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Abstract

This thesis provides a fundamental analysis of the bitcoin implied volatility. The bitcoin

options market is highly fragmented, split between regulated and unregulated exchanges.

This variety of different exchange types creates plain vanilla options with various settlement

procedures. In this dissertation, we present standard or direct, inverse and quanto inverse

options, explain their pricing structure, and conduct a delta-hedging study considering various

smile-dependent and smile-adjusted delta-hedge ratios. All research is conducted on a unique

dataset of option prices which we acquire directly from the exchange. It contains all option,

futures, and perpetuals trade data over the past three years on an intra-day frequency; and,

with over ten million option prices, it is unmatched by any other research at the time of

writing. We introduce an implied volatility index, the first of its kind for crypto, and consider

its role as a fair value variance swap rate for different maturities, reflecting the distinct trading

behaviour and clustering of bitcoin options. Moreover, we provide insight of the determinants

of the bitcoin implied volatility and compare it to frequently traded volatility indices of other

asset classes. Standard mechanisms such as margin calls do not exist in unregulated crypto

derivatives markets, impacting the implied volatility of this emerging asset class directly. We

take a detailed look at the bitcoin implied volatility surface, highlight key characteristics,

and point out differences to other asset classes such as equity, commodity, or currencies. We

capture the surface dynamics through a second-order Taylor expansion, model the resulting

time series of parameters with statistical and machine learning models, both of which are

widely used in the industry, and derive profitable trading strategies. In many aspects, this

work is ahead of its time, but our findings help practitioners understand the market better and

price derivatives correctly. We pave the way for further research and allow other academics

to build on our analyses.

Keywords: Cryptocurrency, Derivatives, Futures, Implied Volatility, Options, Realised

Volatility, Fear Gauge, Inverse Option, Foreign Exchange, Hedging, Derivatives Hedging,

Perpetual Contract, Robust Finance, Dynamic Delta Hedging
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CHAPTER 1

INTRODUCTION

Blockchain technology, on which every cryptocurrency is built, is renâıtre. The storage of in-

formation on a distributed ledger which is visible to all participants goes back to the 1990s at

least (Haber and Stornetta, 1991, 1997). But the idea of a cryptographically-linked blockchain

technology only grew in popularity after the introduction of a cryptocurrency called bit-

coin (BTC) as the native token for a blockchain called Bitcoin (Nakamoto, 2009). Bitcoin

transactions are verified by a peer-to-peer network, stored on the blockchain, transparent to

anyone with internet access, and become immutable after a certain period of time. Today,

blockchains of many different types have exceeded their initial purpose of recording simple

peer-to-peer transactions, becoming the backbone of Web 3.0 by carrying fully autonomous

and self-regulating smart contracts. As a result, there are tens of thousands of tokens which

are transacted on blockchains and also off-chain on market places and centralised exchanges.

Although the initial idea of bitcoin was to serve as a decentralised alternative to cen-

tral bank issued fiat currencies and to act as a medium of exchange, today’s cryptocurrency

markets have virtually nothing to do with this concept. Instead, the variety of blockchain

architectures has evolved cryptocurrencies into a tradable asset class of their own. Initially

a paradise for speculators, facing a highly volatile and inefficient market (Urquhart, 2016),

populated by retail traders hoping to buy low and sell high, the crypto market has matured

over the past years to a highly liquid and efficient market hosting both retail trader and (pro-

fessional) institutional investors.1 Despite the ongoing debates surrounding cryptocurrencies’

intrinsic value, their contributions for society or their immense energy consumption, trading

cryptoassets – particularly derivatives – and institutional involvement are at record levels,

proving a wide-scale acceptance of this asset class.

1BlackRock, Fidelity and Charles Schwab started offering their clients investment opportunities in bitcoin
in form of simple money markets or exchange-traded funds or notes. Top tier banks like Goldman Sachs or
J.P. Morgan and proprietary trading houses such as Jump and Cumberland Capital have been active in crypto
spot and derivatives market for many years. See Financial Times accessed on 01 May 2023.

1

https://www.ft.com/content/3261f919-ca98-41d2-b950-bc3a670f994c


CHAPTER 1. INTRODUCTION 2

Hence, it is somewhat surprising that regulators around the world continue to lack a co-

herent framework or strategic plan for regulating this multi-trillion dollar market.2 Instead,

there is still an ongoing feud between the US Securities and Exchange Commission (SEC)

and the Commodities and Futures Trading Commission (CFTC) concerning regulatory juris-

diction over cryptocurrencies, which revolves around the classification of tokens – specifically,

which should be considered securities and which commodities. At the same time, the Euro-

pean Union adopted its own comprehensive set of rules for cryptoassets, i.e. the Markets in

Cryptoassets (MiCA) regulation, set to come into force between 2024 and 2025. However,

the slow progress of this law and the ‘wait-and-see’ approach of the Europeans, hoping to get

their transatlantic partners on board, drives both private and institutional investors towards

unaudited exchanges, so-called ‘unregulated’ exchanges, with high risk of criminal activity.

This lack of regulation has not only a far-reaching impact on both retail and institutional

traders, but poses systemic risk for the general financial system as the collapse of the FTX

exchange in November 2022 has demonstrated.3

These unregulated exchanges, or ‘self-regulated’ as they often label themselves, typically

operate outside the bounds of governmental oversight and prefer running their operational

business within jurisdictions that offer a financial safe harbour like the Bahamas or Panama.

Typically, these exchanges are centralised in a sense that they facilitate trades through an

electronic limit order book system.4 They operate as a shadow bank, custodian for client

funds, brokerage firm, and clearing and settlement house, all in one, and allow (retail) in-

vestors to trade spot with up to tenfold leverage. Most prominent exchanges in this class

include Binance, OKX or Huobi. On the other side of the regulatory spectrum, exchanges

like Coinbase, LMAX or Kraken comply to, and cooperate with the financial authorities of the

respective jurisdiction they operate in. These (semi-)regulated exchanges facilitate the same

centralised trading but open their doors and books to auditors and governmental represen-

tatives. However, according to the latest CCData Report, the overall traded spot volume in

March 2023 was just short of 900 billion US Dollar (USD), and over 80% of these trades were

facilitated by unregulated exchanges, underscoring their dominance in this financial arena.

The same lack of regulation applies to cryptocurrency derivatives trading, which is why

this market is often called the ‘wild west’. Today’s crypto derivatives markets are highly

fragmented and split between regulated and unregulated exchanges. Similar to spot trading,

the vast majority of derivatives exchanges offer electronic limit order book trading on a variety

2As of May 2023, the accumulated market capitalisation of all cryptocurrencies is well above $1.2 trillion,
see Statista.com.

3Plenty of traditional asset manager, pension funds, VC companies or law firms got caught in the aftermath
of the FTX collapse loosing billions of US dollar, see Financial Times. The Bank of England deputy governor
points out the risk associated with crypto for the financial system, see this article, accessed on 01 May 2023.

4Decentralised Exchanges (DEX) provide an alternative type of exchange to facilitate token swaps. These
are blockchain protocols, or smart contracts, which allow participants to deposit their token pair, e.g. ETH
and USDC, into Liquidity Pool (LP) in return for a premium or reward. An Automated Market Maker (AMM)
provides a relative price of one token with respect to the other, and facilitate fully autonomous trades based
on the size of the LPs. Popular protocols include UniSwap or Curve.

https://assets-global.website-files.com/63e3774c88285e5c6cbf3b9d/645b810b7130f935bc373feb_Exchange%20Review%20April%202023.pdf
https://www.statista.com/statistics/730876/cryptocurrency-maket-value/
https://www.ft.com/content/9d3345fb-cf19-4c4e-ac26-582dc0b6f741
https://news.sky.com/story/ftx-collapse-shows-crypto-is-too-dangerous-not-to-regulate-bank-of-england-deputy-governor-says-12773169
https://app.uniswap.org/
https://curve.fi/
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of underlying assets and different contract sizes.5 The Chicago Board Options Exchange

(CBOE) was the first US exchange to introduce bitcoin futures in December 2017 but stopped

issuing new maturities barely half a year later due to lack of interest. At the same time, the

Chicago Mercantile Exchange (CME) introduced cash-settled futures on the CME CF Bitcoin

Reference Rate (BRR), a volume-weighted reference rate representing bitcoin’s dollar price

across the most prominent spot exchanges. Since then, both volume and open interest have

been steadily increasing, especially following the launch of the micro bitcoin futures in May

2021, which have a notional value equal to a tenth of a bitcoin. This is in stark contrast to the

standard futures with a notional value of five bitcoins, aiming to attract more participants.

However, regulated exchanges fail to attract the main players in this sector. In March 2023,

the CME reported a traded volume of 44.8 billion USD and an open interest of 1.74 billion

USD. In contrast, unregulated exchanges recorded a notional volume of 1.3 trillion USD with

an aggregate open interest of over nine billion USD. Notably, Binance alone accounted for

over 758 billion USD traded futures notional in March 2023.

One reason for this excess trading on self-regulated exchanges lies in their unique charac-

teristics, such as the opportunity to trade 24/7, every day of the year, and a notional amount

as low as a single dollar, which can be particularly appealing to retail traders. Furthermore,

they provide an extended spectrum of tradable products, most notably the so-called ‘perpet-

ual contracts’, or perpetuals for short, which is a unique product tradable only on crypto

derivatives markets. These derivatives mimic a margin-based spot account, allowing trading

of the underlying spot with up to 125 times leverage. Although similar in structure to stan-

dard futures, perpetuals distinguish themselves by the absence of an expiry date. Yet, their

funding mechanism prevents these products from deviating too far from the underlying. This

mechanism involves a regular reset of perpetual prices which occurs every eight hours, wherein

long and short positions exchange cashflows based on the difference between the perpetual

and spot price. This has led to these products also being referred to as ‘perpetual swaps’.

Perpetual contracts are by far the most popular products in the realm of cryptocurrencies,

likely due to the lack of roll-over risk and low marginal requirements. Indeed, these products

open a new research strain as they can be used for hedging, alternative to the underlying or

fixed-maturity futures as Alexander et al. (2020) and Alexander et al. (2023) show.

A very distinct feature of unregulated exchanges is that they never introduced the concept

of margin calls. Instead, any leveraged position in futures or perpetuals that trends adversely,

drying up the margin account, is automatically and immediately liquidated. This involves

that the position is closed at prevailing market prices, without the possibility to deposit

5At the other end of the spectrum, Decentralised Finance (DeFi) protocols like dYdY or Ribbon Finance
provide the ground to trade futures and option strategies without an intermediary. The dYdX exchange
provides a decentralised alternative platform for futures trading and mimics a limit orderbook though LPs. On
the options side, Ribbon Finance, alongside Thetanuts, offer traders to invest in DeFi Option Vaults (DOV)
which are smart contracts mimicking option strategies such as covered calls or cash-covered puts. Traders
deposit/stake collateral into vaults and market maker try to buy vault tokens and pay a premium which is
distributed among the investors. However, with ∼ $160m total volume in March 2023 this market is too small
to consider, see DeFi Llama.

https://dydx.exchange/
https://www.ribbon.finance/
https://defillama.com/options
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more liquidity into the margin account. This forced selling can potentially result in a vicious

cycle of price depreciation, leading to further liquidations and potentially contributing to

bitcoin’s infamous and distinct volatility. Modern cryptocurrency markets have the tools and

means to trade this distinct feature of bitcoin directly through options and, since recently,

via futures on implied volatility indices. Options on bitcoin and other cryptocurrencies have

been available since 2017, but it was not until recently that their trading volumes and interest

took a substantial leap. With a traded volume exceeding 35 billion USD in notional terms

in March 2023, it has become a market too big to ignore. Some major financial institutions

even forecast that bitcoin options will constitute “the next big step” in this domain.6

The exchange fragmentation has led bitcoin options to become a tale of two settlement

mechanisms, i.e. standard – or direct – and inverse. The former describe plain vanilla Eu-

ropean options on the bitcoin price, an index value or some reference rate, e.g. BRR. The

distinction between standard and direct depends on whether options are denominated using

fiat currencies (standard) or those paired with a stablecoin, such as tether (USDT) which we

denote as direct.7 The CME launched its first European cash-settled option on their bitcoin

futures in January 2020. However, the contract size of five bitcoin proved to be a deterrent,

and the anticipated influx of institutional investors did not occur. This is why, in March

2022, the CME launched micro bitcoin options with a contract size of a tenth of a bitcoin,

aiming to compete with the self-regulated platforms and target retail traders. Despite the

CME introducing a wide spectrum of reference rates for other cryptocurrencies – such as

polkadot (DOT) or solana (SOL) – they currently offer only bitcoin and ether (ETH) options.

Self-regulated exchanges like Binance or OKX offer direct European cash-settled options for

bitcoin and ether, in addition to the Binance native token (BNB) and Ripple (XRP). Contrary

to standard options, the underlying for these direct options is denominated in a stablecoin,

primarily USDT and USD Circle Coin (USDC), and hence avoid any fiat transaction.

On the other hand, exchanges like BitMEX and Deribit have introduced ‘inverse’ products,

which include futures, perpetuals and options that are margined and settled in bitcoin despite

the underlying being the USD or USDT value of bitcoin or any proxy. That is, the payoff and

premium of a bitcoin option are paid in bitcoin, but the tracked underlying is denominated in

another currency. To obtain the maturity payoff, one needs to calculate the difference between

the bitcoin value in dollars and the option strike (also quoted in dollars), then convert the

result to bitcoin using the bitcoin value at maturity. By adopting this approach, Deribit and

similar exchanges have facilitated a fully functional options market without the necessity of

onboarding any fiat currency, thus circumventing potential regulatory or legal complications.

Evidently, this is a highly demanded feature as the trading volumes and proportions indicate.

While the CME reported a trading volume exceeding 1.6 billion USD in March 2023, unreg-

ulated exchanges recorded a volume surpassing 35 billion USD, with Deribit accounting for

6See Bitcoin Options Volume and Goldman Sachs Bitcoin Options accessed 01 May 2023.
7A stablecoin describes a token which is pegged one-to-one to a real asset like fiat currencies or gold.

However, in this context, we consider stablecoins as USD-pegged tokens and ignore other currencies/assets.

https://analytics.skew.com/dashboard/bitcoin-options
https://www.coindesk.com/markets/2021/12/02/goldman-sachs-sees-crypto-options-markets-as-next-big-step-for-institutional-adoption/
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over 88% of this total. In terms of open interest, Deribit indisputably dominates the market

possessing over 85% of the total market share. At present, inverse options are available for

bitcoin, ether, and solana, but given the trends over recent years, it is only a matter of time

that options for additional underlying coins will soon be offered.

Both settlement mechanisms for crypto options, which differ between exchanges, as well

as the different types of products, are not yet widely understood and a clear mathematical

exposition of these products is lacking. Given the increasing acceptance and growing interest

in cryptocurrency options, it is important to fully understand the pricing mechanisms of

bitcoin option types. In Chapter 4, we close the gap in financial literature and provide

a sound explanation of the different settlement mechanisms. We highlight key differences

between standard or direct and inverse options, derive the correct pricing formula, and show

that inverse options can and should be priced in accordance to the pricing model for Foreign

Exchange (FX) rates by Garman and Kohlhagen (1983). Motivated by the instability of

stablecoins (Duan and Urquhart, 2023), we draw attention to the risks of direct options

which use stablecoins rather than fiat currencies for settlement and propose quanto options

to mitigate the risk of de-pegging. Lastly, we introduce a novel exotic option mimicking the

inverse payoff and providing an attractive, less expensive alternative for retail traders eager

to participate in the bitcoin options market.

As established industry giants such as Goldman Sachs or BlackRock have commenced col-

laboration with cryptocurrency exchanges and introduced digital asset products to the wider

public, the necessity for hedging these assets has become increasingly essential.8 This could

potentially account for the fact that the CME has started to catch up on unregulated exchange

volumes. For instance, the proportion of traded notional options volume (open interest) on the

CME in March 2022 was approximately 3% (6%), whereas by March 2023, it had increased to

6% (10%), suggesting further a growing trend. While banks and asset managers may resort to

futures and perpetuals to hedge their structured products, options offer a versatile alternative

through delta-hedging. Typically, a delta-hedged position mitigates exposure to changes in

the underlying, with the Black-Scholes Model (BS) model offering a fundamental understand-

ing of option price modelling and hedging. However, numerous empirical studies in financial

literature have contested the validity of the assumptions underpinning the BS model. Unin-

tentionally, bitcoin option markets come closest to satisfying the BS model assumptions, given

their 24/7 operation, thereby – theoretically – allowing to hedge option position continuously.

Nevertheless, constant volatility in both traditional and crypto markets is not given, with

implications on the delta-hedging position. Traders must take into account the correlation

between the underlying and its implied volatility (IV) to execute effective hedging. Given the

distinct nature of bitcoin volatility, a study on dynamic delta-hedging would yield invaluable

insights for traders and further expand the understanding of this emerging market. Yet, thus

far, a mere handful of researchers (Teng and Härdle, 2022; Matic et al., 2023) have actively

8See Bloomberg accessed on 01 May 2023.

https://www.bloomberg.com/news/articles/2022-08-04/blackrock-teams-up-with-coinbase-in-crypto-market-expansion?leadSource=uverify%20wall
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explored BTC option hedging, and none looked into robust and efficient delta adjustments.

Chapter 5 will shed light on the dynamical delta-hedging behaviour of bitcoin and provide

fundamental knowledge of the distinct behaviour of the implied volatility. We compare two

different hedging instruments, the standard fixed-maturity futures and the novel perpetual

swaps, and evaluate their performance over the longest available dataset. Unlike other re-

search, the deltas considered here are smile-adjusted and smile-implied, and minimise the

instantaneous variance of a delta-hedged portfolio. Additionally, this study does not limit it-

self to daily rebalancing but instead implements intra-day position adjustments. The chapter

delivers two significant contributions. Firstly, it highlights the regime-dependency of bitcoin’s

implied volatility and refutes the leverage effect for cryptocurrency markets, thus influencing

the performance of individual smile-adjustment models. Secondly, although we do not identify

a single model that consistently surpasses the BS delta across all strike levels based on the

variance of hedging errors, our findings suggest promising results for at-the-money (ATM) and

out-of-the-money (OTM) tails and incentivise market makers to use the proposed models.

A delta-hedged option not only mitigates exposure to the underlying, but it also represents

the simplest form of volatility trading. The increasing volume in traded contracts can likely

be attributed to both institutional hedgers and volatility traders. While traditional markets

provide alternatives for direct volatility trading, such as implied volatility indices or variance

swaps, these products are only beginning to make their appearance in the crypto market.

Just recently, the Deribit exchanged launched futures on a bitcoin implied volatility index,

granting traders direct access to volatility trading. Prior to that, the proprietary trading house

GSR launched the first ever bitcoin variance swap in 2020, which is yet another indicator for

the growing interest and the prosperous future of the crypto options market. Both variance

swaps and implied volatility indices are mathematically related as the methodology of modern

volatility indices, e.g. VIX, is build upon a fair valuation of variance swaps. Consequently, the

index can be interpreted as a fair variance swap rate, and the payoff to that swap can be defined

as Variance Risk Premium (VRP), see for example Bakshi and Kapadia (2003). Such an index

summarises the implied volatility skew in a single number and indicates sophisticated option

trader’s expectation of future volatility. While there exists a plethora of empirical financial

literature focusing on the variance risk premium of US equity indices (Carr and Wu, 2009),

this type of analysis remains rather limited for cryptocurrency markets.

This motivates us to introduce a bitcoin implied volatility index, the first of its kind, using

a variance swap based methodology similar to the CBOE VIX. In Chapter 6, we construct

this index for various maturities, taking into account distinct trading clusters of bitcoin op-

tions, and use this index as a variance swap rate to examine bitcoin’s variance risk premium.

Furthermore, we test a different index methodology put forth by Leontsinis and Alexander

(2017), which aims to reduce the drawbacks of the variance swap methodology and compare

the variance risk premiums derived from this methodology with the traditional CBOE deriva-

tion. In an attempt to better understand bitcoin’s role in the global economy, we compare
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our results to variance risk premia of other asset classes. Our findings bear significance and

contribute to the existing literature in three ways. First, they reveal that bitcoin displays

VRP patterns similar to other asset classes, i.e. typically negative but with abrupt surges

into positive territory. Second, we show that bitcoin’s implied volatility tends to be overvalued

and proves to be an unreliable predictor of realised volatility. Lastly, bitcoin has, over long

periods in the past, surprisingly exhibited the most attractive variance risk premium profile

across all compared asset classes, thus representing a great opportunity for swap writers.

Having discussed the implied volatility behaviour of bitcoin in great detail, and lever-

aged the information content of the implied skew, we aim to forecast the bitcoin implied

volatility surface (IVS). The capacity to anticipate and control the dynamics of future shifts

in implied volatility is critically important for pricing and hedging options, as well as for

trading systematic volatility. This strain of research has sparked substantial interest among

both practitioners and scholars (Gonçalves and Guidolin, 2006). Similar to previous discus-

sions, the predictability of equity IVS and other asset classes have been studied widely (Cont

and Da Fonseca, 2002; Bernales and Guidolin, 2014), but only little is known about their

effectiveness on bitcoin. Chapter 7, the final research chapter, focuses on forecasting the bit-

coin implied volatility surface and leveraging it for trading purposes. In fact, this involves a

two-step approach in which we first model the surface, and subsequently predict the model pa-

rameter. Reflecting the increasing interest in machine learning techniques in recent literature,

we incorporate a recurrent neural network and compare its performance against a statistical

time series model and a naive approach. Through this chapter, we bridge the existing gap

in literature and test the market effectiveness of bitcoin options. Despite our approach being

robust and easily implementable, our findings show that the surface is predictable and ex-

pose potential profitable trading strategies based on our model’s forecast. Nevertheless, real

market factors such as transaction costs and the bid-ask spread negate these profits, pointing

towards an efficient bitcoin options market.

The remaining Chapter 2 provides a comprehensive literature review, focusing primar-

ily on the body of research that explores options and volatility trading in the context of

cryptocurrencies. This section also describes the theoretical models employed in the study.

Chapter 3 explains the processing procedure of our proprietary bitcoin options market data

and describes the data filtering and interpolation techniques used. Furthermore, this chapter

presents an analysis of options trading statistics spanning a three-year period, which repre-

sents the most extensive dataset currently available on bitcoin options trading. The final

chapter of this dissertation concludes by summarising the primary results and provides a

prospectus for potential future research in the field. The appendices include a derivations and

calculations, a detailed exposition of machine learning models with a focus on neural networks

as drawn from relevant textbook resources, and a review of the robustness checks employed.

Across this thesis, we will introduce a different font to refer to used Python libraries.



