = Bi(t) + Si(t), t ∈ [0, T ], (4.1.1)

where Si(t) is the concentration of species i on the surface and Bi(t) is the concentration

of species i left in the bulk. Using the conservation law, denoting the species vector

~u := (um, uts, us, ua) where um, uts, us and ua denote the concentrations of Melanin, TS,

the Septins, and F-Actin, respectively, with the velocity of the evolving fungus surface

denoted by ~v, from [58] each of the species satisfy an SRDE in the form of

∂•t ui + ui divΓ(~v)− divΓ(Di(us)∇Γui) = fi − ki ui, on Γ(t), t ∈ (0, T ], (4.1.2a)

ui(·, 0) = 0, on Γ(0), (4.1.2b)

with each species having its own external forcing fi and parameters Di, ki that affect

the recruitment and mechanics of the molecular species. The initial condition for the

molecular species coincide with Assumption 1. Indeed taking t = 0 in (4.1.1), and noting

that Bi(0) = 1, we see that Si(0) = 0, with Si(t) calculated in the following way

Si(t) :=

∫
Γ(t)

ui(·, t) dS, t ∈ [0, T ]. (4.1.3)

The first term in the SRDEs is the material derivative ∂•t ui = ∂tui + 〈~v,∇ui〉 of the

species ui. An interpretation of the material derivative is the rate of change of a quantity

as experienced by an observer that is moving along with the flow, [49]. It comprises of

a local rate of change of concentration of a molecular species, represented by ∂tui, and a

non-local transportation of a molecular species from the growth of the fungus, represented

by 〈~v,∇ui〉. The second term of the SRDEs is the advection term of the molecular species

ui. An interpretation of the advection term is the flux of the concentration of the molecular

species given the trajectory of the growth. In this model the velocity field ~v = v ~ν is the

normal velocity of the surface. The third term of the SRDEs is the diffusion term of the

molecular species ui. An interpretation of the diffusion term is the change in concentration

of the molecular species in comparison to the surrounding concentration of the molecular

species. Here the diffusivity parameter is

Di(us) :=

 ds for i = s

di
2

(
1−H

(
us−s3
s3

))
for i = m, ts, a

where H(·) is the conventional Heaviside function, (dm, dts, ds, da) = (0, 10−3, 10−5, 10−3)

and s3 = 0.1. Following Assumption 4, the diffusivity of Melanin is set to zero so that
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it only present in the regions where it is recruited to which, as we will see, is everywhere

except the pore. The diffusivity of Sln1 and F-actin are dependent on the concentration

of Septins so that in areas of large amounts of Septins, there is no diffusion through those

regions, per Assumption 9. The diffusivity values are small, but non zero, which follows

Assumption 7. The parameter s3 represents a threshold value for the concentration of

Septins in certain regions. The first term on the right-hand side of the SRDEs is a source

term. An interpretation of the source term is that it provides the system with the creation,

and localisation, of each molecular species. Indeed, since the initial condition is zero, this

term will define where on the surface the recruitment of each species takes place. Before

we show the forms of the source terms we introduce components necessary to describe

them. Firstly we describe the ring structure rs, which is used to represent the geometry of

the pore and provide structure for the localisation of the molecular species. For ~p ∈ Γ(0),

rs initially takes the form

rs(~p, 0) =


0 if ~p2 > 0,

0 if |(~p0, ~p1)| > R0
2 ,

r1 + r2|(~p0, ~p1)| otherwise.

(4.1.4)

The parameters r1 = 1
3 and r2 = 20

3 correspond to initial reference values for the ring

structure, and R0 = 0.176 defines the initial diameter of the pore as above. The ring

structure is assumed to not diffuse and is simply transported by the motion of the surface,

and as such satisfies the following surface advection equation (SAE)

∂•t rs+ rsdivΓ(~v) = 0, on Γ(t), t ∈ (0, T ].

Next we introduce the turgor pressure

p(Sm(t), t) := p1(t) + µSm(t). (4.1.5)

In this setting p1 is the turgor pressure that increases linearly over time and then becomes

constant. It takes the form

p1(t) :=

 Pt+ pI for t < t̄

P t̄+ pI for t̄ ≤ t ≤ T

where P = 5 is the time pressure coupling constant, pI = 1 is the initial pressure and t̄

is time period for turgor generation. Since Sm is the surface concentration of Melanin,

µ = 2 is the Melanin recruitment coupling constant, and the whole term provides extra

turgor pressure proportional to the concentration of Melanin, which follows Assumption

5. Finally we introduce some sets which are the localisation regions for the recruitment of

the molecular species, namely we have:
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• Sm defines the set of the surface where the pore is not, and hence where Melanin

will be recruited to, and takes the form

Sm(t) := {~p ∈ Γ(t) : rs(~p, t) = 0}

since rs represents the ring structure describing the pore;

• Srs defines the set of the surface where the pore is and takes the form

Srs(t) := {~p ∈ Γ(t) : rs(~p, t) > 0};

• Sts, Ss, Sa define the annular sets on the surface where Sln1, the Septins and F-actin

will be recruited to, and take the form

Si(t) := {~p ∈ Γ(t) : rs(~p, t) > αi}

for i = ts, s, a, where αi defines the inner annulus radius for each species. Here αs =

0.6, αts = 0.3 and αa = 0.3, which follows Assumption 9, since αs > max{αa, αts},

and Assumption 7;

• T defines the set whereby enough Melanin has been recruited to the surface to allow

for the turgor sensor to be recruited to the surface, and takes the form

T := {t ∈ [0, T ] : Sm(t) > qmBm(t)}

where qm = 1
19 defines the ratio of concentration of Melanin on the surface to the

concentration in the bulk.

We can now describe the forcing functions of the SRDEs for each of the molecular

species as follows:

• the forcing for Melanin fm takes the form

fm(t) := lmχSm(t)
Bm(t)− qb

cm +Bm(t)− qb
(p(Sm(t), t)− pI)

where lm = 30 represents the coefficient of recruitment of Melanin from the bulk,

qb = 0.55 represents the proportion of Melanin and Sln1 that is unavailable for

recruitment, cm = 10 is the saturation level of Melanin which comes from a Michaelis-

Menten formulation of the forcing, see [34], and χA is the characteristic function of

the set A. It is noted in [102] that linear recruitment of Melanin was insufficient

to differentiate between differences in behaviour between the wild type and mutant

type, and so the authors chose to use the Michaelis-Menten term. The use of qb acts

per Assumption 5;
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• the forcing for Sln1 fts takes the form

fts(t) := ltsχSts(t)(Bts(t)− qb)χT

where lts = 1 represents the coefficient of recruitment of the turgor sensor from the

bulk. The use of qb and χT acts per Assumption 6;

• the forcing for the Septins fs takes the form for ~p ∈ Γ(t)

fs(~p, t) := (lsχSs(t)χuts(~p,t)>0 + βsχSrs(t))Bs(t)

where ls = 1 represents the coefficient of recruitment of the Septins from the bulk,

and βs = 0.1 is the uniform recruitment coefficient of the Septins. Since ls > βs,

large amounts of recruitment are only initiated when there is a presence of turgor

sensor, per Assumption 8;

• the forcing for F-actin fa takes the form for ~p ∈ Γ(t)

fa(~p, t) := (laχSa(t)χuts(~p,t)>0 + βaχSrs(t))Ba(t)

where la = 1 represents the coefficient of recruitment of F-actin from the bulk, and

βa = 0.1 is the uniform recruitment coefficient of F-actin. Since la > βa, large

amounts of recruitment are only initiated when there is a presence of turgor sensor,

per Assumption 8.

The final term on the right hand side of the SRDE is the degradation (or destruction)

rate of each of the species. An interpretation of the degradation term is that it represents

the re-absorption of each species from the fungus surface to the bulk. We have that

(km, kts, ks, ka) = (0, 0.1, 0.1, 0.1), whereby it is evident that no Melanin is re-absorbed.

We now describe the velocity laws for the motion of the fungus and leaf, both of which

will take the form of forced mean curvature flow. We first introduce the velocity law for

the fungus, namely

ω v = σ κ+ p(1 + gp) + gr, on Γ(t), t ∈ (0, T ]. (4.1.6)

Here the coefficient ω on the left-hand side of velocity law models the rigidity of the fungus

and takes the form

ω(um, ua) := ω0(λm1,m2(um) + λs1,s2(us)), (4.1.7)

where ω0 = 1 is the magnification factor of the rigidity and

λi1,i2(ui) := 1 +
i1
2

(
1 +H

(
ui − i2
i2

))
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represents the magnification function for both Melanin and Septins, as per Assumption

13. In this setting m1 = s1 = 1000 are the rigidity magnification factors due to Melanin

and Septins respectively, and m2 = 0.25, s2 = 0.2 are the reference values for the initiation

of the magnification of the rigidity from Melanin and Septins respectively. We now briefly

discuss why this term represents rigidity. Consider

ω v = κ and v = κ

then, by fixing κ, if ω is significantly large, the velocity will be significantly smaller as the

amount of curvature is being divided by this factor. Thus the factor ω will be restricting

the movement of the surface. Similarly, we can see this by considering Γ(t) to be a circle,

as each law satisfies

r(t) =

√
r(0)2 − 2

ω
t and r(t) =

√
r(0)2 − 2t,

where r(t) is the radius of Γ(t). It can easily be seen that with a large value of ω, the

reduction of the radius of the circle is impeded, and thus can be interpreted as rigidity. The

coefficient σ = 0.1 in (4.1.6) acts as surface tension. This term can be interpreted as the

resistance of the fungus to stretching. Mathematically σ is called the kinetic coefficient.

The external forcing on the right-hand side of the velocity law consists of two parts, one

which is a protrusive force p(1 + gp) and the other which is repulsion ~g. First, we look at

the protrusive force which takes the form

p(Sm(t), t)(1 + gp(ua)).

The function p describes the turgor pressure and has already been described in (4.1.5). Its

inclusion into the velocity law for the fungus coincides with Assumption 10. The function

gp describes the magnification of the turgor from the presence of F-actin and takes the

form

gp(ua) :=
a1

2

(
1 +H

(
ua − a2

a2

))
.