CHAPTER 2

LITERATURE REVIEW

Prior to engaging in any research on bitcoin options pricing, hedging or bitcoin implied volatil-

ity behaviour, it is essential to determine the appropriate pricing mechanisms of these deriva-

tives and gain an understanding of the diverse settlement mechanisms. There exists a wide

body of financial literature examining inverse futures contracts on bitcoin and other cryptocur-

rencies in great detail (Deng et al., 2020, 2021). Notably, Alexander et al. (2020) (perpetuals)

and Alexander et al. (2023) (fixed-maturity) provide comprehensive insights into the various

types of futures. The authors outline key distinctions between inverse contracts and their

traditional counterparts, explain the inverse settlement mechanism in-depth, and present the

pricing methods before revealing their findings on the hedging behaviour of inverse futures.

While cryptocurrency options too can be of inverse or direct type, the majority of existing

academic research neglects to differentiate between these settlement types. Even fewer studies

address this distinction actively. Although direct options are no innovative product and can

be modelled using any ‘traditional’ deterministic or stochastic volatility (SV) options model

such as Black and Scholes (1973) or Heston (1993), inverse options necessitate a more sophis-

ticated approach. In fact, at the time of writing, only Lucic (2022) and Sepp and Rakhmonov

(2022) offer a concise discussion on the key characteristics of inverse options.

2.1 Pricing

In his two-page working paper, Lucic (2022) indicates that inverse options can be priced within

a standard FX framework. He assumes the BTCUSD rate follows a Geometric Brownian

Motion (GBM) and that functioning money markets for both bitcoin and USD exist, with

corresponding martingale measures (domestic and foreign). Following standard risk-neutral

evaluation arguments (Musiela and Rutkowski, 2005), the author links these two martingale

measures and presents a relationship between inverse and direct options, akin to the duality

8
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condition observed in FX options. Despite accurate pricing, Lucic (2022) fails to provide a

motivation for adopting this approach, omits an explanation of the practical implications for

traders using this pricing mechanism, and disregards the incomplete market on the Deribit

exchange. The author’s methodology lacks specification of interest rates or information on the

volatility of the underlying. However, it is plausible to assume constant rates and volatility

in line with the assumptions proposed by Black and Scholes (1973). In essence, the content

of this paper suggests that pricing inverse options resembles the FX methodology put forth

by Garman and Kohlhagen (1983) closely, even though this is not explicitly stated.

This pricing approach can be readily extended beyond the Black-Scholes world. Solu-

tions to option pricing problems are attainable, at least in the Fourier transform sense, for

any tractable Lévy processes governing the evolution of the BTCUSD exchange rate. In this

context, Sepp and Rakhmonov (2022) extend the work of Lucic (2022), offering a more com-

prehensive description of option valuation under simple money-market and inverse measures.

The authors assume deterministic risk-free rates and use the USD money market account as

well as the option’s underlying price as two numéraires. Moreover, in line with the market

completeness assumption as proposed by Jarrow and Larsson (2012), and assuming equiva-

lence of both martingale measures induced by the numéraires, Sepp and Rakhmonov (2022)

demonstrate the same relationship between direct and inverse options as Lucic (2022). By

the same token, they extend their methodology and consider futures contracts as underlying

and illustrate an equivalent relationship between inverse and direct options. While the pri-

mary focus of Sepp and Rakhmonov (2022) is not necessarily the valuation of inverse options,

but rather the introduction of a novel log-normal stochastic volatility model, the authors

nevertheless derive a solution for the joint valuation problem of direct and inverse options

applicable to stochastic volatility models. They demonstrate that the put-call parity and du-

ality conditions of FX options remain valid for inverse options under their proposed log-normal

stochastic volatility model with quadratic drift. Additionally, they derive the corresponding

pricing formulae for direct and inverse options and the necessary and sufficient conditions

under which price and inverse price processes are martingales with finite moments, for the

log-normal SV models with quadratic and linear drifts, the Heston model, and the exponential

Ornstein-Uhlenbeck model. Similar to Lucic (2022), the work of Sepp and Rakhmonov (2022)

is primarily theoretical in nature and does not take into account real market conditions, such

as market incompleteness or the implications of crypto-denominated profits for traders.

In accordance with the findings of the two papers, the pricing and evaluation process can be

done in both USD and bitcoin. Indeed, prevailing academic consensus considers only the USD

value of bitcoin options and their profits. An extensive array of finance literature has focused

on various stochastic volatility or generalized auto-regressive conditional heteroskedasticity

(GARCH) models as mechanisms for pricing bitcoin options (Chi and Hao, 2021; Hung et al.,

2020; Siu and Elliott, 2021; Hilliard and Ngo, 2022).1 For instance, Madan et al. (2019) apply

1Innovative methodologies incorporating neural network pricing have also been explored (Pagnottoni, 2019;
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and test an assortment of models empirically, including the BS model, Laplace model, variance

gamma (VG) model, bilateral (double) gamma model, VG Sato model, VG-CIR model and

Heston (1993) model, within the context of the bitcoin market. The authors compare the

fits based int the Root Mean Squared Error (RMSE), average absolute error (AAE) and the

average pricing error (APE). The findings reveal that the BS model captures the surface

inadequately, while more sophisticated models yield superior fit. In a significant contribution

to the field, Hou et al. (2020) present an essential set of results, highlighting the importance

of jumps and co-jumps. They propose a stochastic volatility with a correlated jump model for

bitcoin option pricing. Diverse volatility model’s accuracy of option prices are investigated

by modelling the dynamics of bitcoin with a stochastic volatility model (Heston (1993)), a

SV with jumps in the returns (SVJ, Bates (1996)), a SV with contemporaneous jumps in

returns and volatility (SVCJ, Duffie et al. (2000)) and a SV with nonlinearity structure (BR,

Bandi and Reno (2016); and estimate the diffusion term using the Markov Chain Monte Carlo

method. In particular, these models are useful to price exotic options, e.g. cliquet or ratchet

options. The authors show that the SVCJ and BR model can describe the log-return dynamics

of bitcoin well and use the Crude Monte Carlo technique to approximate prices of options

with maturities between one day and two years, and strike levels 50% below and above the

assumed underlying price, using the estimated parameters for the different SV models. In

a related vein, Cao and Celik (2021) propose a mixed jump-diffusion SV model, assuming a

constant interest rate and jump-diffusion for the underlying currency process. On the other

side of the spectrum, Cretarola et al. (2020) introduce a bivariate model for the bitcoin price

dynamics which is driven by market attention and sentiment. Here, the GBM assumption

of the underlying price dynamic is extended by an exogenous factor representing investor’s

attention in the bitcoin market. The authors show their model is arbitrage-free and introduce

a quasi-closed form for pricing European bitcoin options using the Profile Quasi Maximum

Likelihood method. In another another strain of literature, (Jalan et al., 2021) compare

simulated bitcoin option premia and Greeks with widely recognised valuation models, such as

BS and Heston and Nandi (2000) GARCH(1,1) asymmetric multiple volatility regime model.

The authors allow for two different volatility regimes and find that the Heston and Nandi

(2000) GARCH model models option prices closer to market prices.

All cited scholarly works underscore the vast potential applicability of their respective

models, positing the consideration of key attributes intrinsic to bitcoin, such as jumps, and

promise success in the area of pricing and hedging. Yet, none of the papers mentioned above,

with the exception of Madan et al. (2019), Cretarola et al. (2020) and Jalan et al. (2021), test

their models on an empirical dataset, let alone evaluate their performance in a delta-hedging

study. Madan et al. (2019) analyse bitcoin options from the LedgerX exchange between

July and August 2018. At the time of writing, the LedgerX exchange has ceased operations,

following a shutdown in 2021 and subsequent acquisition by FTX. During the short duration

Li et al., 2019) but the literature on this strain of research is rather thin.
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of 2018, LedgerX was characterised by minimal trading volume, and the bitcoin market has

undergone significant transformation since. Therefore, the results derived from that limited

time period may deviate substantially when considered in the context of more liquid and

current data. Similar, Cretarola et al. (2020) focus on bid- and ask-prices of bitcoin options

on Deribit in July 2017. It should be noted, however, that Deribit exchange just started their

operations during the authors’ sample period, leading to a very low average trading volumes

and negligible OTM option trading volume. Given the extensive changes in the bitcoin (and

its options) market since then, the influence of these findings may not be as pertinent today,

and the methodological approaches require validation with more recent data. In fact, a

study by Jalan et al. (2021) demonstrates that the general volatility landscape of bitcoin

underwent significant shifts following the introduction of bitcoin futures by the CME in 2019.

Consequently, results considering options and volatility prior to the introduction of futures

necessitate updating with more current data. Similarly, Jalan et al. (2021) limit their research

on the option chains of six available maturities at the evaluation date (27 January 2020) and

simulate option prices up to the maturity using a simple Monte Carlo approach. While the

authors argue that liquidity and trading volume in January 2020 is sufficient, relying solely on

the results of a single snapshot limits the explanatory power of their findings. Furthermore,

they fall short in providing a practical implementation of their Greeks discussion and fail to

demonstrate their hedging performance.

2.2 Hedging

A great deal of using SV models to price options in the first place is to derive accurate hedge

ratios, particularly the price sensitivity, i.e. delta. It is indisputably that the benchmark for

any study of dynamic delta-hedging is the Black and Scholes (1973) model. The BS delta

only requires a partial derivative of the model option price with respect to the underlying

price, because the model assumes a zero correlation between the underlying price and its

volatility. But it is well known that equity index options have a large and negative spot-

volatility correlation which leads to a pronounced skew in the implied volatility curve, or

implied volatility smile, see for example Bouchaud et al. (2001).This empirical observation

consequently raises the question: is it possible to beat the BS model in terms of delta-hedging

efficiency?

2.2.1 Model-Dependent

Empirical studies focusing on hedging bitcoin options remain limited in the current literature.

Teng and Härdle (2022) calibrate multiple stochastic volatility models to Deribit inverse op-

tions and perform a dynamic delta-hedging study using an array of nested model-dependent

deltas. Specifically, the authors consider deltas of BS, SV, SVJ and SVCJ models, similar to

Hou et al. (2020), and measure out-of-sample performance from December 2021 to February
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2022, based on the hedging error and benchmark it to the BS delta. Motivated by liquidity and

trading clusters, the authors segregate the sample into OTM put, ATM and OTM call options,

based on their moneyness. These options have expiry dates up to five days, between five days

and four weeks, and longer then four weeks. The authors’ approach to dynamic delta-hedge is

straight forward, including a self-rebalancing portfolio with initial value of zero. This involves

writing an inverse option and taking a long position in the spot market, sized according to

the delta. Any excess amount is invested in a risk-free money market. This position is then

rebalanced on a daily basis until expiry of the option. Teng and Härdle (2022) find that it is

difficult to identify one single model that consistently outperforms the BS delta. Particularly

for short- and mid-term options, the authors find almost indistinguishable results, while the

longer termed options show mixed results. They also conclude that the broader SVCJ model

outperforms its nested models in terms of in-sample and out-of-sample pricing.

Indeed, Matic et al. (2023) offer one of the few detailed studies of bitcoin option hedg-

ing. The authors conduct a comparative study of the delta-gamma-vega hedging performance

across various stochastic volatility and jump diffusion market models for a multi-asset port-

folio. For this, they use daily implied volatilities derived from option mark prices quoted on

the Deribit exchange between April 2019 and June 2020.2 These are then used to calibrate

the parametric stochastic volatility inspired (SVI) model, and subsequently interpolate the

implied volatilities of options between one and three months in an arbitrage-free way. The

study is divided into three distinct sub-periods to account for the prevailing market regime,

namely a bullish, a calm and a COVID-phase period. The underlying bitcoin prices are sim-

ulated using the SVCJ process introduced by Duffie et al. (2000) with a GARCH-filtered

kernel density estimation proposed by McNeil and Frey (2000). The latter technique, being

non-parametric, is deemed to closely reflect traded market data. Both models are calibrated

using closing prices for bitcoin during the sample period, although the authors do not specify

the exact closing time for bitcoin. By doing so, the authors claim to cover a wide range

of market dynamics. Subsequently, they compare the performance of the BS Greeks. i.e.

delta-, delta-gamma, delta-vega, as well as minimum variance approach, with those derived

from a wide variety of stochastic volatility jump diffusion models. This includes comparisons

with the hedging performances of a BS, Merton (1976) jump diffusion, SV, SVJ, SVCJ, VG

and CGMY-model (Carr et al., 2002). Parameters for each model are computed using a

fast Fourier transformation method, introduced by Carr and Madan (1999). The dynamic

hedging setup employed Matic et al. (2023) is similar to that of Teng and Härdle (2022) –

at the start of each pre-defined market period, the authors write a European option with a

maturity of either one or three months and dynamically hedge the exposure of each option.

For a delta-gamma or delta-vega hedge, an additional option is introduced to neutralise the

2There is a slight but important difference between mark and market prices. While market prices are the
current bid, ask and mid prices in the options orderbook, the mark price as a ‘fair value’ estimate of the
exchange. How exactly the exchange calculates this value is not stated online, not it is replicable, but it does
not necessarily mean that mark and market prices are identical. In fact, for almost any bitcoin option, the
market price deviates form the mark value.
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gamma or vega exposure. The performance of these hedging strategies is evaluated by mea-

suring the Profit and Loss (PnL) relative to the initial option price, the standard deviation

of the hedging error and evaluate the tail behaviours by the expected shortfall of the PnL.

Matic et al. (2023) distil their findings into three key conclusions. Firstly, multi-instrument

hedging, such as delta-gamma or delta-vega, considerably outperforms simple delta-hedges,

particularly with regards to tail-end risk. Secondly, echoing the findings of Teng and Härdle

(2022), they find little improvement over simple BS hedges for options with a one-month ex-

piry. Lastly, they note that more complex models significantly enhance hedging performance

for options with a three-month maturity.

To the best of our knowledge, these are the only paper considering an active model-

dependent dynamic delta-hedging study of bitcoin options. Notwithstanding the compre-

hensive insights and valuable contributions made by these studies concerning the hedging

behaviours of bitcoin options, their methodology incorporates the simulation of market con-

ditions which may skews the real-world use of the results. Moreover, the real-time simulation

of parameters requires considerable computational power. Given the recent surge in trading

activity and liquidity, it is both feasible and required that future research in this field considers

adopting model-free methodologies.

2.2.2 Model-Free

Bates (2005) highlights the disadvantages of computing deltas from parametric models and

points out that for a broad class of option pricing models, the appropriate deltas for hedging

option positions can be inferred directly from the implied volatility smile. However, the

application of such a model-free hedging approach in the realm of cryptocurrency options

appears to be unexplored in current literature. This smile-implied model operates under

the sole assumption that the underlying is a scale-invariant process.3 The author indicates

that an option delta can be inferred direction from its sensitivity to the strike level using

Euler’s theorem for homogeneous functions. This process involves calculating the BS delta

and subsequently deducting the product of the BS vega and the slope of the volatility smile

with respect to the strike level, which can be evaluated numerically (Shimko, 1993). Bates

(2005) further points out that the volatility smile, at least for equities, exhibits a downward

slope for low strike prices, implying that BS deltas understate the true delta of low-strike

options. Alexander and Nogueira (2007a) provide more general results to Bates (2005) ideas.

They show that most stochastic processes used for option pricing are scale-invariant and it

is possible to use the slope of the implied volatility curve to imply an adjustment to the BS

delta which is model-free, in the sense that it is the same for any scale-invariant model. They

conclude that any difference between the empirical hedging performance of two parametric

volatility models for tradable instrument only arises because of different calibration errors.

3That is, the price shows constant returns to scale, making option prices a homogeneous functions of degree
one with respect to the underlying price and the strike level.
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Another approach in adjusting the BS delta by adding a term which captures the spot-

volatility correlation is to use the smile-adjusted deltas proposed in the pioneering work of

Derman and Kani (1994), Rubinstein (1994), Dupire (1994) and Derman et al. (1996). These

are not exactly model-free, because the adjustment term depends on a parameterisation of

local volatility which itself depends on the prevailing regime of the market. However, they

are model-free in the sense that there is no process, such as a stochastic local volatility jump

diffusion, which is assumed to drive the underlying price evolution, and no parameters to

calibrate using option price and/or underlying historical data. A great practical advantage of

these methodologies is that deltas are easy to compute and are implemented in a cost-efficient

way. There is no requirement for model calibrations because all information is derived from

the market implied volatility smile in a straightforward and robust, model-free manner.

Derman and Kani (1994) and Rubinstein (1994) show how to use the implied volatility

smile as input to deduce the underlying’s dynamics. More specifically, the authors show how

to extract a unique binomial tree, in line with Cox et al. (1979) but non-constant volatilities at

each node, for the underlying corresponding to its true future evolution. The general approach

first estimates the risk-neutral probability distribution of underlying at the end of the tree,

and then determines the up and down step sizes and probabilities throughout the tree that are

consistent with the implied probability distribution. In this context, both Derman and Kani

(1994) and Rubinstein (1994) are among the first to introduce the concept of local volatility.

In contrast to Black and Scholes (1973), the local volatility is the instantaneous volatility

and a function of both time and underlying price that “locks in” the forward volatilities.

Alexander (2008) uses this notation and describes the forward volatility as the volatility at

some future point if the underlying takes the a certain values and draws an analogy to the

forward rates in bond markets. In essence, it reflects the short-term ATM implied volatility at

the underlying level. In fact, Derman et al. (1996) provide an extensive comparison between

the local volatility and forward rates and motivate the use of local volatility to price exotic

options. Derman and Kani (1994) provide a discrete algorithm to calculate index levels,

transition probabilities and Arrow-Debreu prices at each node iterative level by level.4 At the

same time, Dupire (1994) was addressing the same issue, leading to a equation that allows

the local volatility to be calculated continuously from current option market prices. This

proposed equation relies solely on option prices, strike levels, and partial derivatives of the

option chains with respect to maturity and strike, thereby making it immune to changes in

the underlying asset. That is, the local volatility of Dupire (1994) remains unaffected for price

movements while the BS IVS changes. This characteristic of the local volatility is commonly

know as the static smile property, while the other refers to the floating smile property.

Derman et al. (1996) extend the work of Derman and Kani (1994) and emphasise the use

of local volatility surfaces to price exotic options. Once fitted, the implied tree model produces

a grid of future underling prices, each corresponding to a specific local volatility. Assuming a

4The Arrow-Debreu price is the price of an indicator option that pays 1 unit payoff in only one state.
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constant market perception of local volatility over time, they demonstrate how local volatilities

can be deployed to ascertain the relationship between implied volatility and strike price in the

future. This methodology uses the tree’s directional characteristics to compute fair values for

options across all strikes and maturities at a future time. The conversion of these prices into

BS implied volatilities enables the computation of equitable future implied volatility surfaces.

Derman et al. (1996) propose three heuristic rules, which were subsequently generalised and

further examined by Kani et al. (1996). Particularly the third rule is of great interest as

it considers the correlation between underlying and implied volatility. The authors provide

an intuitive explanation of the implied volatility as a global average over local volatilities.

Assuming that that local volatility is a linear function of the underlying price, independent of

future time, the authors derive a smile-adjusted delta ratio accounting for the BS delta, vega,

and observed sensitivity of implied volatility to strike level. Specifically, for equity indices,

the implied volatility is inversely correlated with the index level. They demonstrate that,

in the implied tree model with negative skew, the exposure of both call and put options is

consequently lower than it would have been in a BS environment with flat volatility.

Derman (1999) focuses on observed sensitivities of implied volatility to underlying and

identifies three main aspects of the skew that are invariant, or ‘sticky’, as the underlying

moves. His main motivation emerges from empirical observation or the S&P 500 index and

the corresponding three month implied volatilities. He identifies distinct volatility behaviour

for certain market periods, or regimes, and introduces the famous sticky models, i.e. sticky

strike, sticky moneyness (or delta) and sticky tree. Each of these models effectively represents

the volatility-spot relationship for its respective market regime:

Sticky Strike

The Sticky Strike (SS) model disregards any correlation between the underlying and implied

volatility and depicts a stable-trending market. Given the current skew, some traders believe

that, as the index progresses in any given direction, the volatility of an option with a specific

strike and maturity remains unaltered; hence its name. If one were to visualise the implied

tree, each option would have its own tree, each with a distinct constant volatility equal

to its own implied volatility. Derman (1999) himself refers to this approach as “a poor

man’s attempt to preserve the Black and Scholes (1973) model” as it provides each option an

independent tree, without concern for the collective consistency of the options market’s view

of the index. Under the sticky strike assumption, the Black and Scholes (1973) delta is not

adjusted to account for changes in implied volatility as spot price fluctuations occur.
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Sticky Moneyness/Delta

In the Sticky Money (SM) or sticky delta framework, the implied volatility of an option

depends only on its moneyness, or its delta, and describes a range-bounded market.5 Any

variation on the volatility stems entirely form its dependence on the single variable moneyness.

The intuition behind this model is that ATM implied volatility should remain the same,

independent on the current underlying level or its changes. That is, as the implied volatilities

for – theoretically – all moneyness/delta are fixed, the ATM implied volatility shifts to the

ITM/OTM implied volatility as the underlying moves. This holds for ITM/OTM options as

well, i.e. the option that is 20% out of the money after the underlying moves should have the

same implied volatility as the 20% OTM option before the index move. The implication of this

assumption for the delta is significant. Within the sticky moneyness assumption, if the spot

price of the underlying asset changes, the delta of the option would change accordingly to keep

the level of moneyness constant. Derman (1999) shows that the SM delta adjustmentment is

greater than the BS delta.

Sticky Tree

The Sticky Tree (ST) model completes Derman’s sticky models and describes a falling crash-

jump market with a lot of fear and uncertainty. This approach considers the implied tree

(Derman and Kani, 1994; Derman et al., 1996) of instantaneous volatility of future underlying

prices derived from current market implied volatility surface. Instead of allocating a separate

tree to each individual option or moneyness level, all options are subject to the same implied

tree and move across its nodes in tandem with alterations in the underlying. This suggests

a distinctive pattern where implied volatilities decline in response to increases in either the

strike or the underlying. Here, ATM implied volatilities decrease twice as much with the

underlying. Furthermore, given that volatility decreases as the underlying increases (at least

in the case of equities), the option’s delta is found to be smaller than its BS counterpart. In

a sense, it is the only true local volatility model because it keeps the floating properties of

Dupire (1994) and considers only one implied tree as proposed by Derman et al. (1996).

Apart from the smile-implied and -adjusted deltas, there are more generic deltas which

minimise the instantaneous variance, i.e. the Minimum Variance (MV) delta. Bakshi et al.

(1997) are among the first to introduce another model-free delta adjustment which minimises

the variance of the hedging error of a delta-hedged options position. As shown by Alexander

and Nogueira (2007a), the minimum variance total derivative with respect to price is another

delta which accounts for non-zero spot-volatility correlation, but it is model dependent. Nev-

ertheless these authors cannot distinguish the empirical results obtained using the model-free

MV delta of Lee (2001) and those MV deltas based on different scale-invariant models. This

delta is also ‘smile-adjusted’, in the sense that it adds a term to the BS delta that is calibrated

5In the BS model, the delta itself depends on the underlying and strike through the moneyness variable, so
that “sticky moneyness” is equivalent to “sticky delta,”.
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using the empirical characteristics of the implied volatility smile curve. The author provides

an extensive review of stochastic (local) volatility option pricing models and generalises and

extends the minimum variance hedge ratio of Bakshi et al. (1997) in which her proposes an

BS delta adjustment similar to the sticky moneyness model of Derman (1999).

Hull and White (2017) put forth a distinctive methodology for estimating the MV delta

using a different estimation of the vol-spot sensitivity. Similar to Alexander et al. (2012), they

test the effectiveness of an empirical estimate of the sensitivity for delta-hedged options on

the S&P 500, S&P 100, the Dow Jones Industrial Average between January 2004 and August

2015. For this, they consider the BS delta and estimate (forward-looking) the minimum-

variance delta which yields a hedging error of zero. The researchers find that the BS delta

is consistently higher than the MV delta and has a roughly quadratic relationship to the

BS delta, independent of the options maturity or strike. Drawing from these findings, the

authors consider the smile-adjusted delta, obtained via the application of the chain rule in the

manner of Lee (2001), and characterise the spot-volatility sensitivity as a quadratic polynomial

function of the BS delta. To carry out this analysis, the authors adopt a rolling window

spanning three years to conduct a regression of the instantaneous hedging error on the squared

BS delta. The outcomes of their study are somewhat mixed. Hedging operations prove to

be more effective for call options than put options, and more favourable for OTM options

compared to ATM options. Nonetheless, a dynamic delta-hedging comparison with alternate

models demonstrates their model excels over its (SV) contemporaries.

Despite all the presented advantages of SV models, Alexander and Nogueira (2007b) show

that every stochastic and/or local volatility equity option pricing model, for a tradable in-

strument but not an interest rate, should fall into the scale-invariant class, however complex

the additional features such as jumps or Lévy processes. Consequently, any difference be-

tween the empirical hedging performance of two parametric volatility models (for a tradable

instrument) only arises because the models have different calibration errors. The delta (and

indeed the gamma) partial derivatives of the option price with respect to a tradable instru-

ment price are theoretically identical to the model-free scale-invariant delta. By contrast, the

delta derived from a non-scale-invariant model, such as the local volatility model of Dupire

(1994), or the sticky-tree model of Derman and Kani (1994), is not theoretically identical to

the scale-invariant delta. Neither is a minimum-variance delta, which is the total derivative

that includes the vega effect arising from a non-zero spot-volatility correlation. Moreover, the

simple scale-invariant delta derived by Bates (2005) is greater than (less than) the BS delta

when the slope of the smile is negative (positive). Since Coleman et al. (2001) show that

the BS delta tends to over-hedge in a local volatility framework, scale-invariant deltas will

over-hedge even more than the BS delta when the implied volatility skew is negative

There are several previous empirical studies of smile-implied and/or smile-adjusted delta-

hedging, but all of them study equity index options. Not all of the results are consistent:

Vähämaa (2004) shows that some smile-adjusted deltas out-perform the BS delta for FTSE
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100 index options, but only during excessively volatile periods; Crépey (2004) confirms these

findings for DAX 30 options; Attie (2017) claims that smile-implied deltas consistently out-

perform the BS delta for hedging S&P 500 options; Alexander et al. (2012) extend the Derman

(1999) framework to a Markov-switching setting which reflects the correct smile-adjusted delta

for the prevalent market regime, showing that, for S&P 500 options, it is only possible to

improve on the BS delta by using this Markov-switching extension; and François and Stentoft

(2021) also examine S&P 500 options and confirm that standard adjustments cannot out-

perform the BS delta or delta-gamma hedges, but their new smile-implied delta-gamma-vega

hedge substantially improves on the BS model. Much less is known about the success of smile-

adjusted delta-hedges for other types of options. In this strand of the literature, Nastasi et al.

(2020) calibrate smile-consistent models for commodity options to capture the smile dynamics

and Malz (2000) explains how to take smile adjustments into account when measuring the

risk of foreign exchange options. None of these models have been applied and tested on

cryptocurrency option markets.

2.3 Volatility Trading

The implementation of a delta-hedging strategy on an options position primarily serves to

mitigate underlying risk. It is, however, the most simple form of pure volatility trading as the

delta-hedge removes all the exposure to the underlying. While volatility as an own asset class

on other assets like equity or commodities has been present and popular for decades (Derman

et al., 1996), the notion of engaging in pure cryptocurrency volatility trading remains in the

early stages of its development. Nevertheless, interest in this area is increasing, as affirmed by

recent studies from Aalborg et al. (2019) and Chen and Huang (2021). Carr and Lee (2009b)

provide an excellent summary of the history of pure volatility trading, starting with the first

variance derivatives issued by UBS in 1993, to the modern volatility derivatives traders use

today.6. Carr and Madan (2001) provide practical insights of the volatility trading history

and present specific positions where it is feasible to engage in volatility trading, for instance,

through static delta-hedged options, variance swaps, or futures on volatility indices.

6The inception of volatility trading can be linked back to the seminal works of Neuberger (1994) and
Dupire (1993). Neuberger (1994) presents the concept of the ‘log-contract’, a financial instrument that yields
the log return of the underlying asset. The author underscores how this furnishes an alternative avenue to
trade realised volatility, demonstrating within the context of the Black and Scholes (1973) framework, that
a portfolio consisting of delta-hedged log contracts on the underlying asset can be effectively utilised to craft
a pure volatility strategy. Despite its theoretical appeal, these contracts see infrequent trading due to the
complexity inherent in their pricing mechanisms. In a parallel development, Dupire (1993) shows how this
payoff structure can be replicated by a static portfolio of options. Additionally, he introduces the notion that
a calendar spread of two log-contracts with disparate maturities would yield the realised variance between the
two specified dates.
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2.3.1 Variance Swaps & Volatility Indices

Variance swaps on equity indices were introduced by Goldman Sachs in the 1990’s. Demeterfi

et al. (1999) present the replication strategy, which captures the realised variance over the

lifespan of the swap and emphasise the hedging cost as fair value swap rate. The authors

put forth an intuitive approach wherein they construct a portfolio of options which payoff ap-

proximates the log contract presented by Neuberger (1994), and show re-hedging the portfolio

returns the payoff of a variance swap. Beyond the discrete case where future variances are

averaged, the authors illustrate how continuous rebalancing of a position in the underlying –

such that it maintains a long position on the underlying worth of $1, combined with a static

short position in a contract that pays the log of the total return – retrieves the cost of replica-

tion directly. Recognising that actively traded log contracts are absent, the authors replicate

the log payoff at all underlying levels at expiration by decomposing its shape into linear and

concave components, considering each component separately, as proposed by Dupire (1993).

The first component, linear, is replaced by a forward contract on the underlying asset, with

the same expiration as the swap. The second component, curved – accounting for quadratic

and higher order contributions – can be replicated using standard options across all possible

strike levels with the same maturity. Finally, the authors present the decomposition of a

log payoff as a portfolio comprised of a short position in forward contracts, a long position

in put options – each inversely weighted by their squared strike value, for all strikes up to

the underlying value; and a long position in call options, inversely weighted by their squared

strike, for all available OTM strikes. The corresponding fair-value variance swap rate formula

is approximated as a Riemann sum over these discrete and bounded option positions.

The authors draw attention to a series of intrinsic limitations of their replication method:

(i) the use of discrete strike levels for options causes sparse replication, leading to the dis-

cretisation error; (ii) the unrealistic assumption of the strike ranges (truncation error) leads

to underestimation of the tails; and (iii), the occurrence of jumps and resulting jump error

neglects its impact on the volatility. In fact, both truncation error (Jiang and Tian, 2005) and

discretisation error (Bernard and Cui, 2014) affect its accuracy significantly. The jump error

can be quite large during volatile periods, see Aı̈t-Sahalia (2004) or Rompolis and Tzavalis

(2017). For instance, during the financial crisis of 2008 the VIX commonly underestimated

the S&P 500 variance swap rate traded in over-the-counter (OTC) markets by 5% or more.

It is worth noting that Demeterfi et al. (1999) assume the underlying follows a geometric

Brownian motion. Bakshi et al. (2003) however, contest this assumption, showing that there

is no necessity for the underlying asset to adhere to a specific dynamic, provided it is a

positive semi-martingale. The authors further present an alternate fair swap rate which takes

into consideration the second moment of log returns as opposed to the expected value of the

quadratic log returns. In this vein, both Jiang and Tian (2005) and Carr and Lee (2009a)

generalise the geometric diffusion assumption of Demeterfi et al. (1999) and demonstrate that

the variance swap replication still holds under any diffusion for the stochastic volatility process,
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including non-zero spot-volatility correlations. Furthermore, Gatheral (2006) introduces an

alternative methodology, validating the swap replication of Demeterfi et al. (1999) via a model-

free decomposition of a power option. In this approach, he computes the first moment of the

quadratic variation of the returns process, assuming a zero spot-volatility correlation.

Modern implied volatility indices are build upon the work of Demeterfi et al. (1999). The

first idea of a volatility index goes back to Brenner and Galai (1989) who propose financial

instruments for hedging volatility, similar in spirit to Neuberger (1994). The CBOE, in

consultation with Whaley (2000), introduced a index of implied volatility on the S&P 100

index and only using at-the-money options. The CBOE subsequently updated their volatility

index methodology (CBOE Global Markets, 2003), drawing upon the academic works of

Breeden and Litzenberger (1978); Madan et al. (1998); Demeterfi et al. (1999); Britten-Jones

and Neuberger (2000). This marked the advent of the VIX derived as a corresponding fair-

value swap rate for the S&P 500, informally referred to as ‘The Investor Fear Gauge’. This

variance-swap-based volatility index allows for the determination of the (ex-ante) fair swap

level. Given it represents the expected realised variance, it conveys that the swap rate is

the market-implied future variance. In 2004, the CBOE began listing VIX futures, with

the corresponding European options introduced in 2006. The trading of futures and options

on the VIX has become widely established, albeit highly speculative. Subsequently, implied

volatility indices on other equity indices like the DAX 40, or alternative asset classes such as

commodities or FX rates, have increased rapidly, providing a foundation for futures trading.

As already mentioned briefly, the methodology employed by the CBOE is criticised for

it vulnerability to manipulation, as well as its dismissal of jump and discretisation errors.

This perspective is supported by both theoretical and practical literature (Bennett, 2014;

Griffin and Shams, 2018) which demonstrates how such calculations may be susceptible to

manipulation during the settlement of indices and futures. In the context of bitcoin, this

errors are intensified, as presented by numerous studies analysing jumps in bitcoin prices.

Scaillet et al. (2020) employ the detection method of Lee and Mykland (2008) on daily data

to detect jumps between June 2011 and November 2013 using the database leak of the Mt.Gox

exchange. They find approximately one jump per week in the BTCUSD rate and claim that

order flow imbalance and the aggressive traders, as well as a widening of the bid-ask spread

predict the jumps. However, their sample covered a period when the bitcoin universe could

almost be described as prehistoric with two major crashes caused by fraud and manipulation

(Cheung et al., 2015; Gandal et al., 2018). The market has matured considerably since then,

with initial coin offerings of almost 4,000 new crypto assets starting in 2017 and continually

growing, along with the introduction of bitcoin derivatives. Research by Hilliard and Ngo

(2022) find similar results for more recent data and analyse the impact of these jumps on

option pricing. Kang and Kim (2019) and Hu et al. (2019) use the methodologies introduced

by Jiang and Oomen (2008), Barndorff-Nielsen and Shephard (2004) and Barndorff-Nielsen

and Shephard (2006) to detect and analyse more recent jumps in bitcoin prices, between 2014
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and 2018. Despite identifying more jumps in bitcoin as compared to the S&P 500, they found

that these jumps accounted for a smaller proportion of the total return than its continuous

component, an outcome attributable to the high volatility of bitcoin prices.7

In light of the limitations identified in the variance swap based calculation, alternative

model methodologies have been proposed. Chow et al. (2021) demonstrate that the VIX

tends to underestimate volatility in scenarios of negative return skewness, attributing this to

the discretisation error inherent in the CBOE methodology. They introduce a Generalised

VIX (GVIX) methodology which eliminates the necessity for a diffusion assumption. However,

the authors do not provide empirical evidence validating their claim of superiority of their

methodology over the VIX in terms of forecasting realised variance. Leontsinis and Alexander

(2017) put forward a formula for a fair-value of realised variance, where it is defined as the

average sum of squared price changes, as opposed to the change in log prices. Their rationale

is grounded in the employment of a definition that adheres to the aggregation property, as

introduced by Neuberger (2012) and Bondarenko (2014). Indeed, their arithmetic variance

swap bears a striking resemblance to the simple variance swap posited by Martin (2013),

wherein realised variance is defined as the average sum of squared returns. Nevertheless,

the simple variance swap is only applicable to underlyings with positive prices and fails to

satisfy the aggregation property, leading to a non-zero discrete monitoring error. A distinctive

advantage of the realised variance definition proposed by Leontsinis and Alexander (2017) is

that the fair-values exhibit no jump bias. Furthermore, their arithmetic index assigns a weight

to each option based on the squared underlying values, rather than the squared strike. By

contrast, the standard ’geometric’ formula adopted by the CBOE can produce substantial

errors in the presence of jumps. Unlike Chow et al. (2021), Leontsinis and Alexander (2017)

conducted empirical tests of their model, finding that their arithmetic approach surpassed the

geometric VIX index in predicting realised variance during the 2008 banking crisis.

The development of volatility indices for cryptocurrencies remains largely under-explored.

Among the few noteworthy alternative volatility indices is the VCRIX, an implied volatility

index pertaining to the CRIX index, initially introduced by Kim et al. (2021). The authors

claim that the CRIX serves as a unique index for the crypto-market, mirroring the role of the

S&P 500 in the traditional financial landscape. Owing to the absence of a derivatives market

for the CRIX, the VCRIX does not adopt the swap-based options methodology propounded by

the CBOE Global Markets (2003). Instead, the authors aim to uncover a model that embodies

7Another strain of research (Qian et al., 2022) focus on the role of jumps in forecasting bitcoin realised
volatility using linear and non-linear models. Their results offer substantial evidence that a forecasting model
incorporating continuous-time jumps and two-stage regimes can markedly enhance predictive accuracy and
realise significant economic gains. They also note that the superior predictive capabilities of the model are
most pronounced during periods of high volatility, particularly during Black Swan events. Gkillas et al. (2022)
look into the analysis of jump size and direction, proposing an asymmetric jump model. Their research indicates
that downside, upside, and small jumps in cryptocurrencies have a negative effect on the jump component of
other cryptocurrencies’ realised volatility, whereas large jumps produce the contrary effect. They present
evidence of co-jumps, substantiating the findings of Bouri et al. (2020). Overall, the literature indicates that
while jumps are present and do not significantly contribute to the total return, they tend to occur in clusters,
which may influence risk premia over longer maturities.
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the predictive potency equal with traditional implied volatility indices. Consequently, the

VCIRX serves only as a proxy for volatility, chosen from a selection of various volatility models

in a comparative examination. The authors use the annualised historical rolling volatility of

log returns over a 30-day period and the realised volatility derived from intra-day observations

of the underlying as two surrogates for implied volatility. These proxies are forecasted using

an assortment of GARCH models, the Heterogeneous Auto-Regressive (HAR) model of Corsi

(2009), a Long-Short Term Memory (LSTM) model and various multivariate GARCH models.

The analysis is conducted on daily closing price data of the CRIX from November 2014 to

January 2021, with each model being evaluated over the period June 2016 to May 2020 based

on the mean absolute error and mean squared error. Notwithstanding, a comparison to a naive

model and assessment of the directional error would have potentially contributed valuable

insights. The authors conclude that the HAR model outperforms the other contestants. To

validate their choice of proxies, Kim et al. (2021) construct a version of the VIX (named the

approximated VIX, or AVIX) which uses the selected HAR model to process the log-returns

of the S&P 500, as opposed to the CRIX. From the S&P 500 log-returns, they derive a 30-day

rolling historical volatility and formulate the AVIX. They subsequently compared the AVIX

to the actual values of the CBOE VIX, arguing that this would establish the 30-day rolling

historical volatility and HAR model as a suitable surrogate for a volatility index. The authors

assert that they had successfully developed an effective forward-looking implied volatility

index for the cryptocurrency market. However, it is important to note that neither the CRIX

nor its VCRIX, nor any proposed ETFs on the indices, have seen commercial implementation.

Venter and Mare (2020) propose a GARCH volatility index wherein the expected volatility

value represents the the anticipated arithmetic mean of the variance for the forthcoming 30

calendar days. To achieve this, the authors model the dynamics of the underlying bitcoin

price using a square-root stochastic autoregressive volatility model (SR-SARV, Meddahi and

Renault (2004)). Using daily bitcoin and CRIX data spanning from January 2016 to 2019, the

authors calibrate the dynamics and report the implied volatility index for varying maturities.

Echoing the approach of Kim et al. (2021), this index is derived from modelling the un-

derlying rather than extracting the expected volatility from the options market. In contrast,

Woebbeking (2021) presents the only genuine implied volatility index, in that its computation

is grounded on a fair variance swap rate. The author compares the implied volatility index

methodology of Demeterfi et al. (1999)with the interpolated 30-day ATM implied volatility

deduced using the Black (1976) model. To facilitate this comparison, the author considers

options and futures data from Deribit spanning February 2020 to July 2021 and contrasts

both the bitcoin volatility index and IV with those of other asset classes. The analysis re-

veals that the index and implied volatility frequently manifest an inverse relationship to their

underlying, a finding that is typical in such studies. Woebbeking (2021) concludes that the

swap-based computation provides a more accurate portrayal of market expected volatility.
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2.3.2 Variance Risk Premium

The variance risk premium may be defined as the reward required by a risk-averse investor

to compensate for the risk of both stochastic volatility and jumps in price of the underlying

asset, see Todorov (2010) and Konstantinidi and Skiadopoulos (2016a) for example. Two

distinct methodologies are used to assess the VRP: The ’model-free’ approach, which identifies

the VRP with the expected PnL on a swap that exchanges realised variance for a fixed

swap rate; and a model-dependent approach, in which both underlying and option prices

are modeled using common stochastic volatility models. The first strand of literature for

the former approach takes its roots from the identification by Bakshi and Kapadia (2003)

of the VRP with delta-hedged gains on options and the subsequent work of Bakshi and

Madan (2006), which links the VRP with higher moments of returns. The latter strand of

the theoretical literature, following Broadie et al. (2007), calibrates a stochastic volatility-

jump model using both option prices and the underlying time series. However, this approach

depends on the specification of the model for the underlying price and volatility processes

(Egloff et al., 2010).

The literature on cryptocurrency variance swaps and resulting risk premiums is very lim-

ited. However, a substantial body of empirical research literature analyzes the variance risk

premiums in different asset classes. Among these, equity variance swaps represent the ma-

jority of variance swaps being traded. For instance, in their study, Carr and Wu (2009) find

that the S&P 500 risk premium is usually negative because investors are willing to pay for the

strong diversification offered by an instrument that maintains such high negative correlation

with US equity returns. The authors estimate the value of the 30-day variance swap rate

on individual stocks and stock indices by considering a portfolio of vanilla options, subse-

quently comparing the synthetic 30-day variance swap rates to the ex-post realised variance

to ascertain the variance risk premium, which corresponds to the payoff of a long position in

a variance swap. This investigation assumes ideal market conditions, that is, a frictionless

market without jumps where continuous monitoring of the variance is feasible. It operates

within the model-free environment as proposed by Carr and Madan (2001). The empirical

evaluation of this study addresses approximation errors and scrutinises the impact of the op-

tion’s bid-ask spread on the VRP. The sample, which consists of option closing prices of five

stock indices and 35 individual stocks spanning from January 1996 to February 2003, reveals

a marginally negative VRP for the S&P 500 and Dow Jones Industrial Average index with

sudden and strong upward jumps in periods of high volatility.
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Todorov (2010) pioneers the effects of jumps on the variance risk premium. Implementing

a broader jump framework, he finds that investor risk preferences shift towards risk aversion

within a jump environment, leading to an elevated VRP. Rather than using the strikes of

traded options as a base for his analysis, he employs synthetic strikes calibrated from a semi-

parametric stochastic volatility model. Following a similar framework Bollerslev and Todorov

(2011) demonstrate that the inclusion of jumps and other uncertainties, such as approximation

errors, play a significant role in the pricing of variance swaps. They also investigate the

contribution of jump tails, discovering that they directly influence over half the observed

VRP, as calculated using S&P 500 option from 1996 to 2008. In fact, Aı̈t-Sahalia et al.

(2020) show that the accumulation of these approximation errors can lead to the mispricing

of the fair-value swap rates by up to 5% when compared to the market strike. Broadie and

Jain (2008b) price variance swaps under a continuous diffusion process, introducing dynamic

trading strategies that enable the replication of other volatility derivatives’ payoff using a set

of European options and variance swap. Their analysis of the replication error reveals a bias

resulting from daily variance monitoring as opposed to continuous monitoring. Bernard and

Cui (2014) provide an even broader extension, offering analytical formulas for fair variance

strike pricing of the underlying with a series of stochastic volatility models.

Aı̈t-Sahalia et al. (2020) provide a model-free term-structure analysis of the S&P 500 VRP.

Similar to previous work, they find a general low negative VRP with sudden jumps. The study

determines that jumps significantly impact the fair pricing of options, with evidence suggesting

that investors demonstrate a propensity to hedge against volatility exposure, particularly in

the aftermath of substantial market declines. The authors define the VRP as the objective

risk-neutral expectation of future realised variance, using daily traded rates from the period

January 1996 to December 2010. The rates are compared with the VIX and the methodology

adopted by Carr and Wu (2009), indicating that jumps constitute a significant and time-

varying component of the fair-value swap rate. These findings are consistent with those

presented by Bollerslev and Todorov (2011) among others. A similar investigation into the

predictability of the VRP is conducted by Konstantinidi and Skiadopoulos (2016b). They

use S&P 500 variance swap rate data from 1996 to 2009, applying four distinct models to

ascertain the predictability of strike rates. Their research reveals that a ’trading-activity

model’ accurately forecasts the VRP based on both in-sample and out-of-sample backtesting.

Others, such as Bollerslev et al. (2009), seek to predict market returns using the standard

30-day VRP of the S&P 500, with data spanning from 1990 to 2007. They calculate the VRP

using the model-free approach, as introduced by Demeterfi et al. (1999) and Britten-Jones and

Neuberger (2000), and link the premium to time-varying uncertainties in the market. Their

in-sample testing reveals that this provides a robust prediction of aggregate market returns

on a quarterly basis. Further exploring the determinants of the VRP, both Bekaert et al.