Here a1 = 5 is the protrusive force magnification factor and a2 = 0.25 is the reference

value for the initiation of magnification due to the F-actin concentration. We notice that

due to the forcing term for F-actin this pressure will be localised on the surface in an

annulus in the pore, as per Assumption 12. For some ~p ∈ Γ(t), the repulsion force gr in

(4.1.6) takes the form

gr(κL, ~p, t) :=

 0 ‖κL(·, t)‖L∞(ΓL(t)) > κ̄L,

〈~r(~p, t), ~ν(~p, t)〉 otherwise,
(4.1.8)
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where κ̄L = 0.4 is the maximum mean curvature of the leaf before rupturing, ~r defines an

obstacle potential and ~ν represents the inward pointing unit normal vector to Γ(t). The

presence of κ̄L provides the maximum threshold of pressure the leaf can withstand and

once it has been breached the repulsion term is set to zero which signals that the leaf has

been punctured, following Assumption 14. Before the threshold is breached an obstacle

potential is considered that takes the form

~r(~p, t) := r0 k

(
d0

d(~p, t)

)k 1

d(~p, t)
∇d(~p, t) (4.1.9)

where r0 = 1 is the reference force per unit associated to the potential, k = 12 is a power

factor, d0 = 0.05 is the reference distance such that for d(~p, t) > d0 the force becomes

negligible and d(~p, t) defined as

d(~p, t) := min
~q∈ΓL(t)

|~p− ~q|

is the minimum distance of a fixed point ~p on the fungus to a point ~q on the leaf. We

note that the name obstacle potential is an abuse of notation and is not the same as the

double obstacle potential described for the phase field approach to mean curvature flow.

If d(~p, t) > d0 then the contribution of this repulsive force is incredibly small but once we

have d(~p, t) < d0 the force quickly becomes large. Although by itself the repulsion term

does not necessarily abide by Assumption 11, the added fact that the turgor pressure, and

more importantly magnification due to F-actin, only happens where the concentration of

F-actin is present and reached a certain threshold, which will be in an annular region in

the pore area, means that with these combined we can say that this term is in accordance

to Assumption 11.

Now that we have introduced the evolution law for the fungus, let us now introduce

the evolution law for leaf, which takes the form

ωL vL = σL κL + grL, on ΓL(t), t ∈ (0, T ]. (4.1.10)

In (4.1.10) ωL models the rigidity of the leaf and is taken to be constant with ωL = 106.

Similarly σL is the resistance to stretching and takes the constant value σL = 106. These

are both fixed contributions coming from the fact that the leaf is significantly larger than

the fungus and that its material doesn’t change in the life cycle of the fungus. The forcing

term grL is the repulsion term, which is similar to (4.1.8), and, for some ~q ∈ ΓL(t), takes

the form

grL(κL, ~q, t) :=

 0 ‖κL(·, t)‖L∞(ΓL(t)) > κ̄L

−〈~r(~q, t), ~νL(~q, t)〉 otherwise
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where ~r is the same obstacle potential described in (4.1.9), whereby

d(~q, t) := min
~p∈Γ(t)

|~p− ~q|

describes the minimum distance from a fixed point ~q on the leaf to a point ~q on the fungus,

and ~νL is the upward pointing unit normal to ΓL. Since the leaf is flat and hence has no

curvature, the only movement will happen from the repulsion term. However the force

from the repulsion has to be of a large magnitude due to the order of the coefficients of

the velocity and curvature terms. This models the fact that the leaf is significantly larger

than the fungus and that it will take a huge protrusive force from the fungus to start to

bend the leaf.

4.2 Parametric formulation of a simplified model for curves

In [102] the authors solve a finite element approximation of the mathematical model that

they derive and they present numerical simulations in which Γ(t) and ΓL(t) are taken to

be hypersurfaces in R3, see [64]. In this section we reduce the spatial dimension of the

problem and model the fungus and leaf as curves in R2. We consider two setups, the first,

presented in Section 4.2.1, describes the simulation of the full model in [102] reduced in

dimension from surface to curves and the second, presented in Section 4.2.2, describes a

reduction of the model in Section 4.2.1 which ties into the analysis conducted in Chapter

3.

4.2.1 Full model from [102] reduced from surfaces in R3 to curves in R2

Here we consider a vertical cross section of the geometry considered in [102] in which the

appressorium from [102] is modelled by a closed curve in R2, with a semi-circular dome

and a flat pore section, and the leaf is modelled as a flat curve. We set Γ(t) to denote the

curve that represents the evolving fungus and initially we take it to be a circle cut off at

a certain depth which we describe as

Γ(0) := Γ1 ∪ Γ2, (4.2.1)

where Γ1 describes the circular part

Γ1 :=
{
~p ∈ R2 : − θf ≤ tan−1(~p1/~p0) ≤ π + θf , |~p| = R

}
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~ν

~νL

εd

Γ(0)

ΓL(0)

R′0

2L

R

Figure 4.2: Initial rice blast schematic. The red line is the initial fungus curve and the

green line is the initial leaf curve.

and Γ2 describes the flat part

Γ2 :=

{
~p ∈ R2 : π + θf ≤ tan−1(~p1/~p0) ≤ 2π − θf , ~p1 = −

√
R2 − (R′0)2, |~p0| ≤ R′0

}
where θf = tan−1(

√
R2 − (R′0)2/R′0) is the polar angle where Γ1 and Γ2 meet, R = 0.2

is the initial radius of the circle, and 2R′0 = R0 with R0 = 0.176 being the diameter of

the pore, see Figure 4.2. Similarly we set ΓL(t) to denote the curve that represents the

evolving leaf and initially we take it to be a bounded flat curve

ΓL(0) = {~p ∈ R2 : ~p1 = −
√
R2 − (R′0)2 − εd, ~p0 ∈ [−L,L]}. (4.2.2)

We set 2L = 1 to be the length of the ΓL(t) and define εd to be some threshold that ensures

initially the leaf is sufficiently far away from the fungus, thus not invoking a reaction from

the repulsion terms in the velocity laws immediately.

Let ~x denote a parametrisation of Γ(t) and ~y denote a parametrisation of ΓL(t). Then

the velocity laws (4.1.6) and (4.1.10) take the form

(ω ~x)t − σ
~xρρ
|~xρ|2

= (p(1 + gp) + gr)~ν, (ρ, t) ∈ I× (0, T ], (4.2.3a)

ωL ~yt − σL
~yρρ
|~yρ|2

= grL ~νL, (ρ, t) ∈ I × (0, T ], (4.2.3b)
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~x(0, t) = ~x(1, t), t ∈ (0, T ], (4.2.3c)

F (~y(ρ, t)) = 0, 〈~yρ(ρ, t),∇⊥F (~y(ρ, t))〉 = 0, (ρ, t) ∈ {0, 1} × (0, T ], (4.2.3d)

~x(ρ, 0) = ~x 0(ρ), ρ ∈ I, ~y(ρ, 0) = ~y 0(ρ), ρ ∈ [0, 1], (4.2.3e)

where ~ν denotes the outward pointing unit normal to Γ(t), ~νL denotes the downward

pointing unit normal to ΓL(t), and, for some ~p ∈ R2, F is defined as

F (~p) = |~p0| − L.

In an abuse of notation we define the parametrisation of the arc-length of both curves ~x

and ~y by ρ. The parameterisation in (4.2.3a)-(4.2.3e), noting (1.2.3) and (3.2.23b), leads

to the following SRDEs for each of the species (um, uts, us, ua)

(|~xρ| ũi)t − (ψ ũi)ρ −
(
Di(ũs)

(ũi)ρ
|~xρ|

)
ρ

= |~xρ| (fi − ki ũi) , (ρ, t) ∈ I× (0, T ], (4.2.4a)

ũi(0, t) = ũi(1, t), t ∈ (0, T ], (4.2.4b)

ũi(ρ, 0) = 0, ρ ∈ I, (4.2.4c)

where ũi(ρ, t) = ui(~x(ρ, t), t) and ψ = 〈~xt, ~ν⊥〉 denotes the tangential velocity ~x. For the

remainder of this subsection we drop the tilde on ui, and also rs, for ease of presentation.

Initially we see that the concentration of each molecular species is set to zero, whereby we

calculate the total amount of each species on the surface by

Si(t) :=

∫
I
|~xρ(·, t)|ui(·, t) dρ, t ∈ [0, T ].

The diffusivity parameters we choose are

Di(us) :=

 ds for i = s

di
2

(
1−Hδ

(
us−s3
s3

))
for i = m, ts, a

where, for r ∈ R,

Hδ(r) = tanh(r δ−1)

is a smooth approximation to the Heaviside function H for some positive δ � 1, as taken

in [102]. We take (dm, dts, ds, da) = (0, 10−2, 10−5, 10−2) and s3 = 0.1, which are the same

values as in [102]. Since we consider a curve rather than a surface, we redefine the ring

structure, which initially, for some ~p ∈ Γ(0), is given by

rs(~p, 0) :=


0 if ~p1 > −

√
R2 − (R′0)2

0 if |~p0| > R′0

r1 + r2|~p0| otherwise,
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where R = 0.2, R′0 = 0.088, r1 = 1
3 and r2 = 20

3 as in [102], and satisfies the following SAE

(|~xρ| rs)t − (ψ rs)ρ = 0, (ρ, t) ∈ I× (0, T ],

rs(0, t) = rs(1, t), t ∈ (0, T ].

The turgor pressure takes the form

p(Sm(t), t) := p1(t) + µSm(t), (4.2.5)

where µ = 0.5 is the Melanin coupling constant which has been reduced from µ = 2 in

[102] and p1(t) takes the form

p1(t) :=

 Pt+ pI for t < t̄

P t̄+ pI for t̄ ≤ t ≤ T

with the time pressure constant P = 1 being reduced from P = 5 in [102], and pI = 1

and t̄ = 0.25 as in [102]. We chose to reduce these parameters as computationally in our

reduced model we found µ = 2 caused the appressorium dome to grow too quickly in

comparison to the simulations in [102] and, once the leaf has ruptured, P = 5 caused the

penetration peg to grow too rapidly due to the too large pressure. The activation and

recruitment sets follow the structure set in [102] and take the form

• Sm defines the set of the surface where the pore is not, and takes the form

Sm(t) := {~p ∈ Γ(t) : rs(~p, t) = 0};

• Srs defines the set of the surface where the pore is and takes the form

Srs(t) := {~p ∈ Γ(t) : rs(~p, t) > 0};

• Sts, Ss, Sa define the annular sets on the surface where Sln1, the Septins and F-actin

will be recruited to, and take the form

Si(t) := {~p ∈ Γ(t) : rs(~p, t) > αi}

for i = ts, s, a, where αs = 0.6, αts = 0.3 and αa = 0.3 as in [102];

• T defines the set whereby enough Melanin has been recruited to the surface to allow

for the turgor sensor to be recruited to the surface, and takes the form

T := {t ∈ [0, T ] : Sm(t) > qmBm(t)}

where qm = 1
19 as in [102].
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The description of each forcing function fi then follows as:

• the forcing for Melanin fm takes the form

fm(t) := lmχSm(t)
Bm(t)− qb

cm +Bm(t)− qb
(p(Sm(t), t)− pI)

where qb = 0.55 and cm = 10, as in [102], and lm = 300 which is increased from

lm = 30 in [102] to compensate for the reduction of the coupling constant in the

turgor pressure;

• the forcing for Sln1 fts takes the form

fts(t) := ltsχSts(t)(Bts(t)− qb)χT

where lts = 1 and qb = 0.55 as in [102];

• the forcing for the Septins fs takes the form for ρ ∈ I

fs(ρ, t) := (lsχSs(t)χuts(ρ,t)>0 + βsχSrs(t))Bs(t)

where ls = 1 as in [102], and βs = 0.01, which is decreased from βs = 0.1 in [102]

as in our setting the concentration throughout the pore became large enough to

influence the evolution of the fungus in regions where it should not;

• the forcing for F-actin fa takes the form for ρ ∈ I

fa(ρ, t) := (laχSa(t)χuts(ρ,t)>0 + βaχSrs(t))Ba(t)

where la = 1 as in [102], and, for the same reason as above, βa = 0.01 decreased

from βa = 0.1.