(2013) and Bekaert and Hoerova (2014) assess the accuracy of 14 statistical models designed

to forecast realised volatility. They deconstruct the VIX into a conditional variance of the
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market and an equity VRP, subsequently using these as input parameters for the models and

analysing the generated predictions. The studies yield superior results in terms of accuracy.

Another strand of literature considers the discrete monitoring of variance swaps. Broadie

and Jain (2008a) assess the bias induced by jumps under a range of stochastic volatility

models and deduce fair-value swap rates for variance swaps monitored discretely. Their strike

simulations, based on a selection of parametric pricing models, reveal that discrete sampling

and jump error exert a minimal impact on the fair price of variance swaps. Carr and Lee

(2009b) demonstrate that the bias stemming from discrete monitoring, as proposed Demeterfi

et al. (1999), is typically negative and, similar to the jump bias, is most conspicuous during

volatile periods. Jarrow et al. (2013) derive bounds for the error incurred from discrete

monitoring and establish that these bounds narrow as the monitoring frequency increases.

Bernard et al. (2014) build upon these findings, providing conditions to reduce the bias from

discrete monitoring. They scrutinise the assumptions posited by Jarrow et al. (2013) and

relax them, subsequently furnishing simpler expressions for the formulas of fair swap rates.

Uniquely, Bondarenko (2014) devises a methodology for pricing variance derivatives in an

incomplete market and introduces ’generalized’ variance derivatives. Such contracts typically

employ futures as the underlying asset and compute the realised variance as a sum of squared

differences in daily log prices. Contrary to previous works, Bondarenko (2014) assumes that

replication is unachievable at all times and accounts for jumps. By incorporating these more

realistic adjustments into the pricing formula, he determines that his methodology diverges

significantly from their continuously sampled counterparts.

So far we, considered only equity VRP. However, similar results are found in currencies

(Ammann and Buesser, 2013), and commodities (Prokopczuk et al., 2017a). Still, most re-

search is on the risk premium for US equities; for example, swaps on commodities and curren-

cies as well as on bonds are traded frequently on OTC markets. Ammann and Buesser (2013)

and Domowitz and Hakkio (1985) analyse the VRP for currencies (USD, Euro, Japanese Yen

and AUD) finding results similar to those for the equity VRP. Prokopczuk et al. (2017b) give

a very detailed VRP analysis of the most traded commodities. Here again, the paper finds

similar results compared to the equity VRP as it is slightly negative and jumps in volatile

periods. However, some commodities have a low traded volume and the results should be

considered with caution. Others like Trolle and Schwartz (2010) analyse the VRP for energy

markets (e.g. electricity, gas and heating oil) and Choi et al. (2017) provide a comprehensive

VRP analysis for the bond market. With minor deviations, all authors find that the VRP is

generally negative.
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2.4 Implied Volatility

Implied volatility is often interpreted as traders’ forecast of the underlying return volatility

over the lifetime of an option. Despite its relevance, the existing literature addressing bitcoin

implied volatility remains limited, presumably due to the relatively recent availability of liquid

options data – roughly three years.8 Alexander et al. (2022) examine the behaviour of bitcoin

implied volatility smiles of Deribit options to infer whether demand pressures on market

makers are motivated by directional or volatility traders. They conclude that volatility traders

significantly influence both ATM and OTM option prices, whereas directional trades primarily

impact OTM options. Additionally, Zulfiqar and Gulzar (2021) offer a comprehensive overview

of the bitcoin options market. Their analysis of the bitcoin implied volatility smile reveals

similarites to the skews typically observed in equity markets, especially in the context of the

first quarter of 2020.

2.4.1 Modelling

A plethora of different (non-)parametric models have been developed with the objective of

capturing the dynamics of implied volatility. The most widely adopted parametric and de-

terministic models are the BS and local volatility models previously discussed. Dumas et al.

(1998) evaluate the implied tree models of Derman and Kani (1994) and Rubinstein (1994)

for their effectiveness, introducing an assortment of parametric and semi-parametric deter-

ministic volatility functions. The authors propose volatility as a function of both strike price

and Time to Maturity (TTM), putting forth four distinct second-order polynomial functions.

Their first model is a simple BS model wherein the volatility remains constant throughout the

option’s lifespan. The remaining proposals allow for volatility to be linearly and quadratically

dependent on both the strike level and time to maturity. To test the fit of their models, they

employ conventional statistical measures and assess their delta-hedging performance for S&P

500 options over diverse horizons. The parameters are calibrated weekly, and the performance

8A robust body of literature has been dedicated to examining the dynamics of realised volatility in cryp-
tocurrencies (Baur and Dimpfl, 2018; Katsiampa, 2019; Ben Cheikh et al., 2020). Although these studies have
not directly addressed implied volatility, they all concur on the existence of a positive relationship between re-
turn and volatility in the domain of cryptocurrencies. This stands in contrast to equity or commodity markets,
where an increase of the underlying typically precipitates a (mild) decrease in volatility. These researchers
observe a general trend of increased volatility subsequent to positive shocks. The so-called ’leverage effect’,
commonly noted in other asset classes, appears to be absent in cryptocurrency markets, as Huang et al. (2022)
find. Expanding upon this line of inquiry, Akyildirim et al. (2020) explore the correlation between the realised
volatilities of various cryptocurrencies and their relationship with equity volatility indices. Their research
provides evidence of substantial correlations with volatility products. In another notable study, (Chaim and
Laurini, 2018) delve into the daily returns and volatility of bitcoin, observing that surges in bitcoin returns
occur contemporaneously and are associated with significant events, such as hacking incidents and unsuc-
cessful fork attempts. While the literature on realised volatility forecasting is extensive (Shen et al., 2020;
Köchling et al., 2020), only Hoang and Baur (2020) stand out as the only researchers to actively consider
bitcoin implied volatilities. Using the implied volatility of traded options from Deribit, they seek to enhance
forecasts of day/week ahead realised volatility. Their findings indicate that implied volatility presents a more
accurate forecast for long-term (10+ days) volatility, while ARCH models exhibit superior performance in the
short-term.
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of local and BS models is compared for the period from June 1988 to December 1993. The

authors conclude that their parsimonious model fits the surface well and that the prediction

and hedging error of the fitted model are lower than those yielded from the implied tree model

for shorter maturities. Lewis (2000) confirms these findings through a similar study using the

second-order polynomial expression of the implied volatility smile to fit and hedge the skew

and Coleman et al. (2001) propose an alternative deterministic local volatility model that uses

splines to depict the volatility function. This function is derived by resolving a non-linear op-

timisation problem to fit option prices closely and assess its delta-hedging performance based

on 1993 European S&P 500 index options. The authors find that over extended (17+ days)

periods, local volatility deltas outperform BS. Both Dumas et al. (1998) and Coleman et al.

(2001) are true local volatility functions in a sense that they have the static smile property.

Cox (1975) introduces the Constant elasticity of variance (CEV) model which models the price

dynamic using only one Brownian motion to drive both price and volatility, i.e. price and

volatility are perfectly correlated. Other deterministic models which do not directly model

the implied volatility surface but take the information, like the Vanna-Vega model for FX op-

tions, require less computational power but are still popular pricing/modelling models among

traders. At the time of writing, none of the mentioned deterministic parametric functions

have been fitted and tested to cryptocurrency implied volatility surfaces.

Another strand of literature examine parametric models that, nevertheless, exhibit stochas-

tic characteristics.9 Hagan et al. (2002) propose the Stochastic−αβρ (SABR) model, a natural

extension of the CEV model. The SABR model uses the functional form of the CEV to model

the dynamics of the forward price with maturity equal to the option’s maturity. However,

it introduces a stochastic α term, driven by a spot-volatility correlated diffusion process.

Gatheral (2006) offers an arbitrage-free calibration approach for the stochastic volatility in-

spired parameterisation of the volatility smile, which is later broadened to encompass the

entire volatility surface (Gatheral and Jacquier, 2014). This five-factor model, premised on

the moment formula of Lee (2004), delivers the market implied expectation of volatility. De-

spite its label, this model is not truly stochastic, in that there are no driving stochastic

processes. Instead, it aims to describe surface patterns that would emerge under the assump-

tion of stochastic volatility. The model can be enhanced to an SVI-Jump Wing (SVI-JW)

model by incorporating an additional parameter to account for swings in the tails. Schneider

and Trojani (2018) present a different approach and show that the surface information is

equivalent to a smoother option portfolio surface and emphasise extracting driving factors of

the surface directly from the equivalent option portfolio. The authors claim that this has the

advantage of providing interpretable factors with implications for trading of nonlinear risks

related to the underlying.

9In fact, any stochastic volatility approach discussed before, or the lognormal mixture diffusion model by
Brigo and Mercurio (2002), could be used to model the implied volatility. For instance, Bandi et al. (2021)
derive a close-form formula for short term options using Edgeworth expansions, and more recently, Guyon
and Lekeufack (2023) highlight that volatility is path-dependent and present a SV factor model in which the
diffusion term incorporates past returns.
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On the other side of the spectrum, non-parametric models refrain from making explicit

form assumptions about implied volatility, instead allowing the observed data to shape the sur-

face. This class of models requires some form of smoothing, typically realised through kernel

regression, (spline) interpolation, or local regression. Jackwerth (1999) and Bondarenko (2003)

deliver an overview of the most prevalent non-parametric models. Particularly, Aı̈t-Sahalia

and Lo (2002) devise a non-parametric estimator for the Arrow-Debreu prices, or state-price

density of option prices, providing a novel approach to estimate the implied volatility smile of

options. Fengler (2009) introduces an arbitrage-free methodology for smoothing the implied

S&P 500 volatility surface, while Gruber et al. (2020) implement a non-linear least square

methodology on S&P 500 option prices from flexible multi-factor risk-neutral specification to

extract option-implied factors. The natural extension is to perform a dimensional reduction.

Both Skiadopoulos et al. (1999) and Alexander (2000) opened the door for a Principal Com-

ponent Analysis (PCA) of the implied volatility. Alexander (2000) proposes a PCA on the

ATM deviation of implied volatility smiles and presents the skew’s principal representation.

Cont and Da Fonseca (2002) conduct a multidimensional PCA (Karhunen-Loève decomposi-

tion) on the continuous implied volatility surface and fit the first three principal component

time series to an AR(1)/Ornstein-Uhlenbeck process to discern changes in the IVS. Fengler

and Härdle (2003) propose an alternative approach to modelling the dynamics of the implied

volatility surface using the common PCA.

Recent publications in financial literature indicate a shift towards non-parametric Ma-

chine Learning (ML) techniques. Empirical evidence suggests that these applications exhibit

superior performance in comparison to conventional statistical models across diverse financial

areas, such as hedging (Buehler et al., 2019; Zhang et al., 2022), option pricing model cali-

bration (De Spiegeleer et al., 2018; Horvath et al., 2021), the directional forecast of realised

volatility (Kim and Won, 2018; D’Amato et al., 2022), or pricing volatility derivatives (Hoster

et al., 2018).10 For example, Cao et al. (2020) use a three-layer neural network to analyse

S&P 500 volatility surface movements. The authors use daily options data between January

2010 and December 2017 to derive a relationship between expected volatility changes and

index returns, moneyness and TTM. In essence, the authors fit a three- or four-factor model

on the implied volatility surface using the NN. Although a comparative analysis of their fit

and the resulting hedging parameter against other models is absent, they offer a primer into

machine learning approaches for financial predicaments, highlighting the various benefits of

different activation and loss functions. Others like Kim et al. (2021) implemented a more

advanced transformer self-attention mechanism to generate a smooth equity index volatility

surface under the SABR model. Similar to the deterministic models, no stochastic model has

been applied to cryptocurrency implied volatilities, except for Matic et al. (2023).

10Dunis and Huang (2002) has already shown the advances of Neural Networks (NN) over statistical models.
Both compare different ARCH-type models and benchmark them against NN predictions or simple IV and find
that the outperforms statistical models in terms of RV prediction. Furthermore, Hamid and Habib (2014) find
that NN outperform the statistical models in term of IV prediction of NIFTY options.
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2.4.2 Forecasting

Modelling implied volatility not only benefits the pricing and hedging of options, but it also

forms the bedrock for predicting future implied volatility, thus potentially providing a com-

petitive edge for traders. Indeed, the forecast of implied volatility has held the academic

fascination for several decades. The typical strategy for forecasting implied volatility involves

initially identifying and determining its key drivers, modelling their dynamics, and subse-

quently using these predictions to extrapolate the surface. As early as when Harvey and

Whaley (1992) propose a linear regression model, taking into consideration lagged values of

the underlying, trading day dummy variables, lags of call and put IVS to account for auto-

correlations, and interest rates to predict S&P 100 implied volatility smiles. However, the

generated predictions failed to yield profit due to the eroding influence of transaction costs.

Cont and Da Fonseca (2002) adopt a non-parametric approach and predict both the S&P

500 and FSTE 100 volatility surfaces. Leveraging the Nadaraya-Watson estimator of Aı̈t-

Sahalia and Lo (2002) in conjunction with a Gaussian kernel, the authors create daily smooth

volatility surfaces, subsequently performing a Karhunen-Loève decomposition on the surface’s

daily variations. This allows them to represent the surface as a function of the eigenmodes and

eigenvectors originated from the principal component analysis. They show that the first three

eigenvalues account for 98% (97.8%) of the S&P 500 (FTSE 100) variance and introduce

a factor model to predict the implied surface. For this, the authors model the principal

component through an Ornstein-Uhlenbeck process and translate the predicted components

back to the surface. Their study underscores two pivotal points. First, implied volatilities

exhibit robust positive autocorrelation and demonstrate mean reverting characteristics; and

second, a substantial proportion of the daily log-variation in implied volatility’s variance

can be adequately explained by three principal components. By the same token (Beer and

Fink, 2019) apply the same approach to various foreign-exchange surfaces. It’s worth noting,

however, that this PCA method yields optimal results when the correlation between parties

is high, implying strong correlation between implied volatilities for diverse strike prices and

maturities. Such correlation is not prevalent in cryptocurrencies. Furthermore, the PCA

results are somewhat less transparent for traders, and the multi-step nature of the process

offers little impetus for the implementation of these models in practical settings.

On the other hand, parametric models allow us to identify and capture risk factors, of-

fering a reduced-dimension methodology where the IVS dynamics are governed solely by the

estimated parameters. Gonçalves and Guidolin (2006) follow a two-step approach to predict

the US equity surfaces. First, they use daily IVS of the S&P 500 over a four-year period

starting from 1994 to fit a variation of the deterministic volatility function of Dumas et al.

(1998) using a Ordinary Least Square (OLS) regression. Consequently, this technique yields a

parameter time series which is then modelled through a vector autoregression. The forthcom-

ing step involves forecasting the parameters for a one-step ahead timeframe and reconstituting

the IVS based on these forecasts. The predicted IVS is then benchmarked against a random
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walk and NGARCH(1,1), evaluated using a variety of statistical metrics. The researchers con-

clude that their VAR model forecast outperforms the random walk and NGARCH method in

performance. Moreover, they provide evidence for the positive economic value of the forecast

through numerous profitable volatility trading strategies. Expanding upon this methodology,

Chalamandaris and Tsekrekos (2010) include the Nelson–Siegel term structure to generate

implied volatility surfaces. Bernales and Guidolin (2014) extend the work of Gonçalves and

Guidolin (2006) by considering not only indices but also single equity options. By analysing

daily S&P 500 and 150 equity surface data from January 1996 to December 2006, they estab-

lish a time series of parameters. Here, they select Gonçalves and Guidolin (2006)’s identical

polynomial volatility model and fit the surface using a generalized least squares (GLS) regres-

sion. Furthermore, they model the concurrent dynamics of equity and index implied volatility

surfaces using two distinct VAR models and jointly through VAR with exogenous variables

(VARX). Parallel to Gonçalves and Guidolin (2006), they backtest an ATM straddle and

delta-hedge strategy and investigate their profitability. They conclude that, while their mod-

els surpasses the benchmark models such as random walk or NGARCH approach, transaction

costs nullify the profit engendered from their forecasts. Other researchers, such as Kearney

et al. (2018) experiment with different prediction approaches (functional time series) and show

they can outperform the benchmark set by Gonçalves and Guidolin (2006) while Bedendo and

Hodges (2009) use a Kalman filter to model the skew dynamics in order to assess whether this

model is capable of forecasting the density of daily returns. All of these researchers report

significant success in terms of forecasting a reasonable IVS and using this to develop profitable

trading strategies. Despite the negation of profits due to transaction costs, it underscores the

need to actively further pursue this strand of research and apply it to other asset classes.

Forecasting volatility using ML approaches is still in its infancy, and is focused exclusively

on S&P 500 options. Chen and Zhang (2019) put forth a novel combination of an attention

mechanism and LSTM model to anticipate one-step-ahead implied volatility surfaces, focusing

on discrete grid points within a range of 20% above and below ATM, and maturities spanning

from six months to two years, using raw IV time series as inputs. Medvedev and Wang

(2022) use an LSTM and convolutional LSTM model to generate multivariate and multi-

step-ahead forecasts of the S&P 500 IVS for one-, 30-, and 90-day horizons. The authors

consider four fixed quarterly contracts and use a splicing technique to construct the volatility

surface, i.e. contracts are stitched head to toe on expiration to form a continuous series. This,

on the other hand, leads to an unbalanced panel with unequal time series observations for

each contract. This gap is later filled by interpolating missing elements linearly. However,

focusing only on the traded option prices is problematic in the presence of sparse or erroneous

data. Furthermore, the extrapolation of such a major dataset may skew the final results.

The authors benchmark their model against an AR, VAR, and VEC model, comparing their

performance based on the model RMSE, and find that the ConvLSTM outperforms all other

models. Furthermore, they test for statistical significance using the Diebold–Mariano test
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statistics and introduce a profitable butterfly strategy. Lui et al. (2021) compare a traditional

GARCH model with an Artificial Bee Colony NN for option trading. The authors simulate the

underlying price with an MC simulation and compare different options strategies (straddle,

butterfly, and calendar spreads). Bolch and Book (2022) fit an SVI model and create time

series of the parameters. These parameters are then predicted using ConvLSTM, which

then generate the IVS. The authors compare their prediction to a naive forecast and find

that the ML approach outperforms the naive one on long-term forecasts on short to mid-

range maturities. They conclude that the model is capable of predicting movements of the IV

correctly. Similarly, Vrontos et al. (2021) investigate whether the direction of S&P 500 implied

volatility and the VIX can be predicted. The authors perform a horse race of 20 different

machine learning models and evaluate them based on the accuracy of their prediction and

potential trading strategies. The authors derive profitable strategies from their predictions and

encourage the use of various ML models (Naive Bayes, Ridge Deviance, Adaptive Boosting,

Discriminant Analysis) for asset allocation. Lastly, it is noteworthy to mention that, as of

this writing, the forecasting of bitcoin implied volatility remains an untapped research area

within financial studies, although interest in predicting bitcoin returns is strongly present

(Chen et al., 2022).



CHAPTER 3

BITCOIN OPTIONS DATA

At the time of writing, five major cryptocurrency exchanges, namely Deribit, CME, Delta,

OKX, and Binance, offer options on bitcoin and other coins, as well as some tokens. Across all

options exchanges, the aggregate average daily volume during March 2023 was above $1.5bn.
The volume traded on bitcoin options in particular, recently surged to all-time highs. Between

January 2020 and January 2023 the average monthly trading volume increased more than 30-

fold and the open interest increased more than ten-fold. To put this into perspective, the

S&P 500 options market on the CBOE grew ‘only’ by about 17% between 2020 and 2023.1

The vast majority of trading is on the Deribit options exchange (>85%), which moved

from Amsterdam to Panama and is now considering yet another move to Dubai, all in an effort

to avoid adhering to international standards set by governmental agencies such as the CFTC

or any other form of regulation protecting client interests.2 Like many other unregulated

crypto derivatives exchanges that are typically registered in off-shore tax havens, Deribit’s

trading platforms are open 24/7 and there is little or no compliance with know-your-customer

protocols. Deribit options have (bi-)daily, (bi-)weekly, (bi-)monthly and quarterly expiry, up

to nine or twelve months and are European-style and crypto/cash-settled.3 The underlying is

the Deribit Bitcoin Index (DBTC) which is an equally-weighted average of the latest bitcoin

price on four to eleven exchange: First, the exchange calculates the median of the available

prices and excludes those 0.5% above and below the median. The remaining prices are equally

1See CBOE Historical Options Data for trading volumes on SPX options on the CBOE.
2See CCData Research Report or The Block Option for cross-exchange trading data and visualisation.
3A new option expiry is introduced every Thursday immediately prior to the expiration with the following

exceptions: A weekly option will not be introduces if there already exists a monthly expiry. This monthly
option will now be the weekly expiry. A monthly option will not be introduces if there already exists a quarterly
expiry. This quarterly option will now be the monthly expiry. Note that the minimum order size is 0.1 options
with a minimum tick size of 0.0005XBT and a block trade contains a minimum of 25 contracts. The standard
call option’s strike range goes from 0.1 to 0.9 delta and -0.1 to -0.9 for put options, respectively. See Deribit
Option Specification accessed on 01 May 2023.
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https://www.cboe.com/us/options/market_statistics/historical_data/
https://ccdata.io/research/reports
https://www.theblock.co/data/crypto-markets/options
https://www.deribit.com/kb/options
https://www.deribit.com/kb/options
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weighted and form the index. Currently, the exchanges include Bitstamp, Coinbase Pro,

Kraken and LMAX Digital and the index is updated every second.4 There are more option

maturities than futures maturities. Nevertheless, Deribit provides a futures value for the

missing maturities by their so called ‘synthetic-futures’. These artificial, not tradable futures

serve as underlying for options although the Deribit website is rather contradicting. The

exchange present the (synthetic) futures as underlying when calculating the option’s implied

volatility and Greeks, but the options specification documents state that the underlying is the

Deribit bitcoin index, which does not imply that the (possibly synthetic) futures contract is

the underlying. As of now, there is no publicly available methodology on how these synthetic

products are priced. The option strike ranges vary from 40% to 180% of the current underlying

price for shorter maturities and up to 1100% over the current bitcoin price for maturities

more than nine months, while the increments between strikes varies from $250 for short-term

maturities, to $10,000 for longer dated options.

The sheer size of trading volume on Deribit makes it the most attractive exchange to

consider for any type of cryptocurrency option research. Even though the CME (and a few

other exchanges) list bitcoin options, only 10%-15% of the total volume traded on bitcoin

options has ever been attributable to these exchanges. Deribit alone accounts for over 85%

of bitcoin options trading volume.5 One reason might be that Deribit operates 24/7, whereas

the CME closes on weekends and holidays. Another may be that Deribit options are margined

and settled in bitcoin, even though the underlying is the US dollar value of the BTC index.6

Their attraction lies in being able to trade a derivative on a fiat-crypto cross without using

fiat currency for collateral in the margin account, or for settlement of the contract. Another

explanation might be that investor’s money on Deribit has been safe from hacks, as there has

been no major security breach affecting trader’s money. Additionally, the exchange offers new

products frequently, and is among the oldest in this space with almost 100% uptime.

This chapter presents the technical setup which allows us to create our proprietary data

and explains common data filtering and interpolation techniques applied to the bitcoin options

data which form the backbone of this thesis. Furthermore, it provides a descriptive statistic

of the trading volumes and open interest of derivatives traded on the Deribit exchange and

motivates our further work. We divide the sample into different maturity and strike classes

and highlight trading clusters for bitcoin option.

4This methodology has changed recently. Prior to February 2023, the index was an equally weighted index
of prices on eleven exchanges, where the highest and lowest price is excluded and the remaining nine are
used to calculate the index. The used exchanges included Binance, Bitfinex, Bitstamp, Bittrex, Coinbase Pro,
Gemini, Huobi Global, Itbit, Kraken, LMAX Digital and OKX. For a detailed specification, see Deribit Index
Calculation accessed on 01 May 2023.

5Second comes the CME (5%), then OKEx (2.5%) and Bit.com, see The Block for more details.
6To obtain the maturity payoff one needs to calculate the difference between the BTC value in dollars and

the option strike and convert the result to bitcoin using the BTC index value at maturity. To calculate the
final payoff, Deribit uses the 30-minute average of of the BTC Index prior to expiry as settlement value, see
the official Deribit Options Specification.Note that the Deribit bitcoin options market is not complete. The
index itself is not tradable and requires costly replication and frequent rebalancing. The lack of information
on the precise calculation of the settlement value results in an incomplete market for traders, see Chapter 4.

https://www.deribit.com/pages/docs/options
https://www.deribit.com/statistics/BTC/deribit-indexes
https://www.deribit.com/statistics/BTC/deribit-indexes
https://www.theblock.co/data/crypto-markets/options
https://www.deribit.com/pages/docs/options
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3.1 Data Sourcing & Manipulation

All Deribit cryptocurrency derivatives market data is publicly available, free of cost and in

real-time accessible through their Application Programming Interface (API). The exchange

offers a vast variety of different information, including but not limited to, the current order

book for all products offered, the funding rate, and the index level, see Deribit Public API

for all publicly available data.

Sourcing

Despite the broad range of data accessible, our study primarily concentrates on market data,

specifically details related to option trades, associated prices, trade sizes, and underlying

assets. For the extraction of this precise set of data, we utilise a pair of commands that are

sequentially executed within a matter of milliseconds:7

• /public/get book summary by currency:

This command returns an json file containing the current orderbook summary of the

designated cryptocurrency, in this instance, bitcoin. It imparts comprehensive data re-

lated to each accessible option and futures derivative, which includes the instrument

name and corresponding underlying, current best ask-, bid- and mid-price, timestamp

of creation, and the prevailing funding rate. It further provides details about the max-

imum and minimum transaction prices during the preceding 24 hours. Additionally, it

offers information on the last transaction price, the number of contracts traded and the

corresponding notional in the past day, along with the current open interest.

• /public/get index:

This returns the underlying Deribit Bitcoin Index value in USD.

The integration of data derived from these two commands captures the entire state of the

bitcoin options market on Deribit. It is important to note that these commands only provide

instantaneous snapshots of the market state at the current moment, with no possibility to

fetch historical trades data. To accomplish this, we set up a dedicated server and installed a

crontab job to automate the script execution. This approach has allowed us to create our own

proprietary dataset of historical bitcoin options data, spanning from January 2020 to January

2023, with a minute-by-minute frequency. In the rare instances of server malfunctions, we

have retrieved missing data from reliable external sources, such as CCData.

7The information is based in the API Version 2 and are for till January 2023. Any update and/or adjustment
with the commands or information output after January 2023 is not covered in this thesis.

https://docs.deribit.com/#public-test
https://ccdata.io/
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Filtering

The bitcoin options market is not a high-frequency market, with trading and liquidity pri-

marily clustered for short-term ATM options, as will be confirmed in subsequent analysis.

This low-activity environment can produce misleading market impressions, resulting from

outdated, or stale, prices for options that are not actively traded or have unusually large bid-

ask spreads. In an effort to mitigate these effects, we use the mid-price of options, in line with

the approach proposed by Jackwerth and Rubinstein (1996). While we understand that the

true value of options is best reflected by the prices at which they are traded, the continuous

updates of bid-ask prices by market makers can serve as a fair representation of an option’s

authentic value. To enhance the robustness of our analysis, we filter out options that have

no trading volume in the past 24 hours, as well as those with a percentage bid-ask spread

(BAS) greater than 25%. We calculate the percentage bid-ask spread by subtracting the bid-

from the ask-price, then dividing the result by the mid-price. This filtration is employed to

exclude options that are not offered by credible market participants. Given that this market is

still developing, it is common to encounter ‘joke spreads’ – for example, a deep in-the-money

(ITM) option with a bid-price reflecting a 490% implied volatility and an ask price of 80%.

Our findings reveal that the average percentage bid-ask spread for ATM (OTM) options is

roughly 4% (10%), rising to 5% (15%) for options with extended maturities.

Moneyness

The implied volatility of bitcoin, with its sudden, wide swings in value, presents a challenge

when comparing specific strike levels over an extended time horizon. To address this con-

cern, and to facilitate clearer interpretation of the outcomes, we transition from a strike to a

moneyness metric. We define moneyness m as:

m =
K

S
,

where K is the strike level of the option and S the underlying value in accordance with the

approach outlined by Alexander et al. (2012). A ‘delta-metric’ could potentially obscure the

results for shorter maturities, as it could consider a narrow strike range in absolute terms. This

is due to the nature of bitcoin options, which are characterised by relatively short maturities

and high volatility. This implies that, in translating strikes into deltas, we could find a very

low delta, e.g. 15 or 20, already after three or four strikes away from ATM. Consequently, it

would result in two or three different grid points falling between adjacent strikes. Specifically,

if we were to interpolate, we might be interpolating different deltas derived from the same

two options. This could produce spurious dependence which would distort results.
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Interpolation

In the event that an option is filtered out, we create a synthetic option price through inter-

polating the implied volatility rather than option prices themselves, following Galai (1979)

who posits that direct interpolation of the option prices could yield non-investable returns.

For this, we calculate the implied volatilities of all available market option prices by inverting

the Black and Scholes (1973) option price formula, i.e. we approximate the implied volatility

numerically. However, we encounter instances where the maturities of the options do not

align perfectly with those of the underlying futures, resulting in a discrepancy in the number

of options and futures maturities.8 Moreover, liquidity is a major consideration with finite-

maturity futures contracts. Stale futures prices could introduce inaccuracies in the option’s

price, and by extension, its Greeks. Given these potential pitfalls, we favour the use of the

Put-Call parity (PCP) relationship to infer the correct futures price, instead of using its mar-

ket price. Naturally, the PCP values will vary for each strike level. Due to the general focus

on ATM options in trading, it is often challenging to identify an ITM/OTM strike level where

both calls and puts are actively traded. Thus, we employ the PCP derived from ATM options

and use this value for the entire option chain. We interpolate the ATM PCP values of two

neighbouring maturities and use this to compute the synthetic fixed-maturity underlying of

the option and calculate the implied volatility.9 Due to the clusters of trading and liquid-

ity, which will be discussed in the succeeding section, we only consider OTM options when

constructing the raw grid of the implied volatility surface.

The landscape of interpolation techniques offers a plethora of options that vary signifi-

cantly in complexity, ranging from linear interpolation over the implied variance, to higher-

degree polynomials or kernel regressions. Similar to other areas of financial literature, there

is not one single correct interpolation technique, but many wrong ones. We follow the empir-

ical literature on option pricing and hedging and use the implied volatility shape-preserving

Piecewise Cubic Hermite Interpolation Polynomials (PCHIP) as advocated by Madan and

Milne (1994), Bliss and Panigirtzoglou (2002) or Lim and Ting (2013) among others. This

method boasts several advantageous attributes: it maintains the shape and monotonicity of

the implied volatility data points while providing a smooth surface free of oscillation between

two points. Moreover, it proves to be highly computationally efficient. The polynomial splines

are defined as follows:

8For example, an option might expire on 07 January 2023 but there exist no fixed-maturity futures with same
maturity. For these instances, Deribit provides ‘synthetic’ futures prices with same maturity as the options that
are used to calculate the options IV and Greeks. However, the exchange does not provide a methodology on
how they calculate the synthetic options prices. However, we believe that it is a simple interpolation between
traded futures prices with straddling maturities.

9In theory, due to the PCP, both put and call option should have the same implied volatility for an identical
set of inputs. Given the strongly tilted interest towards trading OTM options compared to ATM or ITM, we
decide to consider the implied volatility for OTM options as these reflect greater stability and information
content. For the ATM case, we focus on call options. We have compared both call and put options for ATM
strikes with different maturities and find no significant difference between their implied volatilities. Hence, we
use the call implied volatility as proxy for further calculation.
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Definition 1 (Cubic Hermite Spline). Let f : [a, b] → R be an unknown function with known

values for ((x1, f(x1), (x2, f(x2), ..., (xn, f(xn)) and their respective slopes f ′(x1), ..., f
′(xn)

where a = x1 < x2 < ... < xn = b. We define the Hermite basis functions as:

h00(x) = (1 + 2x)(1− x)2, h01 = x2(3− 2x)

h10(x) = x(1− x)2, h11 = x2(x− 1),

and define an additional function zi(x) = x−xi
xi+1−xi

. The cubic Hermite spline function f̂ is

then given by:

f̂(x) =



f(x) for x ∈ {x1, ..., xn}

h00 (zi(x))) f(xi) for xi < x < xi+1

+h01 (zi(x))) f(xi+1)

+h10 (zi(x))) (xi+1 − xi)f
′(xi)

+h11 (zi(x))) (xi+1 − xi)f
′(xi+1)

We use the interpolate package of SciPy to estimate the interpolation function according

to the algorithm proposed by Fritsch and Butland (1984) which results in a piecewise cubic

Hermite interpolating polynomial that is continuously differentiable and preserves the original

shape of the bitcoin implied volatility smile.

No-Arbitrage Constraints

The foremost consideration, regardless of the interpolation technique employed, is the assur-

ance that the interpolated volatility surface implies arbitrage-free option prices. We investi-

gate the interpolated option prices, ensuring that the essential no-arbitrage constraints, as out-

lined by Carr and Madan (2005) and Fengler (2009), are satisfied for both mid-prices and in-

terpolated values. We denote the (interpolated) implied volatility at time t as σ := σt(K,T |S)
for any maturity T , and the corresponding BS call option price at time t as Ct(S,K, τ, σ),

where τ denotes the option’s time to maturity, given in year. For the sake of clarity, we

avoid any sub- or superscript for the interpolated implied volatility, nor do we define it as

a function of strike and maturity although we are aware that each (interpolated) implied

volatility is specific to an option.10 Note that the interest rate r is deliberately omitted given

our assumption of a zero interest rate. During the period of 2020 to 2023, interest rates were

historically low. Given the short maturities of bitcoin options, these rates become essentially

negligible. Similarly, we define the BS put option price as Pt(S,K, τ, σ) and confirm that the

(interpolated) option prices are positive and comply with the following conditions:

10Note that the PCHIP interpolation is shape-preserving, i.e. the market implied volatility equals its ‘inter-
polated’ counterpart for a traded options which have not been filtered out.
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• Monotonicity: Call (put) option prices are increasing with maturity and decreasing

(increasing) in strike levels:

∂Ct(S,K, τ, σ)

∂τ
≥ 0 and

∂Pt(S,K, τ, σ)

∂τ
≥ 0,

and
∂Ct(S,K, τ, σ)

∂K
≤ 0 and

∂Pt(S,K, τ, σ)

∂K
≥ 0.

• Convexity: Call and put option prices are convex functions with respect to the strike

for all available τ :

∂2Ct(S,K, τ, σ)

∂K2
≥ 0 and

∂2Pt(S,K, τ, σ)

∂K2
≥ 0.

• Total Variance: The total variance ν2(S,K, τ) = σ2τ is increasing with maturity:

∂ν2(S,K, τ)

∂τ
> 0.

• Boundaries: The prices of call and put option are bounded up- and downwards. For

∀K, τ > 0 it holds:

(St −K)+ ≤ Ct(S,K, τ, σ) ≤ St,

(K − St)
+ ≤ Pt(S,K, τ, σ) ≤ K.

3.2 Trading Data

Figure 3.1 depicts the daily evolution of the settlement price of bitcoin options on Deribit, i.e.

the DBTC index, at midnight UTC and the total traded volumes (as notional amounts, in

$bn) of all options, perpetuals and the fixed-maturity futures on Deribit over the previous 24

hours between January 2020 to January 2023. During 2020, from a level of around $7000, the
DBTC index rose relatively slowly until its first major bull run started in November 2020, and

the index value reached almost $28,000 by the end of 2020. During 2021 the DBTC index more

than doubled between January (∼ $28,000) and mid April 2021 (∼ $59,000) then fell almost

50% until mid July ($30,000). Its all-time high on 8 November 2021 was around $69,000
before it started to decline continuously. The first four months of 2022 show a slight and

range-bounded increase before the bitcoin price crashed in May 2022 due to the TerraUSD

(UST) de-pegging from the dollar. It stayed fairly stable afterwards around $20,000 and

crashed yet again in November 2022 due to the FTX fallout. The second plot of Figure 3.1

shows that total 24-hour trading volume over all Deribit options was relatively low during

2020, barely exceeding 500 million USD daily volume, and really took over by the end of

2020. However, during 2021 there were pronounced periods of volatile or directional markets
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where daily options volumes of up to 3 billion USD became commonplace. The number of

different options contracts traded also almost doubled, from 4.3 million in January 2021 to

6.2 million by the end of the year. Throughout 2022, option trading volume remained stable

with around $750m daily notional. Given that the underlying price declined from $45,000 to

$18,000, it indicates that the number of traded contracts rose during the last year. In fact,

with over 7.2 million traded contracts in 2022, the exchange recorded yet another 16% increase

in traded contracts year-to-year. The two plots underneath depict the daily trading volume

for the perpetual (orange) and fixed-maturity futures (yellow), which saw the most active

trading during 2021, especially during the first half of the year, than in any other period.

Interestingly, the second half of 2021 showed weaker growth in trading on the perpetual than

for options. The latter may have been driven by the introduction of many new types of

contracts in late 2020 and early 2021, which traders gradually adopted for gamma and vega

hedging. By the second half of 2021, this could have diminished the pressure for extremely

active dynamic delta-hedging. In fact, the volumes traded on futures contracts also fell off

– even more so than for the perpetual – during the last six months of 2021 and continued

throughout 2022. In any case, finding that trading patterns during 2020 and 2022 were so

different from those in 2021 motivates a data split for any empirical model comparison.11

Next, we examine some empirical characteristics of the bitcoin perpetual contract and

compare these with fixed-maturity futures. Since the settlement price for bitcoin options is

not for a tradable contract, any trader needs to consider either the futures or the perpetual if

they want to hedge their position. In this case, the effectiveness of hedging an option with a

futures contract depends, among other things, on the variability of the basis. To illustrate this

variability, Figure 3.2 depicts the difference between the market price of the futures (or the

perpetual contract) and the DBTC index, divided by the DBTC index, from January 2020 to

January 2023. This percentage basis is given in basis points (bps), on the left-hand scale for

the three synthetic fixed-maturity futures, and on the right-hand scale for the basis relative to

the perpetual. As a result of the funding rate mechanism, the basis risk of perpetual futures is

very low – most of the time it is less than ±10 bps. But it is also highly variable – for instance,

during the crash in March 2020 the perpetual basis reached almost -150 bps. The very tiny

basis risk of perpetuals indicates that they could offer better delta-hedging instruments than

the calendar futures of the same maturity as the option. Unlike the perpetual basis, the bases

for the fixed-maturity futures are almost always positive. For 10-day futures the basis can be

as high as 100 bps, and for longer term futures the basis can even reach 450 bps. Also notice

from this figure that the futures curve at 10, 20 and 30 days maturity is normally in contango

– in fact, the ordering F30 > F20 > F10 is present for 87% of the time, i.e. 953 days of the

1095-day sample and only in backwardation during March/April 2020 (COVID crash and

11Options outnumber futures by a factor of two. Deribit has the first mover advantage on options while
Binance and others have that on spot and futures. Given the new influx of capital and participants, the
question of ‘where should we trade’ becomes easy to answer as Binance has all the liquidity and orderbook
depth for futures, Coinbase and Kraken for spot and Deribit for options.
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Figure 3.1: Bitcoin Price Evolution and Daily Derivatives Notional Trading Volumes

The upper plot illustrates daily BTC index prices at 00:00 UTC over a three-year sample period starting on
1 January 2020 (top, black plot); next the corresponding 24-hour total notional trading volume on all Deribit
options (second from top, blue plot); and the daily notional trading volume on the perpetual (third from top,
orange plot); and finally, the daily notional trading volume of fixed-maturity futures (bottom, yellow plot).
Values are given in $10,000 for the BTC index and $bn for options and futures trading volumes.
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its aftermath), June 2021 (end of a bull run), May 2022 (UST de-peg) and November 2022

(FTX collapse). Surprisingly, there is virtually no difference between perpetuals and standard

futures after February 2022, i.e. the difference between 10- and 30-day basis is negligible.

Figure 3.2: Perpetual and Futures Basis

The futures price minus the BTC index, divided by the BTC index, in basis points. The right-hand scale
measures the percentage basis for the perpetual futures (black) and the left-hand scale measures the percentage
basis for the futures with constant maturities of 10, 20 and 30 days (in blue, green and red, respectively). The
sample covers three-years starting in January 2020 and daily snapshots are taken at midnight UTC. Values
are expressed in absolute bps.

Alexander et al. (2022) document many differences between the bitcoin and S&P 500

options markets. One of the main differences is the proportion of short-, medium- and long-

dated options that are traded. A one-month option on the S&P 500 index is considered

relatively short term, because the majority of trading occurs between the one-month and

the three-month expiries. However, a bitcoin option with one month to expiry falls into the

longer-term category due to bitcoin’s high volatility. Though monthly or quarterly equity

options are most frequently traded, these maturities display comparatively lower volumes for

bitcoin. To see this, Figure 3.3 depicts the proportions of daily traded contracts (top plot) and

the open interest (bottom plot) on Deribit based on their time to maturity from January 2020

to January 2023. On the right-hand scale, the solid black line represents the total number

of traded contracts traded over all expiries. For the sake of clarity, we present these data

using their weekly average on a rolling window. The seasonal pattern in the proportion of

traded contracts of short-term (up to two-weeks) options is a result of the issuing schedule

policy, whereby options with one week (and/or two weeks) to expiry are issued unless there is

a standard monthly or quarterly option expiring with the week (or two weeks). On the left-

hand scale we present the proportion of short-term (up to two weeks), mid-term (between two

weeks and a month) and long-term (more than a month) maturities. For this, we accumulate
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all daily traded contracts within each expiry class and present it as percentage over all traded

contracts, again using a weekly average on a rolling window for the sake of clarity. Apart from

this seasonal pattern, during the entire three-year period only around 15%–20% of trading

is on options with expiry dates longer than one month. Even though the number of traded

contracts has continually risen over our sample, the proportion of contracts with more than

one month to expiry has remained relatively constant, as has the proportion of short term

options of up to two weeks. In fact, around 60% of all traded contracts is on these very

short-term maturities. Another 20%–25% corresponds to mid-term options with maturities

between two weeks and one month. Given that the options with maturity of up to one month

constitute 80%–85% of all trading volume on Deribit, we decided to focus on these options.

We observe an entirely different picture with the open interest. Similar to the traded

contracts, we present the daily open interest as a weekly rolling average. Approximately

half of the open interest rests in options with expiry dates exceeding a month. Notably, the

highest level of open interest is concentrated in quarterly options, despite their less frequent

trading activity relative to short and mid-term maturities. Investigating further into trading

patterns, we find that short- and mid-term maturities are primarily traded in small quantities

(fewer than one contract) on an almost hourly basis. In contrast, longer-term maturities

are traded in larger volumes, with some trades reaching up to 25 contracts (block trades)

per transaction. This trading pattern implies that long-term maturities are likely used for

hedging purposes, as opposed to speculative trading. Mid-term options represent 15%–20% of

the total outstanding contracts, while short-term maturities account for approximately 30%–

35%. Here again, we observe a seasonal pattern due to the transition of quarterly maturities

from long to mid-term as they approach their expiration dates. This pattern suggests a roll

over of positions by traders as these quarterly options reach their expiry.

Tables 3.1 and 3.2 complete the options data chapter. Motivated by the clear distinction

of traded volumes and open interest across different maturities, as seen in Figure 3.3, Table

3.1 shows the total number of traded call and put contracts (‘Trades’), the average number

of available strikes (‘Strikes’) and the average end of day open interest (‘OI’) for different

maturities and moneyness subcategories from January 2020 to January 2023. We focus only

on OTM options, i.e. m < 1 for puts and m ≥ 1 for calls as these show much more trading

activity and liquidity. Cumulatively, more than 11.8 million OTM contracts have been traded

across all maturities, with a mean price of $1308 and a corresponding implied volatility of

86.5%. Every day, traders had access on average to over 156 distinct strike levels, but preferred

to trade more call contracts (6.3 million) than put options (5.5 million).

The short-term derivatives emerge as the most traded assets in this context. Both ATM

call and put options account for over 1.8 million contracts traded each within the previous

three years. This moneyness range also provides the most tradable strike levels, i.e. approxi-

mately twelve options on either side. Indeed, even when all other moneyness ranges for this

maturity class are aggregated, they do not match the volume of ATM trading. Simultane-
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Figure 3.3: Maturities of Traded Options and Open Interest

Proportions (left-hand scale) of total trading volume (upper plot) and the open interest (lower plot) in short-
term options (up to two weeks, dark grey), mid-term options (between two weeks and one month, mid grey)
and long-term options (longer than one month, light grey). The black line (right-hand scale) depicts the total
number of traded options contracts. All series are a weekly rolling average of daily data from January 2020 to
January 2023.
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ously, the ATM calls and puts exhibit the smallest average daily open interest, suggesting

high-frequency and speculative day trading, presumably dominated by algorithms or algo-

rithmic trader. As we move further OTM within the short-term maturity bracket, we observe

a decline in trading activity and available option strikes. However, there is a concurrent

increase in open interest. A plausible explanation for this trend is that traders might be

speculating with short-term OTM options, willing to hold onto them until maturity given

their appealing risk-return profile. This hypothesis is supported by the heightened trading

volume and open interest for deep OTM calls (m > 1.7). Recall that the short-term maturity

category considers options expiring within the next two weeks. Thus, it seems unlikely that

institutional traders would retain options with such short maturity and strikes situated 70%

above the current underlying level. Rather, this trend might indicate retail trading activi-

ties, specifically those speculating on price jumps while holding options expiring in 0, 1, or 2

trading days. An alternative, albeit less probable explanation, could be related to liquidity

constraints, potentially ‘forcing’ traders to hold their option contracts until maturity rather

than closing the position due to a wide spread which would nullify any profit.