We kept the degradation rate of each species (km, kts, ks, ka) = (0, 0.1, 0.1, 0.1) the same

as in [102]. The rigidity, ω, takes the form

ω(um, ua) := ω0(λm1,m2(um) + λs1,s2(us)),

where ω0 = 1 as in [102], and

λi1,i2(ui) := 1 +
i1
2

(
1 +Hδ

(
ui − i2
i2

))
with m1 = s1 = 1000 and s2 = 0.2 as in [102], and m2 = 0.15 which is reduced from

m2 = 0.25 in [102] because in our setup the concentration of Melanin increased much
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faster than it did in to the simulations in [102]. For a similar reason we take λ(um), where

um is defined as for ρ ∈ I

um(ρ, t) :=

 ‖um(·, t)‖L∞(I) if um(ρ, t) > 0,

0 otherwise,

rather than λ(um) as this gave rise to a more uniform distribution of Melanin than using

λ(um). The protrusive force takes the form

p(Sm(t), t)(1 + gp(ua))

with p defined as in (4.2.5), and the magnification function gp defined as

gp(ua) :=
a1

2

(
1 +Hδ

(
ua − a2

a2

))
,

where a2 = 0.25 as in [102] and a1 = 1 is reduced from a1 = 5 in [102], as when we used

a1 = 5 once the leaf ruptured the penetration peg grew more rapidly than it did in the

simulations in [102]. For some ρ ∈ I, the repulsion force gr takes the form

gr(κL, ρ, t) :=

 0 ‖κL(·, t)‖L∞(I) > κ̄L,

〈−~r(ρ, t), ~ν(ρ, t)〉 otherwise,
(4.2.6)

where κ̄L = 0.000604 reduced from κ̄L = 0.4, the obstacle potential is defined as

~r(ρ, t) := r0 k

(
d0

d(ρ, t)

)k 1

d(ρ, t)
∇d(ρ, t) (4.2.7)

with the distance function defined as

d(ρ, t) := min
p∈[0,1]

|~x(ρ, t)− ~y(p, t)|

to be the minimum distance of a fixed point ~x(ρ, t) on the fungus to a point ~y(·, t) on

the leaf. The parameters r0 = 1, k = 12 and d0 = 0.05 are as in [102], and κ̄L was

chosen experimentally to match the computational time the leaf ruptured in [102]. We

also note that κ̄L heavily relies on the choice of the surface tension on the leaf σL which

was decreased from σL = 106 to σL = 104. Similarly we decreased the rigidity factor of

the leaf from ωL = 106 to ωL = 104. Taking σL = ωL = 106 resulted in no noticeable

penetration peg being formed before the rupture of the leaf. We keep the surface tension

of the fungus to be σ = 0.1 as in [102]. The forcing term grL, for some ρ ∈ [0, 1], takes the

form

grL(κL, ρ, t) :=

 0 ‖κL(·, t)‖L∞(I) > κ̄L,

〈~r(ρ, t), ~νL(ρ, t)〉 otherwise,
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where ~r is the same obstacle potential described in (4.2.7), whereby

d(ρ, t) := min
p∈I
|~x(p, t)− ~y(ρ, t)|

describes the minimum distance of a fixed point ~y(ρ, t) on the leaf to a point ~x(·, t) on the

fungus. We note the changes of sign in comparison to Section 4.1 are due to the orientation

of the two normal vectors ~ν, ~νL from the setup.

For a finite element approximation of this model, we used the numerical scheme presen-

ted in [6], with α = 1, for the finite element approximation of (4.2.3a), (4.2.3c), (4.2.4a)

and (4.2.4b), and we use the Newton’s scheme (3.5.3a)-(3.5.3d) for the finite element ap-

proximation of (4.2.3b) and (4.2.3d). We take T = 0.4 as opposed to T = 0.5 in [102],

δ = 102 for the approximation to the Heaviside function and εd = 0.1 for the initial sep-

aration of the leaf and fungus curves. As in [102] we use a uniform mesh for the partition

of the leaf I but a non-uniform mesh for the partition of the fungus I. Indeed we use a

coarser mesh outside of the pore area and refine in the pore area, giving us a higher resol-

ution for the penetration peg formation. This can be seen in Figure 4.3b. The simulations

and visualisations were executed using MATLAB on the iMac computer, see Section 3.5,

with 200 DOFs, hmin = 10−3, hmax = 10−2, and ∆t = 10−4 which resulted 180 seconds of

execution time.

Figures 4.3–4.6 demonstrate the key parts of the simulation we want to compare to

the simulation in [102]. Figure 4.3 shows the initial rice blast, leaf and ring structure,

as well as the non-uniform mesh for the fungus. Figure 4.4 demonstrates the evolution

of the fungus, Figure 4.5a–4.5d demonstrates the evolution of the Melanin concentration,

Figure 4.5e–4.5h demonstrates the evolution of the Sln1 concentration, Figure 4.6a–4.6d

demonstrates the evolution of the Septins concentration, and Figure 4.6e–4.6h demon-

strates the evolution of the F-actin concentration. Figure 4.4a demonstrates the fungus

growing, while Figures 4.4b and 4.5b show the largest the fungus will get as the Melanin

rigidity threshold has been reached, as well as the annulus behaviour of the other three

molecular species in Figures 4.5f, 4.6b and 4.6f. Figures 4.4c and 4.6g show that the

threshold of the magnification of the turgor pressure has been reached and the pore area

starts to push down on the leaf. Figure 4.4d shows the final time step of the simulation,

whereby you can clearly see the peg has formed. Finally we demonstrate in Figure 4.7

that in fact although the fungus grows quite a lot, the ring structure doesn’t move that

much at all, which be important for our derivation of a phase field model in Section 4.3.

An interesting behaviour that occurs here that may not be expected is that once the peg
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starts to form the concentration of the molecular species on the surface of the peg start to

deplete apart from right at the edge of the ring structure. This allows the peg to maintain

its shape whilst not grow exceptionally large as the F-actin driven magnification of the

pressure reduces.

(a) Initial rice blast and leaf. (b) Initial ring structure demonstrating non-

uniform mesh.

Figure 4.3: Initial conditions for full model simulation in the parametric framework.
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(a) Rice blast and leaf at t = 0.1.

(b) Rice blast and leaf at t = 0.2.

(c) Rice blast and leaf at t = 0.3.

(d) Rice blast and leaf at t = 0.4.

Figure 4.4: Full model simulation for parametric framework. Evolution of the rice blast.
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(a) Concentration of Melanin at t = 0.1.

(b) Concentration of Melanin at t = 0.2.

(c) Concentration of Melanin at t = 0.3.

(d) Concentration of Melanin at t = 0.45.

(e) Concentration of Sln1 at t = 0.1.

(f) Concentration of Sln1 at t = 0.2.

(g) Concentration of Sln1 at t = 0.3.

(h) Concentration of Sln1 at t = 0.35.

Figure 4.5: Full model simulation for parametric framework: Melanin and Sln1.
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(a) Concentration of the Septins at t = 0.1.

(b) Concentration of the Septins at t = 0.2.

(c) Concentration of the Septins at t = 0.3.

(d) Concentration of the Septins at t = 0.35.

(e) Concentration of F-actin at t = 0.1.

(f) Concentration of F-actin at t = 0.2.

(g) Concentration of F-actin at t = 0.3.

(h) Concentration of F-actin at t = 0.35.

Figure 4.6: Full model simulation for parametric framework: Septins and F-actin.
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(a) Initial ring structure. (b) Ring structure once fungus has stopped grow-

ing.

Figure 4.7: Demonstration of the movement of the ring structure in the full model simu-

lation in the parametric framework.

4.2.2 Reduced model of the model presented in Section 4.2.1

~ν

~νL

εd

Γ(0)

ΓL(0)

R′0

2L

R

(a) Initial rice blast schematic for full curve

model.

~ν

Γ(0)

L

R′0

(b) Initial rice blast schematic for reduced curve

model.

Figure 4.8: Reduced model of the rice blast fungus. Here we consider only the pore area,

the grey box in Figure 4.8a, and fix the remaining flat part of the fungus to a boundary

far away from the pore, the grey lines in Figure 4.8b.

In this subsection we further simplify the model introduced in Section 4.2.1 by restrict-

ing Γ(t) to the region around the pore area rather than considering the whole fungus in

order to study only the penetration peg, as seen in Figure 4.8. With an abuse of notation,

taking the curve Γ(t) to represented the fungus (pore), we set

Γ(0) =
{
~p ∈ R2 : ~p0 ∈ [−L,L], ~p1 = 0

}
,
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where we consider L = 0.5 to be large enough to encompass the pore area. To be more

specific, we assume that the support of the pore area is strictly contained within Γ(t)

throughout the evolution and is some positive distance away from the boundary ∂Ω during

the evolution. We consider the evolution of Γ(t) to be forced curve shortening flow fixed

orthogonally to the boundary ∂Ω, where

Ω :=
{
~p ∈ R2 : ~p0 ∈ (−L,L)

}
,

and let ~x be a parametrisation of Γ(t). Thus, since we don’t consider the leaf in this

model, the reduced version of the velocity law (4.1.6) is

(ω ~x)t − σ
~xρρ
|~xρ|2

= p(1 + gp)~ν, (ρ, t) ∈ I × (0, T ], (4.2.8a)

F (~x(ρ, t)) = 0, 〈~xρ(ρ, t),∇⊥F (~x(ρ, t))〉 = 0, (ρ, t) ∈ {0, 1} × (0, T ], (4.2.8b)

~x(ρ, 0) = ~x 0(ρ), ρ ∈ [0, 1], (4.2.8c)

where ~ν denotes the downward pointing unit normal to Γ(t), ρ denotes the parametrisation

of the arc-length associated to Γ(t), and, for some ~p ∈ R2, F is defined as

F (~p) = |~p0| − L.

By considering only the peg development we do not need to model Melanin or Sln1, since

the primary role of Melanin is to increase the size of the fungus and the primary role

of Sln1 is to act as a trigger for the Septins and F-actin upon a certain threshold of

Melanin recruitment. Although it is primarily the role of F-actin to magnify the turgor

pressure for the penetration peg, we still consider the Septins since its presence provides

the enhancement of rigidity in the pore area, allowing the shape of the peg to form. This

reduces the system of SRDEs from four to two, and so the parametrisation (4.2.8a)-(4.2.8b)

leads to the following description of the SRDEs for the Septins and F-actin (us, ua)

(|~xρ| ũi)t − (ψ ũi)ρ −
(
Di(ũs)

(ũi)ρ
|~xρ|

)
ρ

= |~xρ| (fi − ki ũi) , (ρ, t) ∈ I × (0, T ], (4.2.9a)

ũi(0, t) = ũi(1, t) = 0, t ∈ (0, T ], (4.2.9b)

ũi(ρ, 0) = 0, ρ ∈ [0, 1], (4.2.9c)

where ũi(ρ, t) = ui(~x(ρ, t), t) and ψ = 〈~xt, ~ν⊥〉 denotes the tangential velocity of ~x. For

the remainder of this subsection we drop the tilde from ui, and rs, for ease of presentation.

Since we make the assumption that the boundary ∂Ω is far enough away from the pore

area, this leads us to taking (4.2.9b) since F-actin and the Septins are localised to the
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pore. The diffusivity parameters we choose are

Ds(us) := 10−5, and Da(us) :=
10−2

2

(
1−Hδ

(
us − s3

s3

))
with s3 = 0.1 as in [102]. We redefine the ring structure and initially set it to be, for some

~p ∈ Γ(0),

rs(~p, 0) :=


0 if ~p1 > 0

0 if |~p0| > R0
2

r1 + r2|~p0| otherwise,

where R0 = 0.176, r1 = 1
3 and r2 = 20

3 as in [102], and it satisfies the following SAE

(|~xρ| rs)t − (ψ rs)ρ = 0, (ρ, t) ∈ I × (0, T ],

rs(0, t) = rs(1, t) = 0, t ∈ (0, T ],

where the boundary condition is derived in a similar manner to (4.2.9b). Since we neglect

Melanin, the turgor pressure p we use takes the form

p(t) := cp p1(t), (4.2.10)

where cp = 0.05 and p1(t) takes the form

p1(t) :=

 Pt+ pI for t < t̄

P t̄+ pI for t̄ ≤ t ≤ T

with P = 5 and t̄ = 0.25 as in [102], and pI = 0 reduced from pI = 1 in [102] since there is

no initial pressure in the pore area. We added cp as a small multiplicative factor to reduce

the turgor pressure generated by p over time. In the full model the repulsion function

stops the peg growing until the magnification is large enough, however since we neglect

repulsion in this reduced model we needed to reduce the magnitude of the pressure to allow

enough recruitment of F-actin for magnification and enough recruitment of the Septins for

the rigidity of the pore. By comparing (4.2.10) to (4.2.5) or (4.1.5), we notice the absence

of the Melanin factor since its primary role in the pressure function is to increase the size

of the appressorium dome. The activation and localisation are as in [102] and take the

form

• Srs defines the set of the surface where the pore is and takes the form

Srs(t) := {~p ∈ Γ(t) : rs(~p, t) > 0};
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• Ss and Sa define the annular sets on the surface where the Septins and F-actin will

be recruited to, and take the form

Si(t) := {~p ∈ Γ(t) : rs(~p, t) > αi}

for i = s, a, where αs = 0.6 and αa = 0.3.

Then, the description of each forcing function fi follows as:

• the forcing for the Septins fs takes the form

fs(t) := lsχSs(t)Bs(t)

with ls = 1 as in [102] but with the absence of the uniform recruitment rate βs;

• the forcing for F-actin fa takes the form

fa(t) := laχSa(t)Ba(t)

with la = 1 as in [102] but with the absence of the uniform recruitment rate βa.

We keep the degradation rate of each species (ks, ka) = (0.1, 0.1) the same as in [102].

Considering the rigidity, ω takes the form

ω(us) := ω0(1 + λ(us)), (4.2.11)

where ω0 = 1 as in [102], and

λ(us) := 1 +
s1

2

(
1 +Hδ

(
us − s2

s2

))
with s1 = 1000 and s2 = 0.2 as in [102]. By comparing (4.2.11) to (4.1.7), we notice the

absence of the rigidity caused by Melanin. Since the rigidity function considers the local

concentration of Melanin on the surface rather than the total amount recruited to the

surface of the fungus, it has no effect in the pore area, thus we take the contribution from

Melanin to be the smallest value of λm1,m2 . The protrusive force takes the form

p(t)(1 + gp(ua))

with p defined in (4.2.10), and the magnification factor gp defined as

gp(ua) :=
a1

2

(
1 +Hδ

(
ua − a2

a2

))
,

where a1 = 5 and a2 = 0.25 as in [102]. The surface tension of the pore area is taken to

be σ = 0.1 as in [102].
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For a finite element approximation of this model, we use the Newton’s scheme (3.5.3a)-

(3.5.3d) and (3.5.8a)-(3.5.8b) for the finite element approximation of (4.2.8a)-(4.2.8b),

with α = 1, and (4.2.9a)-(4.2.9b) respectively. We take T = 0.3 since the inception of the

Septins and F-actin is not at t = 0 but much later in the simulation in [102], and we take

δ = 102 for the approximation of the Heaviside function. Similar to the full curve model,

we use MATLAB for the simulation and visualisations on the iMac computer with 100

DOFs, h = 10−2 and ∆t = 10−4 which resulted in 1.5 seconds of execution time.

We demonstrate the progression of the simulation in Figures 4.9 and 4.10. Figure

4.9 displays the evolution of the peg whilst Figure 4.10 displays the evolution of the

concentration of the Septins and of F-actin. In each figure the boundary ∂Ω is depicted in

black. We highlight noticeable mechanics. Figure 4.9b demonstrates the time-dependent

forcing pushing down on the pore area. One can see that the whole pore area is moving.

This wouldn’t happen in the original model due to the repulsion term from the presence of

the leaf as well as the rigidity from the concentration of Melanin. Figure 4.9c demonstrates

the penetration peg starting to form due to the concentration of F-actin causing the

magnification of the turgor pressure, see Figure 4.10g. One can see that annulus form of

the Septins in Figure 4.10c and that the threshold for the the influx of rigidity has been

reached. Finally, Figure 4.9d displays the clearly formed peg.
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(a) Rice blast pore at t = 0.

(b) Rice blast pore at t = 0.1.

(c) Rice blast pore at t = 0.2.

(d) Rice blast pore at t = 0.3.

Figure 4.9: Reduced model simulation for parametric framework. Evolution of rice blast

pore.
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(a) Concentration of the Septins at t = 0.

(b) Concentration of the Septins at t = 0.1.

(c) Concentration of the Septins at t = 0.2.

(d) Concentration of the Septins at t = 0.3.

(e) Concentration of the F-actin at t = 0.

(f) Concentration of the F-actin at t = 0.1.

(g) Concentration of the F-actin at t = 0.2.

(h) Concentration of the F-actin at t = 0.3.

Figure 4.10: Reduced model simulation for parametric framework: Septins and F-actin.
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4.3 The phase field approach to approximating the model

for the rice blast fungus

In this section we present a phase field approximation to the two dimensional model

we developed in Section 4.2.1 as well as develop an approximation to a reduced version

of the full three dimensional model proposed by [102]. We first present the phase field

approximations of the velocity laws (4.1.6) and (4.1.10) as well as the diffuse interface

approximations to the SRDE system (4.1.2a)-(4.1.2b). We continue to describe the fungus

surface as Γ(t) and the leaf surface as ΓL(t). For an approximation to the initial curve

in the two dimensional model, we consider Γ(0) and ΓL(0) defined by (4.2.1) and (4.2.2)

respectively. For an approximation to the initial fungus surface in the three dimensional

model, we define Γ(0) as

Γ(0) = Γ1 ∪ Γ2

where Γ1 describes the dome part

Γ1 =

{
~p ∈ R3 : 0 ≤ tan−1

(
|(~p0, ~p1)|

~p2

)
≤ θf , |~p| = R

}
and Γ2 describes the pore area

Γ2 =

{
~p ∈ R3 : θf ≤ tan−1

(
|(~p0, ~py)|

~p2

)
≤ π, ~p2 = −

√
R2 − (R′0)2, |(~p0, ~p1)| ≤ R′0

}
where θf = π−tan−1(R′0/

√
R2 − (R′0)2) is the polar angle where Γ1 and Γ2 meet, R = 0.2

is the initial radius of the dome, and 2R′0 = R0 with R0 = 0.176 being the diameter of the

pore. This initial data is shown in Figure 4.11. For the initial data for the leaf surface in

the three dimensional model, we define ΓL(0) as

ΓL(0) = {~p ∈ R3 : ~p2 = −
√
R2 − (R′0)2, ~p0 ∈ [−L,L], ~p1 ∈ [−L,L]},

where we set L = 0.5. Let Ω ⊂ Rn+1, where n = 1, 2, is a bounded domain such

that Γ(t) ∪ ΓL(t) ⊂ Ω, ∀ t ∈ [0, T ]. We denote, for some ~p ∈ Ω, φ(~p, t) := dΓ(~p, t)

and φL(~p, t) := dΓL(~p, t), where dΓ(·, t) and dΓL(·, t) are the signed distance functions

corresponding to Γ(t) and ΓL(t) respectively. By considering

Γ(t) =
{
~p ∈ Ω : φ(~p, t) = 0

}
and ΓL(t) =

{
~p ∈ Ω : φL(~p, t) = 0

}
,

the double obstacle phase field approximations to the velocity laws (4.1.6) and (4.1.10)

satisfy the variational inequalities

ε ((ω ϕ)t, ξ − ϕ) + εσ (∇ϕ,∇ξ −∇ϕ)− σ

ε
(ϕ, ξ − ϕ)
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≥
(
π

4
p(1 + gp)− 1

ε
ϕ(1− ϕ2

L), ξ − ϕ
)
, ∀ ξ ∈ K, (4.3.1a)

εLωL ((ϕL)t, η − ϕL) + εLσL (∇ϕL,∇η −∇ϕL)− σL
εL

(ϕL, η − ϕL)

≥ − 1

εL

(
ϕL(1− ϕ2), η − ϕL

)
, ∀ η ∈ K, (4.3.1b)

ϕ(·, 0) = ϕ0(·), ϕL(·, 0) = ϕ0
L(·), in Ω, (4.3.1c)

where ϕ(·, t) and ϕL(·, t) are the phase field approximations to φ(·, t) and φL(·, t) respect-

ively, ϕ0 and ϕ0
L follow the same structure as (2.4.20), and

K :=
{
ξ ∈ H1(Ω) : |ξ| ≤ 1

}
.