The findings for mid-term maturities deviate from those of short-term maturities modestly.

The bulk of the trading volume remains concentrated around the ATM level, reaching its peak

slightly above the immediate ATM, notably within a range of 10%-20% above and below the

current underlying price. We continue to observe the decreasing trend in trades and available

strikes as we progress further out of the money, albeit at a less pronounced rate, with the

sole exception being the deep OTM call options. The trade volumes for mid-term options

are approximately a quarter of those for the short-term options; at the ATM level, this

ratio further diminishes to a fifth. Nonetheless, we find a pivot point for strike levels 30%

(40%) above (below) the current underlying price, where mid-term manifest a higher trading

volume. In a similar vein, the average number of tradable strikes and open interest for ATM

are substantially lower, yet they pivot as we move further away from ATM. Across the entire

options chain, mid-term options exhibit an average of 25 tradable strike levels, which is only

half of what their short-term counterparts offer, signaling an increase in strike increments.

The relatively balanced number of contracts traded around the underlying price level, i.e.

±20%, may serve as an indicator for potential options trading strategies, such as strangles or

butterfly spreads, pointing towards institutional influence.

The traded contracts distribution for short- and mid-term options resembles a normal

distribution in shape with a fat right tail, while the long-term options display a fairly uniform

distribution. Recall that long-term options consider maturities from one month to a year, yet

the trading volume associated with these options amounts to only half of that witnessed for

options with maturities spanning from one day to two weeks. These longer-term options are

notably favoured for large-volume trades (block trades), often comprising 25 contracts within

a single transaction. Interestingly, there is an excess on the deep OTM calls for both, trades

and open interest. Roughly one in every five long-term call options traded is set at a strike
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price twice that of the current underlying. In fact, the far deep OTM call options (m > 2)

display a higher trading volume than any near-the-money subclass. Despite this moneyness

range having almost three times more available strike prices, it signifies a highly speculative

trading pattern. Nonetheless, for empirical research related to trading activity, long-term

maturities prove to be less well suited. Options with maturities greater than one month have

exhibited too many stale prices, even at the hourly frequency, to be useful in any empirical

analysis. Additionally, large-volume trades distort the representation of trading volume and

frequency. Consequently, we select 10-, 20-, and 30-day constant maturity options for our

trading research, each representing a proxy for the three main expiry classes documented.

By the same token, Tables 3.2 considers the same maturity and moneyness subgroups but

presents the average implied volatility (‘iVol’) paid for the options in each subcategory, the

average bitcoin price paid (‘BTC’) and the US dollar (‘USD’) equivalent. Constructing an

implied volatility smile using the average traded implied volatilities for short-term options

yields a fairly symmetric shape, although it demonstrates a slight excess on the OTM puts

and lowest value for ATM levels. Particularly for the ATM range, i.e. 40-60 Delta we find a

symmetric implied volatility. In contrast, the medium-range maturities’ implied smile follows

more of a hockey-stick shaped skew with marginal variation for ATM and slight increase at

OTM call strike levels. On the other hand, the long-term maturities illustrate a relatively

flat implied volatility curve with little difference between ATM and deep OTM strikes. Inter-

estingly, the term structure on average resembles a fearful market condition. Typically, the

term structure for equity indices shows an increasing ATM implied volatility with respect to

maturity; this pattern is inverted only during market crashes. Such crash-like behaviour is

observed on average for bitcoin, where the ATM short-term implied volatility surpasses those

of longer-dated options. However, a more comprehensive examination of the implied volatility

behaviour will be presented in Chapter 5. Naturally, the high volatility of bitcoin results in

higher option prices, barely affordable for retail traders. For instance, an ATM long term

option costs about $4700, even short maturities ask north of $550. Given this trading data,

we conclude that the average bitcoin price (USD price divided by BTC price) was around

$31,000.
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Table 3.1: Summary Statistic: Trades, Strikes and Open Interest

Summary statistic of traded bitcoin option contracts on Deribit. We consider OTM calls and puts with varying moneyness levels and divide in short-term
options (up to two weeks), mid-term options (between two weeks and one month) and long-term options (longer than one month) as well as ‘Total’ reflecting all
maturities/moneyness levels. The sample covers trades between January 2020 to January 2023 but does not consider ITM options. The column ‘Trades’ presents
the number of traded contracts in the respective moneyness and maturity category. The ‘Strike’ column provides the average number of tradable strikes in the
respective moneyness and maturity category. Similar, the ‘OI’ column shows the average number of end-of-day open interest in each moneyness and maturity
category.

Short-Term Mid-Term Long-Term Total

Moneyness Trades Strikes OI Trades Strikes OI Trades Strikes OI Trades Strikes OI

m < 0.5 8,983 0.13 846 21,311 0.79 884 145,384 8.03 638 175,579 8.96 663

Put

0.5 ≤ m < 0.6 34,072 0.54 821 51,928 1.14 726 114,605 4.08 662 200,606 5.76 690

0.6 ≤ m < 0.7 120,575 1.55 711 85,863 1.51 857 187,473 4.63 652 393,876 7.96 704

0.7 ≤ m < 0.8 322,031 3.88 585 190,503 2.13 820 254,433 5.22 665 766,967 11,23 667

0.8 ≤ m < 0.9 884,592 7.07 591 345,633 2.77 816 326,138 5.74 605 1,556,363 15.58 636

0.9 ≤ m < 1 1,826,346 12.3 401 326,814 3.05 573 248,470 5.29 461 2,401,631 20.63 442

Call

1 ≤ m < 1.1 1,880,291 11.8 456 344,449 2.95 679 250,958 5.28 588 2,475,698 20.03 523

1.1 ≤ m < 1.2 752,401 6.32 590 357,160 2.61 841 256,538 4.96 652 1,366,099 13.88 659

1.2 ≤ m < 1.3 241,781 3.48 567 214,005 1.99 939 262,422 4.45 737 718,208 9.92 718

1.3 ≤ m < 1.4 94,026 1.73 591 116,778 1.46 1052 224,446 3.65 846 435,251 6.84 825

1.4 ≤ m < 1.5 43,488 0.85 792 72,178 1.46 961 188,001 3.37 889 303,668 5.35 889

1.5 ≤ m < 1.6 23,828 0.45 769 37,893 0.9 996 146,096 2.96 947 207,818 4.31 938

1.6 ≤ m < 1.7 12,709 0.21 1,040 33,242 0.62 1,016 115,117 2.62 911 161,069 3.44 938

1.7 ≤ m < 2 18,290 0.22 1,106 43,213 0.82 1,362 223,228 6.23 996 284,731 7.26 1,041

m ≥ 2 6,415 0,07 1,515 21,909 10.55 1,309 373,696 14.7 966 402,013 15.32 981

Total 6,269,833 50.59 528 2,262,876 24.42 844 3,316,972 81.21 758 11,849,681 156 697
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Table 3.2: Summary Statistic: Prices

Summary statistic of traded bitcoin option prices on Deribit. We consider OTM calls and puts with varying moneyness levels and divide in short-term options
(up to two weeks), mid-term options (between two weeks and one month) and long-term options (longer than one month) as well as ‘Total’ reflecting all
maturities/moneyness levels. The sample covers trades between January 2020 to January 2023 but does not consider ITM options. The column ‘iVol’ presents the
average implied volatility paid for the traded contracts in the respective moneyness and maturity category. The ‘BTC’ column provides the average price paid in
bitcoin for the traded contracts in the respective moneyness and maturity category. Similar, the ‘USD’ column shows the average USD value of a traded bitcoin
option in each moneyness and maturity category.

Short-Term Mid-Term Long-Term Total

Moneyness iVol BTC USD iVol BTC USD iVol BTC USD iVol BTC USD

Put

m < 0.5 202.46% 0.0014 39.5 156.28% 0.00195 64.15 106.14% 0.01168 413.01 112% 0.01067 376.58

0.5 ≤ m < 0.6 164.65% 0.0019 59.57 126% 0.003284 100.72 91.02% 0.02659 873.82 104.82% 0.01968 645.04

0.6 ≤ m < 0.7 137.79% 0.00266 83.42 107.09% 0.00561 179.46 83.45% 0.04491 1376.78 99.07% 0.02865 880.15

0.7 ≤ m < 0.8 114.26% 0.00405 118.35 91.42% 0.01044 338.69 78% 0.06454 1835.88 93.07% 0.03338 958.66

0.8 ≤ m < 0.9 96.73% 0.00723 219.55 78.97% 0.02133 714.73 74.05% 0.09429 2852.82 85.21% 0.04183 1278.44

0.9 ≤ m < 1 76.41% 0.01636 512.79 70.47% 0.04577 1489.74 71.23% 0.13391 3891.11 74.2% 0.05083 1523

Call

1 ≤ m < 1.1 73.04% 0.01766 568.72 72.3% 0.05104 1711.47 77.98% 0.1591 4760.26 74.23% 0.05983 1841.09

1.1 ≤ m < 1.2 82.95% 0.00841 270.36 74.2% 0.02593 917.51 76.8% 0.12482 3726.82 79.11% 0.05328 1602.69

1.2 ≤ m < 1.3 90.94% 0.005 153.64 77.8% 0.01441 508.12 77.69% 0.10568 3232.88 82.35% 0.05208 1606.86

1.3 ≤ m < 1.4 102.83% 0.00384 119.77 82.65% 0.00904 324.89 78.86% 0.0873 2713.84 85.74% 0.04951 1548.45

1.4 ≤ m < 1.5 113.55% 0.00313 98.23 88.11% 0.00631 224.26 80.37% 0.07434 2347.22 87.27% 0.04861 1539.96

1.5 ≤ m < 1.6 127.73% 0.00274 77.43 92.42% 0.00437 151.99 80.4% 0.05901 1863.78 87.82% 0.0418 1322.13

1.6 ≤ m < 1.7 140.46% 0.00254 71.72 99.01% 0.00394 131.02 82.55% 0.05407 1802.6 89.05% 0.04194 1397.31

1.7 ≤ m < 2 156.73% 0.00287 75.29 106.65% 0.00323 103.17 84.76% 0.04549 1470.9 89.38% 0.03946 1275.17

m ≥ 2 199.39% 0.00225 30.83 127.44% 0.00205 59.68 93.34% 0.02893 977.75 95.03% 0.02785 940.49

Total 89.09% 0.01115 351.82 87.69% 0.02097 704.31 84.6% 0.06797 2085.77 86.54% 0.04222 1308.34



CHAPTER 4

CRYPTO OPTION PRICING

Motivation: The bitcoin options market is highly fragmented and split between

regulated and unregulated exchanges. This variety of different exchange types has

created plain vanilla options with various settlement mechanisms, yet their impli-

cations are not widely understood. These different settlements influence not only

the pricing of these financial instruments, but also the profit arising from crypto

options trading. While stablecoin-denominated options might appear to be a safe

alternative to fiat-denominated options, recent developments have indeed shown

how unstable stablecoins can be. The risk associated with these necessitate the

consideration of additional (exotic) options to bolster investor protection. Hence,

a thorough comprehension of these products, as well as the ability to accurately

price and hedge these is of utmost importance for all market participants.

Summary: We introduce and explain the settlement mechanisms of the three

most traded bitcoin option types - standard, direct, and inverse bitcoin options -

and derive sound mathematical expressions for their pricing. Additionally, we dis-

tinguish between crypto tokens categorised as securities or currencies and highlight

the implications of such classifications for pricing methodologies. We show that in-

verse options can and should be priced the same way foreign exchange options are

priced. Moreover, we underscore the risks associated with stablecoin-denominated

options and introduce innovative derivatives designed to enhance risk management

strategies and bolster overall market efficiency.

48
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4.1 Underlying and Payoff

A token is a crypto asset that is transacted using a smart contract on a blockchain.1 Almost

all crypto assets are tokens, and even those that were minted before the introduction of

Ethereum Request for Comments (ERC) token standards are easily ‘wrapped’ to become a

token. Native tokens are generated through building the blocks in the chain. If the blockchain

can carry smart contracts the native token is also the unit of account for the ‘gas’ required

to fuel the smart-contract transactions.2 Because a native token is used for payment, we can

call it a cryptocurrency. Although the term ‘cryptocurrency’ has slipped into popular use as a

generic term for all crypto assets, the only other type of token which is truly a cryptocurrency,

i.e. a fungible token that is commonly used for payment and settlements, is a stablecoin. A

stablecoin is a token whose price is pegged to a fiat currency such as the U.S. dollar.

Other tokens which are not used for payment can be divided into fungible and non-fungible

classes. A non-fungible token (NFT) is a certificate of ownership of a physical or digital asset

such as land or art. NFTs are frequently used as collateral for borrowing cryptocurrencies,

but of course they themselves could not be a unit of account because they are non-fungible.

An NFT is an asset which is arguably more akin to a commodity than a security. How to

classify the non-payment but still fungible tokens that are issued by developers of projects in

the digital economy is an even greater point of debate. Under the leadership of Gary Gensler

and Dan Berkowitz, the SEC has been arguing for years that such tokens are a type of security,

and should therefore be regulated by the SEC. On the other hand, the CFTC produced a

counter-argument that they should be regulating the crypto assets, e.g. native tokens, that

have a utility value and are therefore more like a commodity than a security.

Crypto assets are exchanged in trading pairs via decentralised liquidity pools on-chain or

on centralised exchanges off-chain.3 When both sides of the trading pair are cryptocurrencies,

the trading pair is like an exchange rate. If neither side of the trading pair is a cryptocurrency,

then the trading pair is more like an asset swap. And if only one side of the trading pair

is a cryptocurrency, it is like a security with the cryptocurrency being the unit of account.

The most common type of platform for trading exchange-rate crypto pairs is the order book

of an off-chain centralised exchange such as Coinbase or Binance. By contrast, most asset-

swap crypto pairs are traded in liquidity pools of an on-chain decentralised exchange, such

as Uniswap or Curve. Most crypto-crypto asset swaps are traded in on-chain liquidity pools.

Trading volumes in all these markets have exploded over recent years. In particular, millions

1This is the standard. However, other cryptos like IOTA or NANA do not use blockchains and operate
independently.

2For example, ether, the native token of Ethereum is the unit of account for all non-fungible tokens minted
onto Ethereum. And although Bitcoin is not a smart contract blockchain, its native token bitcoin is a common
crypto unit of account for new token offerings.

3Or indeed an asset swap. Crypto-crypto asset swaps are most heavily traded in decentralised liquidity
pools, recorded on blockchains, i.e. ‘on-chain’. Not dissimilar to OTC agreements in traditional markets,
except that on-chain transactions are fully transparent. But block production is rather slow so it could be a
relatively long time before crypto-crypto on-chain swap derivatives are developed.
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of retail traders, either truly believing in a projects’ philosophy or for purely speculative

purposes, have easily opened accounts on any number of self-regulated centralised exchanges

to trade bitcoin and other crypto assets and derivatives. Large proprietary trading firms have

also been trading very actively.4 All these traders, on entering this melting pot of traditional

finance and modern computer science, are faced with an array of innovative crypto assets many

of which have very actively traded derivative products. However, in the crypto derivatives

category, options are backed by very little academic research.

Apart from regulatory oversight, the main factor that differentiates the centralised crypto

derivatives platforms is the type of products that they offer and their settlement. As discussed

in the introduction, there are currently three distinct type of bitcoin options. For example,

CME runs order books in standard European put and calls with a contract size in bitcoin

or ether, and all contracts are margined and settled in USD. But ∼90% of open interest and

trading volume on crypto options has always been on Deribit, which only runs order books in

so-called inverse options. These have a contract size of one bitcoin, ether or solana, and they

track the USD value of these coins even though they are margined and settled in BTC, ETH or

SOL. The cryptocurrency options on Binance complete the triplet of settlement mechanisms,

as their options are order book direct options. That is, these options have an identical payoff

to the standard options from the CME, but consider the bitcoin price in in a stablecoin

like USDT or USDC. These three settlement mechanisms for crypto options account for all

cryptocurrency option trades but are not yet widely understood. For instance, on Deribit the

underlying is a non-tradable index of spot prices and on the CME it is a futures contract on a

similarly non-tradable reference rate. The settlement price on Deribit is the average value of

the underlying over the 30 minutes prior to settlement and on the CME it is the spot value of

the reference rate. These settlement differences, combined with a widespread lack of proper

documentation from the unregulated exchanges, may lead to confusion about a seemingly

trivial European-style product.

This discussion has highlighted three important questions to answer before we can really

understand crypto options should be priced and hedged:

1. What is the currency that the trader uses as a unit of account? This could be a

cryptocurrency like BTC or a fiat currency such as USD. A BTC-based trader with a

BTC-denominated trading account has a different perspective on profit and loss to a

US trader whose account is measured in USD;

2. Is the underlying a security or a currency? If a security, then the option should be priced

like a stock or bond option with the unit of account specified in 1, and if a currency

then the option is equivalent to an FX option;

4Latest proprietary trading firms like Jane Street or Jump Trading are actively trading crypto, see Financial
Times, accessed 25 September 2023.

https://www.ft.com/content/8e955e9a-6e03-41b9-8da2-2e761d565f71
https://www.ft.com/content/8e955e9a-6e03-41b9-8da2-2e761d565f71
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3. Is the settlement price that of a tradable instrument? The vast majority of crypto

options are settled using an index, sometimes also averaged prior to settlement. So

should pricing and hedging take account of the incompleteness of this market or not?

Clarifying the answers to those questions justifies proposing that quanto options be added

to the array of crypto products. Quanto direct options are similar to traditional quantos,

but the quanto inverse option is a completely new type of exotic option. We argue that both

direct and inverse quantos are better products for risk-averse USD-denominated agents than

their vanilla counterparts which have no currency protection.

In this chapter, we discuss the properties of four different types of crypto options that

are of practical and academic interest, with a specific focus on direct and inverse quanto

products. We define the payoffs and settlements for direct and (quanto) inverse options

precisely using USD as the fiat side and either BTC or ETH as the crypto side of the trading

pair, while considering USDT as stabelcoin proxy for the direct and quanto options. Both

bitcoin and ether are cryptocurrencies, but bitcoin is only a cryptocurrency while ether can

also be regarded as a security or commodity because Ethereum is a smart contract blockchain

whereas Bitcoin is not. Indeed, the SEC have argued that every token apart from bitcoin

is a security and should therefore fall under the jurisdiction of the SEC rather than the

CFTC.5 We also consider two types of traders, one USD-denominated whose trading book is

denominated in USD and the other crypto-based whose trading book is denominated in BTC.

4.2 Standard & Direct Options

Either standard or direct options are widely traded on all the regulated and some unregulated

centralised exchanges. A bitcoin (ether) option trader can choose whether to trade the pair

BTCUSD (ETHUSD) or BTCUSDT (ETHUSDT) or any other stablecoin such as USDC.6

Because of the risks surrounding stablecoins (Duan and Urquhart, 2023), a USD-denominated

trader may prefer the standard option, which is a plain vanilla European product. The call

has payoff in USD given by:

V
$

T
=
(
S

$

T
−K

$
)+

, (4.1)

where K$ denotes the strike price and S$

T
denotes the underlying price, both in USD, at

maturity T . On the CME (at the time of writing) the underlying is a futures on either the

5In a recent SEC speech, Gary Gensler points out that “[...] the vast majority [of crypto tokens] are
securities” but excludes bitcoin in particular in an earlier interview. The argument is that native token of
other blockchains that are not smart-contract compliant, such as Dogecoin can be thought of a security because
their primary use is as a ‘meme’ token. Just recently, the SEC announced to classify Ethereum and all its
subsidiary tokens as a security. Thus, every project deployed on top of the Ethereum blockchain could be
claimed to be a security and within SEC jurisdiction.

6The risks are huge. They include: market risk, because the stablecoin is only pegged to the value of
USD and can deviate very far from the peg, in May 2022; but also operational risks (stablecoins are held on
exchanges and so can be hacked); and regulatory risks (e.g. MiCA) directive places very firm caps on stablecoin
trading volumes, to try to limit their capitalisation.

https://www.sec.gov/news/speech/gensler-sec-speaks-090822
https://www.cnbc.com/video/2022/06/27/sec-chair-gary-gensler-discusses-potential-crypto-regulation-and-stablecoins.html?&qsearchterm=gary20gensler
https://uk.finance.yahoo.com/news/ethereum-price-drops-sec-declares-control-093528955.html
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CME BRR – which from now on we regard as the BTCUSD rate as it tracks the FX rate,

i.e. the number of USD for one unit of bitcoin – or the pair ETHUSD which we regard as

the ETHUSD exchange rate or the USD price of the ETH security coin. The margining and

settlement of standard bitcoin or ether options depends on the exchange. On the CME they

are margined and settled in USD and the settlement price is that of the CME bitcoin or

ether futures, so both the option premium and the payoff are denominated in USD. They

are also cleared by the exchange, thus omitting counterparty risk. This procedure does not

differ in any way from trading other commodities on the CME exchange. Binance lists direct

BTCUSDT and ETHUSDT (and many other crypto) options which are margined and settled

in USDT. The settlement price is that of the stablecoin-margined product BTCUSDT (or

ETHUSDT) on their spot platform at the time of settlement, and the payoff is in USDT; but

in other ways the Binance settlement procedure mimics the CME’s. Hence, using the symbol

T to denote the price of the stablecoin USDT, the call payoff is identical to (4.1) except the

currency is USD not but the stablecoin USDT and may be written:

V T

T
=
(
ST

T
−KT

)+
. (4.2)

We have selected these two particular centralised exchanges because they are the largest

to list standard and direct crypto options, and they illustrate how these exchanges can offer

the same basic product, but have different underlyings and settlement procedures. The pri-

mary distinction between standard and direct options depends on whether they are fiat- or

stablecoin-denominated. The main motivation to distinguish between these two types arises

from the instability of stablecoin as Duan and Urquhart (2023) highlight and which we shall

discuss in-depth in the following section.

Determining the pricing approach for standard or direct options is fundamentally linked

to the trader’s interpretation of the underlying asset, i.e. bitcoin or ether. In circumstances

where the trader classifies these as currency pairs, the payoff structure of these assets allows

a direct pricing approach using the Garman and Kohlhagen (1983), or any other FX pricing

model. However, the question on the risk-free rate arises as there is no governmental body

issuing treasury notes for any cryptocurrency. Further, lending platforms that guarantee fixed

annual returns bear substantial risk, as we shall discuss in the next section. On the other side

of the spectrum, following the SEC’s announcement, treating any crypto token as security

enables the use of standard option pricing models like the Black and Scholes (1973), or other

SV model. The challenge here lies in identifying elements comparable to dividend payouts.