We set

ρϕ(·, t) := 1− ϕ2(·, t), and Γε(t) := {~p ∈ Ω : ρϕ(~p, t) > 0} , (4.3.2)

to be the diffuse interface function and interfacial regions respectively. We also set the

phase field approximations to the normal velocity v of Γ(t), the outward pointing unit

normal ~ν to Γ(t) and the material velocity ~v of Γ(t) to be

vϕ(·, t) := − ϕt(·, t)
|∇ϕ(·, t)|

, ~νϕ(·, t) :=
∇ϕ(·, t)
|∇ϕ(·, t)|

, ~vϕ(·, t) := vϕ(·, t)~νϕ(·, t).

Then, neglecting the contribution from R, the diffuse interface approximation of the SRDE

system (4.1.2a)-(4.1.2b) satisfies the following weak formulation

d

dt
(ρϕ u

e
i |∇ϕ|, ζ) + di (ρϕ∇uei |∇ϕ|,∇ζ)− (ρϕ u

e
i ~vϕ |∇ϕ|,∇ζ)

= (ρϕ(fei − ki uei )|∇ϕ|, ζ) , ∀ ζ ∈ H1(Ω), (4.3.3a)

uei (·, 0) = 0, in Ω. (4.3.3b)

The extensions uei and fe we use in (4.3.3a) are a projection of the function values on Γ(t)

in the (positive and negative) normal direction to Γ(t) by πε
2 . Noting (2.3.7), we calculate

the total surface amount of each species in the following way

Sei (t) :=
2

πε

∫
Ω
ρϕ(·, t)uei (·, t) dx,

and maintain that

1 = Sei (t) +Be
i (t), t ∈ [0, T ].

4.3.1 Approximation to the curve model in Section 4.2.1

In this subsection we present the parameter choices and assumptions used for the phase

field approximation of the curve model presented in Section 4.2.1.
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Figure 4.11: Initial surface Γ(0) describing the rice blast.

In order to simplify the phase field model, noting the investigations in Sections 2.4.2

and 2.4.4, we choose to make the diffusivity constants independent on the concentration

of the Septins and take di = (1, 10, 1, 10)× 10−3. In addition, given the movement of the

ring structure when the fungus is growing in Figure 4.7b, we make rse constant in time,

so that, for ~p ∈ Ω, we have

rse(~p) :=


0 if

∣∣∣~p1 +
√
R2 − (R′0)2

∣∣∣ > πε
2

0 if |~p0| > R′0

r1 + r2|~p0| otherwise,

where R = 0.2, R′0 = 0.088, r1 = 1
3 and r2 = 20

3 as in [102]. These simplifications could be

addressed in subsequent models. We set the turgor pressure to be

p(Sm(t), t) := p1(t) + µSm(t), (4.3.4)

where µ = 2 as in [102] and p1(t) satisfies

p1(t) :=

 Pt+ pI for t < t̄

P t̄+ pI for t̄ ≤ t ≤ T

with pI = 1 and t̄ = 0.25 as in [102] and the time pressure constant P = 1 which is reduced

from P = 5 in [102] since the value 5 caused the penetration peg to grow too rapidly once

the leaf has been punctured. We take the recruitment sets for the molecular species to be:
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• Sme defines the (time independent) set on the curve where the pore is not:

Sme := {~p ∈ Ω : rse(~p) = 0;

• Srse defines the set where the pore is:

Srse := {~p ∈ Ω : rse(~p) > 0};

• Stse , Sse , Sae define the annular sets on the curve where Sln1, the Septins and F-actin

will be recruited to:

Sie := {~p ∈ Ω : rse(~p) > αi},

for i = ts, s, a, where αts = 0.3, αs = 0.6 and αa = 0.3 as in [102];

• Te defines the set whereby enough Melanin has been recruited to the curve to allow

for the turgor sensor to be recruited:

Te := {t ∈ [0, T ] : Sem(t) > qmB
e
m(t)},

where qm = 1
19 as in [102].

The description of each forcing function fei then follow as:

• the forcing for Melanin fem takes the form

fem(t) := lmχSme
Be
m(t)− qb

cm +Be
m(t)− qb

(p(Sem(t), t)− pI)

where qb = 0.55 and cm = 10, as in [102], and lm = 300 which is increased from

lm = 30 in [102] in order to compensate for the reduction of the coupling constant

in the turgor pressure;

• the forcing for Sln1 fets takes the form

fets(t) := ltsχStse (Be
ts(t)− qb)χTe

where lts = 1 and qb = 0.55 as in [102];

• the forcing for the Septins fes takes the form for ~p ∈ Ω

fes (~p, t) := (lsχSseχuets(~p,t)>0 + βsχSrse )Be
s(t)

where ls = 1 as in [102], and βs = 0.01 which is decreased from βs = 0.1 in [102]

since setting βs = 0.1 brought about a concentration throughout the pore was large

enough to influence the evolution of the fungus in regions where it should not;
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• the forcing for F-actin fea takes the form for ~p ∈ Ω

fea(~p, t) := (laχSaeχuts(~p,t)>0 + βaχSrse )Be
a(t)

where la = 1 as in [102], and, for the same reason as above, βa = 0.01 decreased

from βa = 0.1.

We keep the degradation rate of each species (km, kts, ks, ka) = (0, 0.1, 0.1, 0.1) the same

as in [102]. Considering the rigidity, we approximate ω in (4.1.6) by

ω(ρϕ u
e
m, ρϕ u

e
s) := ω0 (λm1,m2(ρϕ u

e
m) + λs1,s2(ρϕ u

e
s)) ,

where ω0 = 1 as in [102], and

λi1,i2(ρϕu
e
i ) := 1 +

i1
2

(
1 +Hδ

(
ρϕ u

e
i − i2
i2

))
,

with m1 = s1 = 1000, m2 = 0.25 and s2 = 0.2 as in [102]. We approximate the protrusive

force with

p(Sem(t), t)(1 + gp(ρϕu
e
i ))

with p defined in (4.3.4), where the approximation to the magnification function gp in

(4.1.6) takes the form

gp(ρϕ u
e
a) :=

a1

2

(
1 +Hδ

(
ρϕ u

e
a − a2

a2

))
,

with a2 = 0.25 as in [102] and a1 = 1 reduced from a1 = 5 in [102] due to the penetration

peg growing too rapidly once the leaf had ruptured. We approximate the repulsion of the

leaf from the fungus gr in (4.1.8) by using

κ∞
ε
ϕ(1− ϕ2

L), (4.3.5)

where

κ∞ :=

 0 if ‖κL‖L2(Ω) > κL

1 otherwise,

with κL = 0.004. This is a experimentally led figure to match the dynamics of the

simulation in [102], and we chose to use the L2 norm rather than the L∞ as we found

it produced more reliable readings to match against the model in [102]. From personal

communications with Charles M. Elliott from the University of Warwick, the term in

(4.3.5) comes from the addition of

1

2ε

∫
Ω

(1− ϕ(·, t))2(1− ϕ2
L(·, t)) dx
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into the Ginzburg–Landau–Wilson functional (2.2.1) which heavily penalises having both

|ϕ| < 1 and |ϕL| < 1 at any given point. Similarly we approximate the repulsion of the

fungus from the leaf by using

κ∞
ε
ϕL(1− ϕ2).

As explained previously, κL heavily relies on the choice of surface tension σL which we

decreased from σL = 106 in [102] to σL = 103. Similarly we decreased the rigidity factor

of the leaf from ωL = 106 to ωL = 103. We kept the fungus surface tension σ = 0.1 the

same as in [102].

To solve the finite element approximation of this model, we use Model: ACFEs

(2.4.17a)–(2.4.17b) with use of the projected SOR technique (2.4.19a)–(2.4.19b) for the

solution to the algebraic system of equations arising from the phase field approximation

to the velocity law as well as GMRES with diagonal preconditioning to solve the algebraic

systems arising from the SRDE system. We set T = 0.35 and use the refinement procedure

discussed in Section 2.4, whereby we increase refinement in the interfacial regions defined

in a similar way to (2.4.15) with

N n
h := {i ∈ N : ∃ j ∈ ωi such that ρnΦ(~pj) > 0}, Γh,nε := {T h ∈ T h : NTh ⊂ N n

h },

N n
L,h := {i ∈ N : ∃ j ∈ ωi such that ρnΦL(~pj) > 0}, Γh,nL,ε := {T h ∈ T h : NTh ⊂ N n

L,h}

and coarsen everywhere else, where here we have denoted Φn and Φn
L to be the finite

element approximations to ϕn and ϕnL respectively, and similar to (4.3.2) we denote

ρnΦ(·) := 1 − (Φn(·))2 and ρnΦL(·) := 1 − (Φn
L(·))2. Further to this, once the leaf has

ruptured, we increase the refinement of the triangles specifically in the pore area and

coarsen the triangles in Γh,nL,ε. We set ε = εL for ease of mesh parameter choice and take

δ = 102 for the approximation of the Heaviside function. The following simulation was

produced using ALBERTA using one core on the HPC and the visualisations were pro-

duced on MATLAB. Taking ε =
√

2
80 , which equates initially to 12275 DOFs and finishes

with 13125 DOFs, hT = 131
30000 and ∆t = 10−5, results in approximately 540 minutes of

execution.

As in the previous section we show figures that include interesting evolution properties

and compare them to the figures produced in Section 4.2.1. Figure 4.12 depicts the ini-

tial fungus and leaf configurations whilst Figure 4.13 depicts the evolution of the fungus

and leaf. Figures 4.14a–4.14d depict the evolution of the Melanin concentration, Figures

4.14e–4.14h depict the evolution of the Sln1 concentration, Figures 4.15a–4.15d depict the
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evolution of the Septins concentrations, and Figures 4.15e–4.15h depict the evolution of

the F-actin. We now compare the two simulations. We first note that there are two main

driving forces of the differences between the simulations; the first is the different forcing

and the second is the approximation to the repulsion term. The most noticeable difference

between the simulations is the difference between the pointwise values of the molecular

species. The different forcing for each species contribute to different pointwise values of

the concentrations on each of the curves, which in turn causes certain fungus behaviour

to occur at slightly different times and therefore a smaller simulation time T . More expli-

citly, although the notation and values are the same in the forcing functions for the both

approaches, the forcing functions in the phase field approach are an approximation to the

sharp interface approach due to the forcing functions being proportional to the surface

concentration of each species. We believe the approximation to the surface integral using

(2.3.7) is the main element which is contributing to the different recruitment rates and

therefore the difference in pointwise values. More subtly, focusing on Melanin, in the ab-

sence of velocity once the dome has reached maximum size, diffusion and degradation, the

SRDE is only driven by the forcing. Now, notice that the forcing function is monoton-

ically decreasing to 0 as the bulk concentration decreases towards qb, which means that

the Melanin surface concentration will reach a steady state of 1− qb. We postulate that,

due to the approximation of the surface integral (2.3.7), the pointwise values of uem will

be different to um in order to satisfy Sem(t) ≈ 1 − qb and are causing the overestimation.