While the proof-of-work architecture of bitcoin does not pay any reward, the proof-of-stake

structure of Ethereum allows investors to deposit, or stake, their ETH and collect a weekly

return. Alternatively, investors possessing a sizable amount of ETH might acquire a form

of dividend through validation of transactions, leading to a pricing scenario dependent on

the wealth of the individual agent. Irrespective of interpretation due to the conventional,

straightforward payoffs, there exists a plethora of available option pricing models.
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Figure 4.1 illustrates the well-known payoffs of standard and direct call and puts as a

function of the underlying. For the sake of clarity, we omit the graphs for USDT as these

would not add any further information. It shows the well-know piece-wise linear payoff of a

plain vanilla call otpion.

Figure 4.1: Standard and Direct Option Payoff

The payoff to a long call (left; blue graph) and put (right; red graph) as a function of the settlement price.
These payoffs present a standard option but could also display the direct payoff using USDT (T) instead of
USD ($) for both the payoff (vertical axis) as well as the underlying (vertical axis). The strike level is set at
K

$
= $25,000.

4.3 Inverse Options

Inverse options are the only type of option Deribit lists. Therefore, over 85% of the trading

volume on centralised crypto options exchanges is on inverse options. The reason Deribit only

lists inverse options is that it is a non-fiat exchange so there is no USD transacted anywhere on

the platform, although Deribit indicated to enable fiat onbording in the future without naming

an exact date. The inverse structure allows Deribit to list options on cryptocurrency-USD

trading pairs, and each option is margined and settled in the option’s cryptocurrency.

Many other non-fiat exchanges list inverse options, precisely because they can trade against

the USD without using it as the unit of account or indeed allowing any fiat currency onto

the platform. And most inverse options track the USD value of a coin index not a single

spot price. Importantly, margining and settlement is always in a cryptocurrency, not in fiat.

If held to maturity, the settlement price ST is either the coin index value exactly at the

settlement time, or its average value over a time period immediately prior to settlement. Due

to its frequent rebalancing of the Deribit bitcoin index, physical replication of this index is an

immensely difficult and expensive task. An agent would be required to hold bitcoin positions

on multiple exchanges and rebalance these constantly. Complicating replication, even more,
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the final option settlement value is the average of the index during the last 30 minutes before

expiry. This important feature about Deribit inverse options is often left out. The underlying

is not directly tradable. For this, we must consider pricing within an incomplete market.

4.3.1 The Inverse Structure

In general, an inverse contract specifies a notional number N of coins which is multiplied

by a point value to obtain a payoff expressed as a number of coins, i.e. in the units of the

coin. The terminal payoff (and indeed all trading profits) are transferred to the trader in the

cryptocurrency, not in USD. For example, the payoff V B
T

to an inverse call on BTCUSD is

denominated in BTC and may be written:

V B
T

= N

(
S$

T
−K$

)+
S$

T

, (4.3)

where the second term is a dimensionless quantity which we denote the point value. There is

actually no need for our notation to specify the units for the settlement price and strike (even

though we have done so above) because their difference becomes dimensionless when divided

by S$

T
. But we do need to know what the underlying is, e.g. the BTCUSD rate.

Currently, all exchanges that list inverse options use a notional of exactly one coin, i.e.

Deribit set N = 1 bitcoin, or 1 ether or 1 sol, depending on the underlying. Moreover, they

all quote the option prices in USD, as well as in the cryptocurrency of the trading pair, but

settlement is always in the cryptocurrency. Now, for a USD-denominated trader the true

payoff (which is in cryptocurrency) may just as well be translated into USD, in which case

V B
T

should be multiplied by the price of the underling at the time of settlement S̄$

T
. Note that

this price is not the same as the settlement price, the latter being the average price over the

30 minutes before the settlement time. Given how volatile crypto markets are, there can be

a large difference. Anyway, we can write the payoff to a USD-denominated trader as:

V
$

T
= S̄

$

T
V B

T
= S̄

$

T

(
S$

T
−K$

)+
S$

T

≈
(
S

$

T
−K

$
)+

.

This shows that one can think of the inverse option payoff as equivalent to a standard

FX option, except that the payoff is denominated in the foreign currency. There is a large

body of academic research on FX options, their pricing, hedging, volatility dynamics and so

forth, see Levy (1992), Carr and Wu (2007), and Demeterfi (1998) and many others. However,

FX options are usually denominated in the same currency as the underlying. Inverse options

are denominated in the foreign rather than the domestic currency and this rather unusual

denomination of the payoff is a potential source of confusion. Similar characteristics in FX

options, when one uses the foreign-domestic symmetry relationship to convert a domestic

call to a foreign put, has been documented previously (Grabbe, 1983; Reiswich and Wystup,

2010). We also provide more details on the foreign-domestic relationship in Section 4.3.2.
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Figure 4.2 illustrates the true terminal payoff an agent would receive when trading a long

inverse option. It is a piece-wise concave (call) or entirely convex (put) structure. Note that

the call payoff is capped at maximum B1 whereas the put can theoretically pay out an infinite

amount of bitcoin. For USD-denominated traders, but only for these traders, the payoff to

an inverse option can be approximated by a standard piece-wise linear form,7 and hence their

pricing is almost identical to that of the direct option (Garman and Kohlhagen, 1983), as

seen in the next subsection. But very much depends only on the trader’s base currency.

USD-denominated traders might only consider the USD value of their option position on

the balance sheet, but crypto option traders are international, and so may prefer to use a

cryptocurrency – or a different fiat currency – as their unit of account on Deribit. And

even for USD-denominated traders, cryptocurrency-denominated profits stemming from large

positions in inverse options cannot be instantly exchanged for USD, which adds a liquidity

premium the inverse Deribit options. This is a particular issue for puts which can, in theory,

pay out an infinite amount of bitcoin. Deribit also offers block trades of at least 25 bitcoin or

250 ether for which it does not require very large negative price movements for the position

holder to receive a high number of bitcoin or ether. Thus, while the paper value of profits

in BTC or ETH may be very high, converting such an amount into fiat may well result in

liquidity problems. Then profits would be reduced through spillage on the currency conversion

trades. The absence of adequate brokerage services, and of exchange requirements to hold

large margin reserves, are yet another expense factor for institutional bitcoin option trading.

Professional traders transacting large amounts might refrain from denominating their profit

and loss in USD and use cryptocurrency their balance sheets instead, but still the currency

risk faced traders in inverse options cannot be ignored.

4.3.2 Complete Market Pricing

This subsection examines the true pricing of inverse options under the assumption that the

underlying is tradable and the market complete. For this case, we consider bitcoin as a

currency, and the underlying of a bitcoin option contract is the BTCUSD exchange rate.8

We denote the price of the tradable underlying, the BTCUSD exchange rate, at time t as

S$
t . Assuming well-functioning money markets exist for both currencies, we can define two

cash bond accounts B$

t = er$ t and BB
t = er

B t as the respective numéraires, where r$ and

rB are the risk-free interest rated in the corresponding currencies. Furthermore, let (Ω,F ,P)
be a filtered probability space with filtration F and probability measure P. Following Clark

7Approximate because S̄T ̸= ST , unless there is no trading in the 30 minutes before expiry. However, this
difference affects only the payoff and not the fair price at any time prior to expiry.

8Note that this is just an experimental framework. There is no major exchange offering these exact options
except for maybe Binance. However, the Binance direct option is on the BTCUSDT exchange. Given the
recent events involving the stable coin Terra, we want to point out possible risk factors involving the use of
supposedly stable stable coins without discussing their benefit of existing and refer the reader to Baur and
Hoang (2021) or Hoang and Baur (2021). Any other interpretation of the underlying, i.e. as a security, is also
possible as this does not change the theoretical derivation or the change of numéraires.
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Figure 4.2: Inverse Option Payoff

The payoff in bitcoin to a long inverse call (left; blue graph) and put (right; red graph) as a function of the
settlement price. The strike is $25,000. Note that the call payoff is capped at maximum B1 whereas the put
can theoretically pay out an infinite amount of bitcoin.

(2011), we denote the dynamics of the log-normal asset S$
t under the physical measure P as:

dS$

t

S$

t

= µ
$
dt+ σ

$
dW

$

t ,

where µ$ is the drift, σ$ is the volatility, and W $ denotes a standard Brownian motion. In

this framework, we can rewrite the payoff V B
T

at maturity T of a call on S$

T
from (4.3) as:

V B
T

= K
$
(
KB − SB

T

)+
,

where KB = 1
K$ and SB = 1

S$ is the opposite exchange rate, i.e. USDBTC. Apply Itô’s

lemma, SB
t is governed by:

dSB
t

SB
t

= µBdt− σBdW
$

t ,

under P, where µB = (σ$ )2 − µ$ and σB = σ$ . We further define a Equivalent Martingale

Measure (EMM) Q with the Radon-Nikodym density:

dQ
dP

= MT , with Mt = exp

[
−
∫ t

0
mudW

$

u − 1

2

∫ t

0
m2

udu

]
,

where {Mt}0≤t≤T is a P-martingale. Applying the Skorokhod reflection principle and the

Girsanov theorem, the process:

∼
W

B

t = −W
$

t +

∫ t

0
mudu
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is a Q-Brownian motion, and SB
t is governed by:

dSB
t

SB
t

=
(
µB −mtσ

B) dt+ σBd
∼
W

B

t ,

under Q. Requiring SB
t B

$

t /B
B
t to be a Q-martingale, we can rewrite:

mt =
µB −

(
rB − r$

)
σB .

It follows that under Q the dynamic of SB
t is given by:

dSB
t

SB
t

=
(
rB − r

$
)
dt+ σBd

∼
W

B

t .

Note that a USD-denominated call becomes a BTC-based put with strike KB being the

inverse of the USD-strike price. The option can be priced trivially via standard FX option

pricing formulae, and satisfies the put-call duality conditions as articulated, for example, in

Garman and Kohlhagen (1983). The price of the put in BTC is given by:

P B
t = e−rB τKBΦ

(
−dB

2

)
− e−r$ τSB

t Φ
(
−dB

1

)
(4.4)

dB
1 =

1

σB√τ

[
ln

(
SB
t

KB

)
+

(
rB − r

$
+

(σB )2

2

)
τ

]
dB
2 = dB

1 − σB√τ .

Similarly, we can express the variables in an USD-denominated framework:

dB
1 =

1

σ$
√
τ

[
− ln

(
S$

t

K$

)
−
(
r
$ − rB − (σ$ )2

2

)
τ

]
= −d

$

2

dB
2 = −d

$

1 .

It becomes obvious that K$ units of BTC-denominated puts are equivalent to 1/S$

t units of

USD-denominated calls:

K
$
PB
t = e−rB τΦ

(
−dB

2

)
− e−r$ τK

$
SB
t Φ
(
−dB

1

)
=

1

S$
C$
t . (4.5)

This pricing approach can be readily extended beyond Black-Scholes world. Solutions

to option pricing problems are attainable, at least in the Fourier transform sense, for any

tractable Lévy processes governing the evolution of the USDBTC exchange rate. Popular

choices are the Heston model, the SABR model and their multi-factor and/or jump-extended

variants, among others (Sepp and Rakhmonov, 2022).
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4.3.3 Incomplete Market Pricing

The simple pricing approach in Section 4.3.2 relies on the assumptions that both markets

denominated in USD and in BTC are complete, and there are no restrictions on exchanging

wealth from one to the other. To be most precise, and for the sake of fully understanding

the Deribit options market, we must note that this assumption is not satisfied. Not only is

there no well-functioning money market for bitcoin, it does not exist at all. In fact, lending

platforms are the closest that come to some kind of money market. These companies promise

risk-free interest for clients willing to deposit their crypto. However, poor risk management

and a dangerous mixture of incompetence and ignorance brought major lenders to their knees

just recently.9 Second, the exchanges on which inverse options are traded (which accept

no fiat and are unregulated) use non-traded underlyings. For example, the Deribit bitcoin

inverse options use their own index as the underlying, which is an average of bitcoin spot

prices from (currently) four, but can reach up to eleven different centralised exchanges. Due

to its frequent rebalancing and arbitrary exclusion of exchanges, the physical replication of

this index is an immensely difficult and expensive task. An agent would be required to hold

bitcoin positions on multiple exchanges and rebalance these constantly. Moreover, the final

option settlement price is the average of the index during the last 30 minutes before expiry.

This important feature about Deribit inverse options is often ignored. But the price of bitcoin

can change considerably during 30 minutes – much more than we see for traditional financial

instruments. Hence, the underlying is not tradable and the market is incomplete. Therefore,

equation (4.4) provides only an approximate option price.

To fully understand the valuation and hedging of bitcoin options on Deribit, we need to

consider the actual state of the cryptocurrency option market. To circumvent the difficulties

in reconstructing and trading the underlying index of the Deribit bitcoin options we consider

instead the Deribit perpetual futures, because this tracks the index closely through the funding

mechanism. However, this introduces an unhedgeable basis risk that can be sizable in a volatile

market, as seen in Figure 3.2. Now, option pricing in an incomplete market in the presence of

basis risk is typically solved through indifference pricing by formulating a stochastic control

problem in the mean of the Hamilton-Jacobi-Bellman (HJB) partial differential equation

(Monoyios, 2004), or by solving the corresponding forward-backward stochastic differential

equation (Rouge and El Karoui, 2000). Consider the probability space (Ω,F ,P) as in the

standard inverse pricing case. The non-tradable underlying asset (in this case the DBTC, S$

t )

9Celsius and Voyager are the latest big players filing for bankruptcy shattering trader’s trust in the whole
crypto ecosystem.

https://www.ft.com/content/8d6dee7d-2cc9-4663-a0a2-e469686baca5
https://www.ft.com/content/0b5b68d9-85f1-47ce-a9f7-34252e4fe2ce
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and the hedging instrument (the perpetuals, F $

t ) evolve according to the GBMs:

dS$

t

S$

t

= µ$dt+ σ$dW
$

t , (4.6)

dF $

t

F $

t

= µdt+ σ̄dWt, (4.7)

where W $ and W correlated standard Brownian motions with ⟨dW $ , dW ⟩ = ρ dt. Note

that the second fundamental theorem of mathematical finance describes the ability to hedge

arbitrary claims; or, put another way, it states that an arbitrage-free market is complete if

and only if the martingale measure corresponding to the numéraire is unique. Thus, as S

and F are not perfectly correlated, i.e. | ρ |< 1, we cannot find a unique EMM for which

the discounted value of F is a martingale under risk-neutral measure and consider the market

incomplete.10 We want to highlight that the correlation between the non-tradeable index and

tradeable perpetual is very high (> 0.99) over the entire time and this discussion is rather

theoretical in nature and serves to fully understand the market. We rewrite

W
$

t = ρWt + ϵ
∼
W $

t ,

where ϵ =
√

1− ρ2 with independent
∼
W $

t and Wt. We further denote by {Gt}0≤t≤T the

filtration generated by W $

t . Note that this Brownian motion drives the non-traded inverse

index asset. Without losing generality, we assume the dividend yield is zero, and the US

money market provides a risk-free interest rate r. Assume there exists an equivalent measure

Q to P on F . Then there exists adapted processes mT and gT where the Radon-Nykodym

derivative is given by:
dQ
dP

= MT ,

where {Mt}0≤t≤T is a P-martingale with Mt is given by:

Mt = exp

[∫ t

0
mudWu +

∫ t

0
gud

∼
W $

u −1

2

∫ t

0
m2

udu− 1

2

∫ t

0
g2udu

]
.

Using the multidimensional Girsanov theorem we see that the processes
{ ∼
W t,

∧
W $

t

}
0≤t≤T

defined by: ( ∼
W t
∧
W $

t

)
=

(
Wt +

∫ t
0 mudu

∼
W $

t +
∫ t
0 gudu

)
,

10Note that a market can be incomplete in many ways. Some reasons include: (i) more random sources than
risky assets present, (ii) constraints on admissible positions, (iii) underlying object is not traded, (iv) iliquid
market or (v) positions cannot be carried forward in time without large costs. For a detailed mathematical
definition see for example Björk (2020).
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is an independent Brownian motion under Q. Further, the dynamics under Q are given by:

dS$

t

S$

t

= (µ$ − σ$ (ρmt + ϵgt)) dt+ σ$dWt,

dF $

t

F $

t

= (µ− σ̄mt) dt+ σ̄d
∧
W t,

where
∧
W t= ρ

∼
W t +ϵ

∧
W

B
t is a Brownian motion such that ⟨d ∼

W t, d
∧
W t⟩ = ρ dt. For Q be be a

local EMM, F $

t needs to be a Q-local martingale, i.e. iff:

µ−mtσ̄ = r ⇒ mt = m :=
µ− r

σ̄
.

Note that we assume that the model is generically arbitrage free, that is mt, viewed as a linear

mapping function, is surjective P-a.s. and that the EMM is uniquely defined. On the other

hand S$ is non-tradable which lets gT be of any arbitrary form which results in an infinite

set of possible EMM. We define this set as M which is in correspondence with the set of gt.

We further want to link the local martingale with an equivalent probability measure. Denote

an equivalent measure
∼
P to P on G, the risk-neutral density given by:

d
∼
P

dP
=

∼
MT , with

∼
M t= exp

{
−
∫ t

0
θudW

$

u − 1

2

∫ t

0
θ2udu

}
,

where θt is a Gt-adapted process. Under
∼
P we define

∧
W as:

∧
W t = W

$

t +

∫ t

0
θudu

and underlying dynamics under
∼
P given by:

dS$

t

S$

t

= (µ$ − σ$θt) dt+ σ$d
∧
W t .

Note that the dynamics of the non-tradable index are the same under Q and
∼
P when the

integrands mt, gt and θt are given as:

ρmt + ϵgt = θt.

Many arbitrage valuation models such as the BS model rely on the assumption that any

option’s claim can be replicated by a portfolio and hence hedged perfectly. The absence of

such a hedging portfolio leads to major difficulties when evaluating options in this fashion.

Any further derivation would require alternative methods to handle the pricing in incomplete

markets. These could include (i) a restriction to smaller Girsanov transformation such as

the generalised Escher transformation (Kallsen and Shiryayev, 2002), (ii) the introduction of
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a generalised distance between probability measures and choose the EMM which minimises

the distance such as the concept of f -divergence (Goll and Rüschendorf, 2001), (iii) through

the duality portfolio optimisation (Schachermayer, 2002), rather than finding a unique mar-

tingale measure, find a ‘reasonable’ measure (Björk and Slinko, 2006), or (v) using a specific

preference-dependent approach of the agent. Particularly the latter one enjoys great popu-

larity in financial literature. By making assumptions about the shape of the trader’s utility

function, the option pricing problem could be transformed into an optimal trading strategy

problem where the trader seeks to maximise his expected utility with and without trading

in options contracts. Many papers already address this topic in much detail – see Rouge

and El Karoui (2000), Monoyios (2004), Ankirchner et al. (2010) and Davis (2000) and many

others. This way it could be presented as the numerical solution to the corresponding HJB

partial, or the forward-backward stochastic, differential equation. However, there are signif-

icant limitations to using this type of model for pricing and hedging purposes. The option

pricing formula and Greeks depend on whether the option position is long or short, and the

type of utility functions used can often be restrictive, in some cases it would even yield option

prices that depend on the agent’s initial wealth.

However, there exists a trade-off between the complete and the incomplete market model,

i.e. facing potential pricing error due to basis risk versus the necessity of alternative pricing

methods. On the one hand, Figure 3.2 shows that the basis risk between index and perpetuals

oscillates mostly around ±10 bps, particularly since 2022. On the other hand, specifically for

the preference dependent pricing, it could be challenging to identify the correct preferences due

to prominent sentimental and behavioural features in crypto markets, specifically, due to the

diversity of traders, i.e. (semi-professional) retail and institutional participants. Formulating

correct assumptions of the agent’s preference is likely unrealistic, as this space is continuously

evolving, and the discussion in Section 3.2 – specifically, the open interest for deep OTM

options (m > 2) seen in Table 3.1 – leads us to question the rationality of some bitcoin option

traders. Thus, the risk of mis-specifying investor preference outweighs the basis risk. Further

analysis may be warranted to discern the sentimental and behavioural features, but will not

be addressed in this thesis.

4.4 Quanto Direct Options

A quantity-adjusted option, or quanto option for short, allows traders to gain exposure to

a foreign market without taking any currency risk. In traditional markets the underlying is

often a single security, or a security index, or another asset like a commodity. The settlement

price ST of this asset and the option strike K are denominated in the foreign currency but the

standard option payoff is converted into domestic currency using a predetermined exchange

rate X̄ which is agreed upon entering the (usually OTC) contract. For instance, a standard
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quanto call has payoff:

VT = X̄ (ST −K)+ . (4.8)

Because they are well-known products in traditional markets the pricing and hedging for

quanto options has been researched very extensively (Jamshidian, 1993; Demeterfi, 1998;

Jeanblanc et al., 2009; Clark, 2011). So it is somewhat surprising that there has been no

previous research documenting quanto products in crypto markets. In fact, the first futures

ever traded on crypto were quanto products.11

The main cryptocurrencies like bitcoin and ether have very active options markets but

there are thousands of minor tokens that are only paired with stablecoins on the major non-

fiat exchanges like Binance, never with USD. Therefore a USD-denominated trader wishing to

trade such a token – let us call it XYZ – must take on the (very real) risk of the stablecoin de-

pegging from USD while the trade on XYZ is in place, as seen with the algorithmic stablecoin

TerraLuna. (Duan and Urquhart, 2023) are among the first to examine the stability of the

five largest, currently available stablecoins and indeed find strong evidence of instability. To

remove this currency risk, at the same time as leveraging their exposure to XYZ through an

option trade, a USD-denominated agent might agree a fixed stablecoin exchange rate with

the quanto option issuer. For instance, using a fix of the tether rate X̄
T/$

the quanto direct

call USD-denominated payoff becomes:

V
$

T
= X̄

T/$ (
ST

T
−KT

)+
, (4.9)

where ST
T

is the tether price of the XYZ token at the time of the option maturity T and the

option strike KT of the quanto is also denominated in USDT, although any other stablecoin

such as USDC could replace tether in this payoff. To illustrate the usefulness of a quanto

option to crypto traders further, first suppose a BTC-based option trader is interested to gain

exposure to ETH while keeping his BTC position. He could use existing exchange-traded

products to convert BTC to USD and then trade ETHUSD options, facing transaction costs

and crossing the spread twice. Alternatively, the trader can obtain a payoff denominated in

BTC by agreeing a fixed USDBTC rate X̄
$/B

with the quanto option issuer before entering

the contract on ETHUSD. We express the payoff to a quanto call, for a BTC-based trader as:

V B

T
= X̄

$/B
(
S

$

T
−K

$
)+

, (4.10)

where S$

T
is the price of ETH in USD at maturity T and the option strike K$ is also denom-

inated in USD. These types of options would enable traders to participate in ETH without

physically owning or depositing ether, thus avoiding gas or other fees. Figure 4.3 depicts the

payoffs to a quanto call and put given by (4.10).