Although there is diffusion, degradation and surface movement for the other three species,

we postulate that if we were to run the simulation longer than T = 0.35, without the peg

forming mechanism, we would see the same behaviour happen. That is, at the moment

they seem to be underestimated using the phase field approach, and we postulate they will

be overestimated in a similar way to Melanin if the simulation ran for long enough. The

pointwise values also differ due to the simulation time T , although the recruitment of Sln1,

the Septins and F-actin happens at roughly the same time in both approaches, the shorter

simulation time will have an effect on the recruitment time. Moreover, we also note that,

as shown in Section 2.4.4, the Allen-Cahn equation coupled to the diffuse interface approx-

imation does not react well with a small diffusion coefficient. Even though we increased

the diffusion coefficients significantly for Melanin and the Septins, d = 10−2 and d = 10−3

still cause reasonably large changes across the interface even with edges-smoothing, as

can be seen in Figure 2.23. We believe these changes also have a knock-on effect to the

interface pointwise values due to the surface integrals being approximated with an integral
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of each of the molecular species over the whole domain Ω. Another noticeable difference is

the distance between the fungus and the leaf. The repulsion term causes the fungus and

leaf to be significantly closer, and caused the difference in the leaf surface tension.

We first compare the evolution of the fungus by comparing Figure 4.13 with Figure 4.4.

We see that the fungus has reached maximum size by t = 0.2, demonstrated by Figures

4.4a and 4.13a, but the fungus in the phase field simulation is slightly larger and, as alluded

to already, the fungus and leaf are closer. We also see that the peg is quite a bit larger in

the phase field simulation by comparing Figures 4.13d, where t = 0.35, and 4.4d, where

t = 0.4. Next we compare the evolution of the Melanin concentration by comparing Figure

4.14a–4.14d with Figure 4.5a–4.5d. We see that the Melanin is mostly localised in the same

area of the fungus, whereby the Melanin has diffused slightly into the pore area in the

phase field setting since the diffusion constant is non-zero. Next we compare the evolution

of the Sln1 concentration by comparing Figure 4.14e–4.14h to Figure 4.5e–4.5h. We see

that the Sln1 is localised to the pore area and that, once the peg grows, the concentration

depletes on the peg’s surface. We notice that the increased diffusion in the phase field

setting doesn’t visually effect the location of the presence of the Sln1 concentration on the

fungus surface. Next we compare the evolution of the Septins concentration by comparing

Figure 4.15a–4.15d to Figure 4.6a–4.6d. The Septins are localised in the same annular

region of the pore however we can see that the Septins concentration in the phase field

setting has diffused further. Moreover, by comparing Figure 4.6d with Figure 4.15d we

can see that in the sharp interface simulation there is a large concentration of Septins

still in the annular region whilst in the phase field simulation this doesn’t feature. We

speculate that this is one of the main causes for the peg to grow faster in the phase field

setting. We also speculate that this issue may be rectified by allowing the ring structure

to move with the fungus. Finally, we compare the evolution of the F-actin concentrations

by comparing Figure 4.15e–4.15h to Figure 4.6e–4.6h. Again, we see the concentration is

localised to the pore area however, in Figure 4.15h, we see a large concentration of F-actin

at the front of the peg in the phase field setting whilst in the sharp interface approach we

see the concentration has depleted. We believe that this increase in concentration is the

other main factor causing the peg to increase in size rapidly.

A more detailed investigation is needed to match the forcing terms in the phase field

scenario to the sharp interface model, and to show that the repulsion term in the phase field

setting does asymptotically match the repulsion term in the sharp interface setting. Doing
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this analysis will also show the correct scaling needed. It is also evident that the diffusion

constants do influence the fungus evolution, and some further work is needed to allow for

smaller diffusion constants in the numerical schemes. This could be managed if the edge

smoothing technique introduced in Section 2.4.3 could be applied to the finite volume

approximation of the diffuse interface approach, or alternatively to use a discontinuous

Galerkin approach [33, 79].

Figure 4.12: Initial rice blast and leaf on the Φ0 = 0 and Φ0
L = 0 level sets for the phase

field curve approximation.
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(a) Rice blast and leaf at t = 0.1.

(b) Rice blast and leaf at t = 0.2.

(c) Rice blast and leaf at t = 0.3.

(d) Rice blast and leaf at t = 0.35.

Figure 4.13: Curve simulation for phase field framework. Rice blast and leaf on the Φn = 0

and Φn
L = 0 level sets respectively at different times.
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(a) Concentration of Melanin at t = 0.1.

(b) Concentration of Melanin at t = 0.2.

(c) Concentration of Melanin at t = 0.3.

(d) Concentration of Melanin at t = 0.35.

(e) Concentration of Sln1 at t = 0.1.

(f) Concentration of Sln1 at t = 0.2.

(g) Concentration of Sln1 at t = 0.3.

(h) Concentration of Sln1 at t = 0.35.

Figure 4.14: Curve simulation for phase field framework: Melanin and Sln1.
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(a) Concentration of the Septins at t = 0.1.

(b) Concentration of the Septins at t = 0.2.

(c) Concentration of the Septins at t = 0.3.

(d) Concentration of the Septins at t = 0.35.

(e) Concentration of F-actin at t = 0.1.

(f) Concentration of F-actin at t = 0.2.

(g) Concentration of F-actin at t = 0.3.

(h) Concentration of F-actin at t = 0.35.

Figure 4.15: Curve simulation for phase field framework: Septins and F-actin.
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4.3.2 Approximation to the three dimensional surface model in [102]

The phase field versions of all the components that are derived in Section 4.3.1 naturally

extend to three space dimensions and so can be used to approximate the three dimensional

model in Section 4.1. We present simulations of this three dimensional setup using all the

same parameters as the ones defined in Section 4.3.1, where we note that we redefine the

initial ring structure rse to mirror the dimension of the model, so that, for ~p ∈ Ω, we have

rse(~p) :=


0 if

∣∣∣~p2 +
√
R2 − (R′0)2

∣∣∣ > πε
2

0 if |(~p0, ~p1)| > R′0

r1 + r2|(~p0, ~p1)| otherwise,

where R = 0.2, R′0 = 0.088, r1 = 1
3 and r2 = 20

3 as in [102].

Using the same numerical procedure for the solution to the resulting systems of al-

gebraic equations and the same refinement procedure we present the following figures of

the three dimensional phase field approximation to the model in [102]. The following sim-

ulation was executed using ALBERTA using one core on the HPC, the visualisations in

Figures 4.16 and 4.17 were produced in MATLAB, and the visualisations in Figures 4.18

to 4.21 were produced in ParaView [73]. Taking ε =
√

2
80 , which equates initially to 251611

DOFs and finishes with 259804 DOFs, hT = 2−6 and ∆t = 10−4, results in approximately

6240 minutes (4 days, 8 hours) of execution.

Figures 4.16–4.21 demonstrate the three dimensional simulation. Figure 4.16 depicts

the initial fungus and leaf configuration, while Figure 4.17 depicts the evolution of the

two surfaces, in both figures x − z cross sections are displayed. In Figures 4.18 and 4.19

we display the pore area of the fungus by presented the results from the view point below

the fungus. Figure 4.18a–4.18d depicts the evolution of the concentration of Melanin,

while Figure 4.18e–4.18h depicts the evolution of the concentration of Sln1, Figure 4.19a–

4.19d depicts the evolution of the concentration of the Septins, while Figure 4.19e–4.19h

depicts the evolution of the concentration of the F-actin. Figure Figure 4.20 depicts the

evolution of the peg from initial formation to full growth, while Figure 4.21 depicts all the

molecular species at the final time from a side point of view. First we will compare the

curve simulation to the surface simulation, and then compare the surface simulation to

the figures in [102]. We begin by comparing the evolution of the fungus in Figure 4.17 to

Figure 4.13. We see that the fungus is slightly bigger in the curve simulation in comparison

to the surface simulation. We also see the leaf breaks early in the surface simulation, seen
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by a peg form at t = 0.3 in Figure 4.17c whilst not appearing in Figure 4.13c at t = 0.3.

Interestingly, we also see that the peg grows slower in the surface simulation in comparison

to the curve simulation since the pegs are roughly similar sizes at t = 0.35 in Figures 4.17d

and 4.13d. We speculate that this has something to do with the increase in dimension and

thus the increase in surface area. We quite clearly see the localisation of all the molecular

species are similar, and see the depletion of each of the species clearer in the surface

simulation compared to the curve simulation. This is emphasised by Figure 4.21, where

we can also see the diffusion of the Melanin into the seeded pore area in Figure 4.21a and

the diffusion of the Septins into the peg in Figure 4.21c. Now we compare our results to the

results in [102]. We first note that our peg is much larger that the one presented in Figure

2a in [102]. We believe this is due to the difference in concentration of the recruitment of

the Septins to the surface. We see that the molecular species concentrations are mostly

constant throughout their recruitment regions, with the exception of the turgor sensor, in

[102] whilst in our simulations, since we have higher diffusion constants, we see it happen

until we get close to the boundaries of the localisation regions.

Figure 4.16: Initial rice blast and leaf on the Φ0 = 0 and Φ0
L = 0 level sets for the phase

field surface approximation, x− z cross section.
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(a) Rice blast and leaf at t = 0.1.

(b) Rice blast and leaf at t = 0.2.

(c) Rice blast and leaf at t = 0.3.

(d) Rice blast and leaf at t = 0.35.

Figure 4.17: Surface simulation for phase field framework, x− z cross section. Rice blast

and leaf on the Φn = 0 and Φn
L = 0 level sets respectively at different times.
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(a) Concentration of Melanin at t = 0.1.

(b) Concentration of Melanin at t = 0.2.

(c) Concentration of Melanin at t = 0.3.

(d) Concentration of Melanin at t = 0.35.

(e) Concentration of Sln1 at t = 0.1.

(f) Concentration of Sln1 at t = 0.2.

(g) Concentration of Sln1 at t = 0.3.

(h) Concentration of Sln1 at t = 0.35.

Figure 4.18: Surface simulation for phase field framework, pore area: Melanin and Sln1.
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(a) Concentration of the Septins at t = 0.1.

(b) Concentration of the Septins at t = 0.2.

(c) Concentration of the Septins at t = 0.3.

(d) Concentration of the Septins at t = 0.35.

(e) Concentration of F-actin at t = 0.1.

(f) Concentration of F-actin at t = 0.2.

(g) Concentration of F-actin at t = 0.3.

(h) Concentration of F-actin at t = 0.35.

Figure 4.19: Surface simulation for phase field framework, pore area: Septins and F-actin.
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(a) Fungus at t = 0.25.

(b) Fungus at t = 0.275.

(c) Fungus at t = 0.3.

(d) Fungus at t = 0.35.

Figure 4.20: Surface simulation for phase field framework. Fungus peg formation Φn = 0

level set surface at times around the leaf breaking and peg forming.



183

(a) Concentration of Melanin at t = 0.35.

(b) Concentration of Sln1 at t = 0.35.

(c) Concentration of the Septins at t = 0.35.

(d) Concentration of F-actin at t = 0.35.

Figure 4.21: Full simulation for phase field framework, x−z cross section. Concentrations

of the molecular species on the Φn = 0 level set at t = 0.35.
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Chapter 5

Conclusion

5.1 Summary

In this thesis we began by introducing topics on the mean curvature flow of hypersurfaces

and partial differential equations defined on hypersurfaces. In Chapter 2 we introduced

the phase field approximation to mean curvature flow, specifically the introduction of the

double obstacle potential, and the finite element discretisation of the phase field approach.

We then followed [44, 63] and state a diffuse interface approximation to SADEs together

with a finite element approximation. We showed experimental order of convergence for

a diffusion-dominated example and then explored an advection-dominated example. In

doing this we saw that, as the diffusion constant became smaller, instabilities occurred

across the profile of the finite element diffuse interface numerical solution. This motivated

us to introduce and derive a finite volume approximation to the diffuse interface approach

with upwinding and we demonstrated that, for advection-dominated equations, the finite

volume approximation errors were an improvement on the equivalent errors resulting from

the finite element approximation. As the diffusion constant became smaller both approx-

imations suffered from profile spiking near the edge of the interfacial region, and so we

followed the authors in [63] and introduced edge smoothing in the form of streamline dif-

fusion for the finite element approximation. This solved the profile spiking problem for

the finite element approximation but did not solve the appearance of instabilities, and,

although the profile looks better, the errors were worse. As in [63] we then considered

an application where the velocity law of the surface satisfied mean curvature flow and

so coupled the diffuse interface approximation to SADEs to the double obstacle phase
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field approximation to mean curvature flow. We again considered a advection-dominant

example to demonstrate that even when the surface is a finite element approximation, the

finite element approximation to the SADE still has bad instabilities and the finite volume

approximation performed much better but also still has large profile spiking.

In Chapter 3 we introduced curve shortening flow for closed curves and for curves at-

tached to some fixed boundary orthogonally. We extended the semi-discrete finite element

bounds for curve shortening flow attached to some fixed boundary orthogonally in [42] to

the fully discrete setting in Theorems 3.13 and 3.18.

Theorem. blah

Let ~X0 = Ih~x 0 ∈ [Sh]2. There exists h? > 0 and ∆t? > 0 such that for all h ∈ (0, h?]

and ∆t ∈ (0,∆t?], with ∆t ≤ Ch2, the fully-discrete problem (3.3.5a)-(3.3.5b) has the

following error bounds

sup
n=0,...,N

|~xn − ~Xn|21 +
N∑
n=1

∆tn|~xnt −Dt
~Xn|20 ≤ Ch2,

sup
n=0,...,N

|~xn − ~Xn|20 ≤ C h4,

for some C > 0 independent of h and ∆t.

We also extended the same semi-discrete finite element bounds in [42] for curve shortening

flow attached to some fixed boundary orthogonally to be coupled to a reaction-diffusion

equation on the curve in Theorem 3.23.

Theorem. blah

Let ~xh(·, 0) = Ih~x 0(·) ∈ [Sh]2 and wh(·, 0) = Ihw0(·) ∈ Sh. There exists h? > 0 such

that for all h ∈ (0, h?], the semi-discrete problem (3.4.5a)-(3.4.5c) has the following error

bounds

sup
t∈[0,T ]

[
|~x(·, t)− ~xh(·, t)|21 + |w(·, t)− wh(·, t)|20

]
+

∫ T

0
|~xt(·, t)− ~xht (·, t)|20 + |w(·, t)− wh(·, t)|21 dt ≤ Ch2,

for some C > 0 independent of h.

We closed this chapter by deriving a Newton’s scheme for the non-linear implicit bound-

ary conditions and demonstrated its superiority compared to the scheme introduced in [42]

for a similar problem.

In Chapter 4 we introduced the rice blast model as presented in [102]. We simplified the

model from an evolving surface to an evolving curve and used the parametric framework to
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produce a simulation matching [102]. We made further simplifications to only consider the

pore area of the fungus and used the Newton’s scheme derived in the Chapter 3. We then

derived a diffuse interface approximation of the SRDEs the molecular species satisfied

for a curve approximation and the surface approximation and showed two dimensional

simulations which matched our parametric model for curves as well as three dimensional

simulations that matched the surface model in [102].

5.2 Future work

We finalise this thesis with possible directions for future research. This list is by no means

exhaustive of the possibilities arising from the research conducted, but rather those that

follow as a simple continuation.

• Investigate the edge smoothing analysis for the finite volume approximation of the

diffuse interface approach;

• Prove stability results and error bounds for the finite volume approximation of the

diffuse interface approach;

• Extend the finite volume approximation of the diffuse interface approximation of

SPDEs on evolving curves to evolving surfaces;

• Investigate other numerical tools for advection-dominated PDEs, like the discontinu-

ous Galerkin method, in the diffuse interface approximation setting;

• Extend the finite element error analysis used to prove Theorem 3.13 and Theorem

3.23 to prove fully discrete finite element error bounds for Model M2, similar to

those obtained in [6];

• Generalise the fixed boundary conditions to hold on surfaces;

• Generalise the fixed boundary conditions so that one can consider an evolving curve

attached orthogonally to an evolving boundary;

• Retract the assumption that the diffusion constants in the diffuse interface approx-

imation to the rice blast model in Section 4.3 are independent of the Septins and

reduce their values closer to the values set in [102];
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• Retract the assumption that the ring structure in the diffuse interface approximation

to the rice blast model in Section 4.3 is stationary.

This work has been difficult but very rewarding. I look forward to continuing to do

research for as long as is admissable. I gratefully acknowledge the support of the EPSRC

grant 1805391. This concludes the thesis.
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Appendix A

Geometric definitions and

operators

We follow the definitions introduced in [14, 41].

Definition A.1 (C2,1-family of hypersurfaces). blah

A family (Γ(t))t∈(0,T ) is called a C2,1-family of hypersurfaces if, for each (~p, t) ∈ Rn+1 ×

(0, T ) with ~p ∈ Γ(t), there exists an open set U ⊂ Rn+1, δ > 0 and a function u ∈

C2,1(U × (t− δ, t+ δ)) such that

U ∩ Γ(t) = {~p ∈ U : u(~p, t) = 0} and ∇u(~p, t) 6= 0 ∀ ~p ∈ U ∩ Γ(t).

Note. C2,1-family of hypersurfaces will be referred to as a family of hypersurfaces or simply

hypersurface, depending on the context.

Definition A.2 (Tangent space). blah

The tangent space to a hypersurface Γ is the n-dimensional linear subspace of Rn+1 that

is orthogonal to ∇u(~p), denoted TxΓ.

Definition A.3 (Orientable hypersurface). blah

A hyperspace Γ ⊂ Rn+1 is called orientable if there exists a vector field ~ν ∈ C1(Rn+1)

such that

~ν(~p) ⊥ TxΓ and |~ν(~p)| = 1, ∀ ~p ∈ Γ.

Definition A.4 (Tangential derivative). blah

Let f be a function that is differentiable in an open neighbourhood of a hypersurface Γ.

Then, for ~p ∈ Γ, the tangential derivative of f is characterised as

∇Γf(~p) = ∇f(~p)− 〈∇f(~p), ~ν(~p)〉~ν(~p)
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where ∇ is the standard derivative in Rn+1, 〈·, ·〉 is the standard scalar product in Rn+1

and ~ν is the outward pointing unit normal to Γ.

Note. If n = 1 then this can also be written as ∇Γf(~p) = 〈∇f(~p), ~τ〉~τ , if ~τ := ~ν⊥.

Definition A.5 (Tangential divergence). blah

Let ~v be a vector function whereby it’s components ~vi are differentiable in an open neigh-

bourhood of a hypersurface Γ. Then, for ~p ∈ Γ, the tangential divergence of ~v is charac-

terised as

divΓ ~v(~p) = div~v(~p)− 〈∇〈~v(~p), ~ν(~p)〉, ~ν(~p)〉 .

Note. If n = 1 then this can also be written as divΓ~v(~p) = 〈(~τ(~p)⊗ ~τ(~p))∇, ~v(~p)〉.

Definition A.6 (Mean curvature). blah

Let Γ be a hypersurface with outward pointing unit normal ~ν. Then, for ~p ∈ Γ, the mean

curvature of Γ at a point ~p is defined as

κ(~p) = −divΓ ~ν(~p).

Definition A.7 (Laplace-Beltrami operator). blah

Let f be a function that is twice differentiable in an open neighbourhood of a hypersurface

Γ. Then, for ~p ∈ Γ, the Laplace-Beltrami of f is characterised as

∆Γf(~p) = divΓ(∇Γf(~p)).

Note. It is easy to show that ∆Γ can also computed by ∆Γf(~p) = div(∇Γf(~p)).
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Appendix B

Notable analysis results

B.1 Informal derivation of (2.2.9)

In this section we look to derive the weak form of (2.2.2a) with (2.2.7) in an informal

manner using the subdifferential

B(s) :=


(−∞, 0] s = −1,

0 |s| < 1,

[0,∞) s = 1.

First we prove the formula for the subdifferential is indeed the one above, and then we

proceed with the informal derivation of the weak form of (2.2.2a) with (2.2.7).

B.1.1 Derivation of subdifferential B

We first begin with the definition of a subdifferential of a function and a useful property

[68].

Definition B.1 (Subdifferential). blah

A subgradient of a function f : R → (−∞,∞], f 6≡ ∞, at the point x0 ∈ R is a value

ξ ∈ R such that

f(x) ≥ f(x0) + ξ(x− x0), ∀x ∈ R. (B.1.1)

The set ∂f(x0) of all such values is called the subdifferential of f at the point x0.

Proposition B.2. blah

Let f : R → (−∞,∞] be a convex function that is differentiable at the point x0 ∈
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int dom(f). Then ∂f(x0) = {f ′(x0)}.

We now look to derive the subdifferential B. Consider

f(x) =
1

2
(1− x2) + I[−1,1](x)

where

I[−1,1](x) :=

 0 |x| ≤ 1,

∞ |x| > 1.

We see that dom(f) = [−1, 1] and int dom(f) = (−1, 1). We split the calculation of the

subdifferential into three cases:

Case 1: Consider x0 ∈ (−1, 1). Since f is convex and differentiable, using Proposition

B.2 we see that ∂f(x0) = {−x0}.

Case 2: Consider x0 = 1, then for x ∈ [−1, 1], using (B.1.1), we have

1

2
(1− x2) ≥ ξ(x− 1) ⇔ ξ ≥ 1

2

(1− x2)

x− 1
= −1

2
(1 + x) ∀x ∈ [−1, 1].

This implies that ∂f(1) = [−1,∞).

Case 3: Consider x0 = −1, then for x ∈ [−1, 1], using (B.1.1), we have

1

2
(1− x2) ≥ ξ(x+ 1) ⇔ ξ ≤ 1

2

(1− x2)

x+ 1
=

1

2
(1− x) ∀x ∈ [−1, 1].

This implies that ∂f(−1) = (−∞, 1].

Hence, ∀x0 ∈ R we have that

∂f(x0) =



−x0 |x0| < 1,

[−1,∞) x0 = 1,

[−∞, 1] x0 = −1,

∅ |x| > 1,

and so it not hard to deduce, with ∂f(x0) := W ′(x0) = −x0 + B(x0), the definition of B

from here.

B.1.2 Derivation of variational inequality (2.2.9)

Now that we have derived B, we can continue with the informal derivation of (2.2.9).

Indeed, multiplying (2.2.2a) by ξ−ϕ, where ξ ∈ K, and using integration by parts as well
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as (2.2.2b), noting informally that W ′(s) = −s+B(s), we have

ε (ϕt, ξ − ϕ) + ε (∇ϕ,∇ξ −∇ϕ)− 1

ε
(ϕ, ξ − ϕ) = −1

ε
(B(ϕ), ξ − ϕ) , ∀ ξ ∈ K.

We can split the integral on the right-hand side into three cases:

Case 1: Set ϕ = 1.

(a) Set ξ = 1. Then ξ − ϕ = 0 and therefore B(ϕ)(ξ − ϕ) = 0.

(b) Set −1 ≤ ξ < 1. Since ξ − ϕ < 0 and B(ϕ) ≥ 0 then B(ϕ)(ξ − ϕ) ≤ 0.

Case 2: Set ϕ = −1.

(a) Set ξ = −1. Then ξ − ϕ = 0 and therefore B(ϕ)(ξ − ϕ) = 0.

(b) Set −1 < ξ ≤ 1. Since ξ − ϕ > 0 and B(ϕ) ≤ 0 then B(ϕ)(ξ − ϕ) ≤ 0.

Case 3: set |ϕ| < 1. Then B(ϕ) = 0 and therefore B(ϕ)(ξ − ϕ) = 0.

Thus, since B(ϕ)(ξ − ϕ) ≤ 0, ∀ ξ ∈ K, we arrive at (2.2.9).

B.2 Proof of coarea approximation (2.3.7)

In this section we look to derive the approximation (2.3.7). We first begin with the

definition of the coarea from [68].

Definition B.3 (Coarea formula). blah

Let u : Rn → R be Lipschitz continuous and assume that for a.e. r ∈ R the level set

{x ∈ Rn : u(x) = r}

is a smooth, (n − 1) dimensional hypersurface in Rn. Suppose also that f : Rn → R is

continuous and f ∈ L1(Rn). Then,∫
Rn
f |∇u| dx =

∫ ∞
−∞

(∫
{u=r}

f dS

)
dr. (B.2.1)

From the definition, we set f := ξρε and u := φ, where ξ ∈ L1(Ω), φ ∈ C2,1(Ω × [0, T ])

and ρε ∈ C1,1(Ω× [0, T ]). Noting that ρε(·, t) = 0 in Rn \ Ω and (2.3.3), we have∫
Ω
ξ(·) ρε(·, t) |∇φ(·, t)| dx =

∫
Rn
ξ(·) ρε(·, t) |∇φ(·, t)| dx
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=

∫ ∞
−∞

(∫
{φ(·,t)=r}

ξ(·) ρε(·, t) dS

)
dr

=

∫ επ
2

− επ
2

(∫
{φ(·,t)=r}

ξ(·) g
(r
ε

)
dS

)
dr

=

∫ επ
2

− επ
2

g
(r
ε

)
I(r) dr,

where

I(r) :=

∫
{φ(·,t)=r}

ξ(·) dS.

Using a standard trapezium quadrature rule∫ b

a
f(x) dx ≈ 1

2
(b− a)f(x),

for some x ∈ (a, b), we conclude that∫
Ω
ξ(·) ρε(·, t) |∇φ(·, t)| dx ≈ 1

2

(επ
2

+
επ

2

)
g(0) I(0) =

επ

2

∫
{φ(·,t)=0}

ξ(·) dS.

B.3 Useful theorems

Theorem B.4 (Cayley-Hamilton Theorem in R2×2, [16]). blah

Given M ∈ R2×2 and let I ∈ R2×2 be the identity matrix. Given λ that satisfies

det(M − λI) = λ2 − Tr(M)λ+ det(M) = 0,

then M satisfies

M2 − Tr(M)M + det(M)I = 0,

where 0 = 0I.

Theorem B.5. blah

Let T ∈ R2×2 be idempotent and let M ∈ R2×2 satisfy I + βT = M , for β ∈ R \ {−1}.

Then the inverse of M is

M−1 = I − β

1 + β
T.

Proof: Utilising the fact that T is idempotent, we see that

1

β
(M − I) = T = T 2 =

1

β2
(M − I)2 =

1

β2
(M2 − 2M + I)

Rearranging we see that

I =
1

1 + β
M((2 + β)I −M).
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Hence, due to the definition of an inverse, we see that

M−1 =
1

1 + β
((2 + β)I −M) =

1

1 + β
(2I + βI − I − βT ) = I − β

1 + β
T.

Theorem B.6 (Sobolev Embedding, [68]). blah

Let U ⊂ Rn be bounded and open, with a C1 boundary. Assume u ∈W k,p(U).

1. If k < n
p , then u ∈ Lq(U) where 1

q = 1
p −

k
n . In addition we have the estimate

‖u‖Lq(U) ≤ C‖u‖Wk,p(U),

where C depends only on k, p, n and U , i.e. W k,p(U) ↪→ Lq(U).

2. if k > n
p , then u ∈ Ck−

[
n
p

]
−1,γ

(Ū), where

γ =


[
n
p

]
+ 1− n

p if n
p is not an integer

any positive number < 1 if n
p is an integer

and

[x] =

 bxc if the decimal digit is ≤ 5

dxe if the decimal digit is > 5.

In addition we have the estimate

‖u‖
C
k−[np ]−1,γ

(Ū)
≤ C‖u‖Wk,p(U),

where C depends only on k, p, n, γ and U , i.e. W k,p(U) ↪→ C
k−

[
n
p

]
−1,γ

(Ū).

B.4 Fully discrete results

Lemma B.1. blah

For some for µ > 0, we have

e−µtn | ~En|20 +
µ

2

n∑
m=1

∆tme
−µtm | ~Em−1|20

≤
n∑

m=1

(
µ(∆tm)2 +

4

µ

)
∆tme

−µtm |Dt
~Em|20. (B.4.1)

Furthermore, if µ∆t ≤ 1
2 , we have

µ

2

n∑
m=1

∆tme
−µtm−1 | ~Em−1|20 ≤ 2

n∑
m=1

(
µ(∆tm)2 +

4

µ

)
∆tme

−µtm |Dt
~Em|20. (B.4.2)
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Proof: Firstly, we note that for µ > 0

∆tnDte
−µtn = e−µtn − e−µtn−1 = e−µtn

(
1− eµ∆tn

)
≤ −µ∆tne

−µtn , (B.4.3)

and

−∆tmDte
−µtm = e−µtm−1 − e−µtm = e−µtm−1

(
1− e−µ∆tm

)
≤ µ∆tme

−µtm−1 . (B.4.4)

Consequently, using (B.4.3), since |E0| = 0, we have

e−µtn | ~En|20 =

n∑
m=1

∆tmDt

[
e−µtm | ~Em|20

]
=

n∑
m=1

[
∆tme

−µtm Dt| ~Em|20 + ∆tm| ~Em−1|20Dte
−µtm

]
≤

n∑
m=1

[
∆tme

−µtm Dt| ~Em|20 − µ∆tme
−µtm | ~Em−1|20

]
. (B.4.5)

Using (3.1.10) we have

| ~Em|20 − | ~Em−1|20 =

∫
I

[
| ~Em|2 − | ~Em−1|2

]
dρ

≤
∫
I

2| ~Em|[| ~Em| − | ~Em−1|] dρ

≤
∫
I

δ

2
∆tm| ~Em|2 +

2

δ
∆tm|Dt

~Em|2 dρ

≤ δ

2
∆tm| ~Em|20 +

2

δ
∆tm|Dt

~Em|20. (B.4.6)

Setting δ = 1
∆tm

in (B.4.6) we see that

| ~Em|20 ≤ 2| ~Em−1|20 + 4(∆tm)2|Dt
~Em|20, (B.4.7)

while setting δ = µ
2 in (B.4.6) and using (B.4.7) we have

∆tmDt| ~Em|20 ≤
µ

4
∆tm| ~Em|20 +

4

µ
∆tm|Dt

~Em|20. (B.4.8)

Thus, from (B.4.5) and (B.4.8), we have that

e−µtn | ~En|20 +
µ

2

n∑
m=1

∆tme
−µtm | ~Em−1|20 ≤

n∑
m=1

(
µ(∆tm)2 +

4

µ

)
∆tme

−µtm |Dt
~Em|20.

Furthermore, using (B.4.4) and (B.4.1), we see that

µ

2

n∑
m=1

∆tme
−µtm−1 | ~Em−1|20 =

µ

2

n∑
m=1

∆tme
−µtm | ~Em−1|20

+
µ

2

n∑
m=1

∆tm[e−µtm−1 − e−µtm ]| ~Em−1|20

≤
n∑

m=1

(
µ(∆tm)2 +

4

µ

)
∆tme

−µtm |Dt
~Em|20
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+
µ

2

n∑
m=1

µ(∆tm)2e−µtm−1 | ~Em−1|20.

Thus, provided µ∆t ≤ 1
2 , we have

µ

2

n∑
m=1

∆tme
−µtm−1 | ~Em−1|20 ≤ 2

n∑
m=1

(
µ(∆tm)2 +

4

µ

)
∆tme

−µtm |Dt
~Em|20.
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