11The derivatives exchange BitMEX was among the first exchanges to offer quanto products in form of
futures on various coin/coin or coin/USDT pairs, see BitMEX quanto futures.

https://www.bitmex.com/app/quantoFuturesGuide
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Figure 4.3: Standard Quanto Option Payoffs

The payoffs to a long standard quanto call (left; blue graph) and put (right, red graph). The security (in this
case) is ether, the foreign currency is USD and the domestic currency is BTC, i.e. the buyer is a BTC-based
trader. Thus, the payoff is in BTC and the underlying on the horizontal axis is the USD price of ETH. We set
K
E

= $1750.

4.5 Quanto Inverse Options

A quanto inverse option is a natural extension of both inverse and quanto direct options which

converts the inverse option payoff to another currency using an exchange rate that is fixed

upfront and agreed between both parties when the contract is issued. This allows traders to

mitigate the currency risk that is unavoidable when trading inverse options.

4.5.1 Structure

The payoff to a quanto inverse call with a notional of N = 1 coin in cryptocurrency Y can be

converted to a currency Z (either crypto or fiat) at a fixed exchange rate X̄
Y/Z

, yielding the

payoff:

V Z
T

= X̄
Y/Z

(
S
Z

T
−K

Z

)+
SZ

T

, (4.11)

where S
Z

T
and K

Z

are the settlement and strike prices of an option on a token XYZ, both

denominated the cryptocurrency Z. These options have payoffs that mimic the convex put

and concave call payoffs of inverse options, but they are denominated in a different currency.12

The quanto factorX̄
Y/Z

changes the slope of the terminal payoff and consequently also the

option price prior to expiry. Depending on the choice of X̄
Y/Z

, a quanto inverse call (or put)

could have higher or lower prices than a direct call (or put), as shown later. Intuitively, the

buyer of such a call may seek to fix the exchange rate slightly higher or lower to his expected

12In fact, the quanto inverse option has a similar intuition to the quanto clique option (Mercurio, 2003) or
the amortising option (Gatheral, 2006).
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future exchange rate, depending on his position. Compared with their direct counterpart, a

quanto inverse call loses more value as the option moves further in the money. As such, a

quanto inverse call provides an affordable alternative to gain exposure to a crypto option by

paying a lower price than one would for an ITM direct call of the same strike.

Figure 4.4 displays the payoffs to quanto inverse calls and puts on the BTCUSD trading

pair. In this example we also use a fixed BTCUSD exchange rate (but in general the exchange-

rate fix could be in BTC relative to any other crypto or fiat currency) so the shapes of these

payoffs are exactly similar to the non-quanto inverse option payoff in Figure 4.2. The only

difference is that the vertical axis is now in USD units. In particular, the quanto inverse

put payoff again increases rapidly as the underlying depreciates. This feature makes quanto

inverse puts an excellent insurance against a black swan crypto event. For instance, suppose

that in February 2020 a trader bought a quanto inverse put, with a notional of B1, expiring
on 13 March 2020. Also suppose both the strike and the quanto factor of this put were fixed

at $9000, which is reasonable since this was about the BTCUSD rate in February 2020. On

12 March 2020 the BTCUSD rate fell to about $3500, so suppose this was the settlement

price. Thus a standard put would have paid $5500 if held to expiry. But the quanto inverse

put would have paid $14,143, which is more than double that of the standard put. Finally,

consider how a quanto inverse option might be constructed for a USD-denominated trader

who seeks exposure to a crypto asset XYZ, but instead of trading a direct option on XYZ with

currency protection against decoupling of stablecoin price from USD, as in Section 4.2, the

trader prefers to gain exposure to an inverse option payoff. Reasons for this could be: (i) for

the same terminal value of the underling, the quanto inverse option profit can be greater than

that from direct option; and (ii), a quanto inverse put option payoff is convex and uncapped.

Figure 4.4: Quanto Inverse Options

The payoff to a long quanto inverse call (left; blue graph) and put (right; red graph) as a function of the
settlement price. In (4.11) we set Y = B i.e. the notional is 1 bitcoin, and translate the inverse option payoff
to USD by setting Z = $. Both the quanto factor and the option strike are set to $25,000.
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4.5.2 Pricing

It’s worth noting upfront that the quanto inverse option shares a payoff structure similar to

the inverse option payoff, but is denominated differently. This subtle difference has important

consequences in terms of how these options should be priced. Consider first a standard FX

call on BTCUSD that matures at time T , with either a USD-denominated payoff:

V
$

T
=
(
S

$

T
−K

$
)+

,

or a BTC-denominated payoff:

V B
T

= K
$
(
KB − SB

T

)+
.

We have already shown that this option can be priced in a standard FX option pricing

framework. Now consider an exotic option that pays:

V $
T
= X̄

B/$

(
S$

T
−K$

)+
S$

T

, (4.12)

where X̄
B/$

is a predetermined exchange rate that transforms the bitcoin denominated point

value of an standard inverse option to a USD payoff. In the following we simplify notation

and omit the superscript, so we set X̄
B/$

= X̄. Similar to CME options, these would be

USD-settled options, on the exchange rate of any token, or a reference rate or a futures

contract. In this example, we focus on the USD value of one bitcoin. Using the same notation

as in Section 4.3.2 we denote the underlying of this product at maturity by ST . Note that

the underlying, as well as the strike are both denominated in USD. However, for the sake of

clarity and readability, we shall omit any superscript for these variables, as well as for the

option’s payoff and risk-free rate, as they all follow a USD denomination in this subsection.

To avoid any confusion between the volatility driving the GBM at hand, and shall denote

σ = σ$ . Without losing generality, we assume the dividend yield is zero, and the US money

market provides a risk-free interest rate r. The risk-neutral Q-dynamics of the underlying are

given by:

dSt

St
= rdt+ σdWt,

ST = St exp

{(
r − 1

2
σ2

)
(T − t) + σ(WT −Wt)

}
.

Now let Yt = (St)
−1 . By Itô’s lemma the Q-dynamics of Yt are:

dYt
Yt

=
(
σ2 − r

)
dt− σdWt.
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The value of the discounted price process is therefore:

∼
Y t= e−rτ EQ

[
Y

$

T
| FT

]
= YT e

(σ2−2r)τ ,

where τ = T − t. We note that
∼
Y t is a martingale under the Q-measure and hence we perform

a change of numéraire from the risk-neutral measure Q to an equivalent martingale measure
∼
Q where

∼
Y t is the new numéraire. We can rewrite the dynamics of S$

t as:

dSt

St
=
(
r − σ2

)
dt+ σd

∼
W t,

St = S0 exp

{(
r − 3

2
σ2

)
t+ σ

∼
W t

}
,

where
∼
W T= Wt + σt is a Wiener process under the martingale measure

∼
Q. Under these

assumptions, we can express the Radon-Nikodym derivative by:

d
∼
Q

dQ

∣∣∣∣∣
t

= exp

{
1

2
σ2t+ σWt

}
.

Denoting the price of the quanto inverse call at t by Cq
t , its valuation under the new measure

is trivial since it is a plain vanilla option and follows the exact same steps as the risk-neutral

derivation of the Black-Scholes formula:

Cq
t =

Bt

BT

EQ
t

[
X̄

(
ST −K

ST

)+
]
= E

∼
Q
t

 d
∼
Q

dQ

∣∣∣∣∣
T

−1

X̄

ST

(ST −K)+


= e(σ

2−2r)τ X̄

St
EQ̃
t

[
(ST −K)+

]
= e(σ

2−2r)τ X̄

St

∫ ∞

−∞
(ST (z)−K)+ ϕ(z)dz, (4.13)

where ST (z) = St exp
{
1
2σ

2τ + σ
√
τz
}
, z is drawn from a standard normal distribution, and

ϕ(·) is the corresponding probability density function. Note that

(ST (z)−K)+ = 0 ⇔ z ≥
ln
(
St
K

)
+
(
r − 3

2σ
2
)
τ

σ
√
τ

= d3.

Thus, using Φ(·) to denote the standard normal distribution function we can calculate the

integral on the RHS of (4.13):∫ d3

−∞
(ST (z)−K)ϕ(z)dz = St

∫ d3

−∞
exp

{(
r − 3

2
σ2

)
τ + σ

√
τz

}
ϕ(z)dz −KΦ(d3).

Evaluating the integral yields the GBM price of the inverse call with strike K$ as:

Cq
t = e−rτ X̄

[
Φ(d2)− e(σ

2−r)τYtKΦ(d3)
]
, (4.14)
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where d2 = d3 + σ
√
τ is the same as we see in the Black-Scholes FX pricing formula, i.e.

d2 = d$
2 under the assumption rB = 0. A similar argument yields the time t GBM price of a

quanto inverse put with strike K USD and maturity T as:

P q
t = e−rτ X̄

[
e(σ

2−r)τYtKΦ(−d3)− Φ(−d2)
]
. (4.15)

The two likelihood functions dQB

dQ$ and d
∼
Q

dQ , albeit very similar, result in different pricing

and hedging properties for the two functions, driven by the difference in denomination be-

tween these two contracts. In the quanto inverse option case it is possible, and indeed more

convenient, to start from the risk-neutral dynamics of the underlying because the payoff is

denominated in USD. One may define the equivalent martingale measure for the quanto in-

verse of the underlying denominated in USD, and price the option accordingly. However,

this approach is inappropriate for an inverse option when the payoff is denominated in BTC.

Due to Siegel’s exchange paradox, denomination conversion from USD to BTC should be

performed first under P. Then a risk-neutral measure in BTC can be established which is

symmetrical to the risk-neutral measure in USD. This would be the appropriate measure for

pricing derivatives denominated in BTC.

4.5.3 Properties

Figure 4.5 compares the USD-denominated inverse BS prices and payoffs (above) with the

prices and payoffs for quanto inverse options (below). These are displayed above as a function

of ST , and we display prices for different maturities ranging from ten days to a year. As

before, prices and strikes are denominated in USD and we deliberately omit the superscripts.

The panels on the left show calls (blue) and on the right we have the puts (red). The inverse

option payoffs have the familiar convex structure of the BS pricing function, with an increasing

gamma and a positive vega, and the price approaches the payoff as the option approaches

expiry. The longer the maturity, the more valuable the options, i.e. the theta is positive.

The quanto inverse option pricing functions depicted in the lower panels of Figure 4.5

behave very differently. The payoff to a quanto inverse call is capped above at X̄. Deep

ITM quanto inverse calls decrease in value as the time to maturity increases, where they are

valued below their intrinsic values. Indeed, very deep ITM quanto inverse call prices could be

much lower than one would think by simply looking at ATM option prices.13 Furthermore,

the convexity of the quanto inverse call pricing function changes as the underlying price

increases: it starts as a convex function but then changes into a concave function as the

option moneyness increases. Therefore the delta of a quanto inverse call is not a monotonic

increasing function with respect to the underlying price, as it is for vanilla options. There

13The area around ATM and slightly ITM quanto inverse calls is extremely sensitive. At maturity, if the
underlying price is 10% higher than the strike, the payoff would be roughly $2050; if the underlying price is
twice the strike the payoff will be $11,250; and if the underlying price was 10 times the strike, the payoff would
be $20,250.
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Figure 4.5: Inverse and Quanto Inverse Option Prices under GBM

Option payoffs and prices obtained using the Black-Scholes formula for the inverse options and our formula
(4.13) for the quanto inverse options. Prices are represented as a function of the underlying price with a thicker
line as the option approaches expiry. Time to maturities of 10 days, 3 months, 6 months and 1 year are shown.
In these plots the first column displays calls in blue and the second displays puts in red; the upper row shows
the inverse option prices and payoffs, and the lower shows the quanto inverse option prices and payoffs. All four
plots are calculated using the same K = $25, 000, r = 0% and σ = 75% for all maturities but with different
USD-denominated contingent claims (4.3) and (4.11), respectively. For the quantos we set X̄ = $22, 500.

exists a global maximum at which gamma changes from being positive to being negative.

For deep OTM and ATM options, the term structure of quanto inverse calls resembles that

of inverse calls but for deep ITM options this pivots. Counter-intuitively, the price of a

short-term deep ITM option exceeds the prices of their long-term counterparts, indicating a

negative theta for these moneyness levels. The payoff to the quanto inverse put in Figure 4.5

is uncapped with the put price tending towards ∞ as the underlying price falls, whereas the

payoff to a non-quanto inverse put converges to K. For all moneyness and maturities, the

put pricing curves are convex decreasing with the strongest price sensitivity for ATM options.

Unlike the inverse put delta, the quanto inverse put delta decreases monotonically with the

underlying price, but it has no lower bound. The theta for a quanto inverse put is positive,
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like its inverse option counterpart, i.e. the longer the time to maturity, the more valuable the

option. It is interesting that the roles of calls and puts are now reversed, in that an inverse call

and a quanto inverse put can – theoretically – pay an infinite amount to the holder, whereas

the inverse put and quanto inverse call are capped at K and X̄, respectively.

Now we investigate the quanto inverse option price dependence on the prefixed conversion

factor X̄. Figure 4.6 compares the maturity payoffs to inverse and quanto inverse options

for two different values of X̄. Suppose an agent who is optimistic, but not euphoric, about

future returns enters a long position in a quanto inverse call. He has the greatest interest in

negotiating a quanto factor as high as possible because this increases the slope of the terminal

payoff. For instance, the bottom left graph in Figure 4.6 illustrates how the quanto inverse call

payoff can exceed that of the inverse call when X̄ is high. The advantage of this long position

depends on the underlying having a maturity value between K and X̄: if the underlying ends

below the strike at maturity the option expires worthless; and above X̄ the agent would profit

more by entering a direct (or standard) option. Market makers could earn a premium by

offering these two alternatives to traders seeking to profit from high future volatility. Now

consider the inverse vs quanto inverse put, on the right in Figure 4.6. Here it is the writer not

the buyer of the option who can use quanto inverses to their advantage. Assuming the quanto

inverse put ends up ITM with X̄ << K (top right plot), then the sell side would reduce

their losses up to X̄ but exponentially increase them afterwards. The premium on the quanto

inverse options could be relatively low to write a call, but would need to be exceptionally high

to write a put because, in theory, there is a non-zero probability of the asset price reaching

zero resulting in an infinite loss for the writer of quanto inverse puts. Particularly for bitcoin

this might be an attractive feature. Given the high average ATM prices seen in Table 3.2,

retail investors might prefer a quanto inverse option in contrast to the plain vanilla inverse.

Figure 4.7 illustrates inverse and quanto inverse call prices as functions of the underlying,

for a given fixed strike and interest rate, and for different levels of market volatility σ, and

time to maturity. Inverse option prices display the familiar pattern of increasing with either

time to maturity or volatility. But quanto inverse call prices can be decreasing with volatility

(negative vega) as well as maturity (negative theta) as previously discussed. For instance,

with a fixed volatility at 200%, the fair price of a 10-day quanto inverse option with an ITM

strike level at K = $30, 000 is $4123, but this decreases as maturity increases to 90 days

($4080) and to 180 days ($3490). But the OTM option with strike K = $20, 000 is strictly

increasing with maturity. The 90-day OTM quanto inverse option has positive vega whereas

the ITM option has a vega which changes sign from positive to negative as the option moves

deep ITM; the price increases from $4020 (σ = 50%) to $4270 (σ = 100%) and decreases

afterwards to $4080 (σ = 200%). The difference between ITM inverse and quanto inverse

option prices is more pronounced than for OTM options, and it also increases with maturity

and volatility. Especially for long-term options and/or during periods of high volatility, a

quanto inverse call provides a very affordable alternative to a standard inverse call.
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Figure 4.6: Payoff Sensitivity with Respect to X̄
B/$

Payoff comparison of inverse and quanto inverse call (left column) and put (right column) with different
predetermined exchange factor X̄. The underlying at maturity ranges between $10, 000 and $40, 000 with a
strike price at K = $25,000. We distinguish between inverse (black) and quanto inverse (red) options and
compare different X̄ between each column, i.e. X̄ = $15, 000 (upper row) and X̄ = $35, 000 (lower row).

4.6 Payoff Summary

Table 4.1 summarizes the payoffs to different types of calls and puts with and without currency

protection. As before, we use $, B and E to denote payoffs in USD, bitcoin and ether, e.g.

B1 is one bitcoin or $10 is ten dollars. Note that option strikes and underlyings are always

quoted in USD. The upper panel considers standard and inverse options on the exchange rate

BTCUSD with strike K$ = $25, 000 and we report the payoffs for different settlement prices.

The quanto versions suppose a pre-fixed exchange rate of X̄
$/B

= $22, 500. The lower panel

is for options on the ETHUSD trading pair, where ETH is regarded as a security and as

such could be replaced by any other crypto asset, as discussed above. In the table we let the

option strike be K$ = $1, 750 and again consider different scenarios for the settlement price.

The lower part of Table 4.1 displays the paypoff to standard and inverse calls and puts on

the ETHUSD trading pair. Below this the standard quanto option payoff is for a BTC-based

trader in ETHUSD, seeking currency protection against a fall in the price of BTC relative to
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Figure 4.7: Volatility-Maturity Price Sensitivity

Comparison of call prices as a function of the underlying using the inverse pricing formula (blue) and the
quanto inverse pricing formula (red), given in USD. The figures depict different times to maturity (ranging
from ten days to six months) under different constant underlying volatilities σ (ranging from 50% to 200%).
We assume constant zero interest rate and fix both the underlying and X̄ at $25,000. We display only the 20%
area around the strike price.

the dollar. The fourth payoff is for a USD-based trader entering a quanto inverse option on

ETHUSD, seeking currency protection against a fall in the price of ETH relative to the US

dollar. Notice the use of notation ETHUSD means we assume ETH is security here – and

indeed could be replaced by any other crypto XYZ that is regarded as a security.

As already remarked, for every settlement price yielding a non-zero payoff, the standard

call has a greater payoff than the quanto inverse call, but the standard put has a much smaller

payoff than the quanto inverse put. This ordering holds for both BTCUSD and ETHUSD

options, as shown in the table. Furthermore, the table compares the payoffs to other types of

options. For instance, in the BTCUSD case (upper panel) the inverse and standard quanto

options are both denominated in BTC, and again the calls and puts have opposite ordering.

That is, the inverse call has a smaller payoff than the standard quanto but the inverse put

has a greater payoff than the standard quanto. Finally we note that Table 4.1 only considers

standard and inverse options because the direct options are similar to the standard ones,

except the USD payoff is in a stablecoin.
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Table 4.1: Payoffs to Standard and Inverse Options ± Currency Protection

We compare the payoffs to standard and inverse calls and puts with and without the currency protection
provided by a fixed quanto factor. The currency of each payoff is recorded and numbers are rounded. The
upper part is for options on BTCUSD, i.e. with S

$
= BTCUSD, with strike K

$
= $25, 000 and different

settlement prices from $10,000 to $50,000. The quanto factor for converting the standard option payoff from

USD to BTC is X̄
$/B

= $22, 500, and for converting the inverse option payoff from BTC to USD it is X̄
B/$

=
$22, 500−1 = B0.0000444. The lower part is for options on ETHUSD, i.e. where S

$
= ETHUSD, with strike

K
$
= $1, 750 and different settlement prices from $500 to $2500. The quanto factor for converting the standard

option payoff from USD to BTC is again X̄
$/B

= $22, 500, but now for converting the inverse option payoff

from ETH to USD we use X̄
E/$

= $2, 000−1 = E0.0005.

payoff Function S$
T

Call $10,000 $20,000 $30,000 $40,000 $50,000

Standard
(
S$

T
−K$

)+
$0 $0 $5,000 $15,000 $25,000

Inverse
(
S$

T
−K$

)+
/S$

T
B0 B0 B0.17 B0.38 B0.5

Standard Quanto X̄
$/B (

S$

T
−K$

)+
B0 B0 B0.22 B0.67 B1.11

Quanto Inverse X̄
B/$ (

S$

T
−K$

)+
/S$

T
$0 $0 $3,750 $8,438 $11,250

Put

Standard
(
K$ − S$

T

)+
$15,000 $5,000 $0 $0 $0

Inverse (K$ − S$

T
)
+
/S$

T
B1.5 B0.25 B0 B0 B0

Standard Quanto X̄
$/B (

K$ − S$

T

)+
B0.67 B0.22 B0 B0 B0

Quanto Inverse X̄
B/$ (

K$ − S$

T

)+
/S$

T
$33,750 $5,625 $0 $0 $0

payoff Function S$

T

Call $500 $1000 $1500 $2000 $2500

Standard
(
S$

T
−K$

)+
$0 $0 $0 $250 $750

Inverse
(
S$

T
−K$

)+
/S$

T
E0 E0 E0 E0.125 E0.3

Standard Quanto X̄
$/B (

S$

T
−K$

)+
B0 B0 B0 B0.01 B0.03

Quanto Inverse X̄
E/$ (

S$

T
−K$

)+
/S$

T
$0 $0 $0 $250 $600

Put

Standard
(
K$ − S$

T

)+
$1, 250 $750 $250 $0 $0

Inverse
(
K$ − S$

T

)+
/S$

T
E2.5 E0.75 E0.17 E0 E0

Standard Quanto X̄
$/B (

K$ − S$

T

)+
B0.06 B0.03 B0.01 B0 B0

Quanto Inverse X̄
E/$ (

K$ − S$

T

)+
/S$

T
$5, 000 $1, 500 $333 $0 $0
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4.7 Hedge Ratios

Table 4.2 presents the pricing formulae for inverse and quanto inverse options and their hedge

ratios, under the GBM assumption. As in section 4.3 we assume rB = 0 and set r$ = r for

brevity, this way we have the same interest rate for both inverse and quanto inverse options,

and for the sake if clarity we omit the superscript of the strike K. Hence, we omit the interest

rate sensitivity ρ. We provide the mathematical derivation of the Greeks in the Appendix A.

Table 4.2: Inverse and Quanto Inverse Option Prices and Greeks

We assume the tradable underlying price S follows a GBM with volatility σ, where the drift depends on the
USD discount rate r. Furthermore, we assume a zero BTC discount rate. The inverse or quanto inverse call
or put have strike K and for the sake if clarity we omit the pre-defined X̄ for the quanto inverse case. Note
that this need to be multiplied to the individual Greek. The residual time to maturity τ hold for all types
and we use the notation ω = ±1 according as the option is a call or a put. Suppressing all time subscripts for
simplicity we set d1 = ln

(
S
K

)
[σ
√
τ ]

−1
+ (r + 1

2
σ)

√
τ , d2 = d1 − σ

√
τ as well as d3 = d2 − σ

√
τ .

Name Inverse Quanto inverse

Price f ω[SΦ(ωd1)− e−rτKΦ(ωd2)] ωe−rτ [Φ(ωd2)− e(σ
2−r)τS−1KΦ(ωd3)]

Delta δ ∂f
∂S

ωΦ(ωd1) ωe(σ
2−2r)τ K

S2Φ(ωd3)

Gamma γ ∂2f
∂S2

ϕ(d1)

Sσ
√
τ

e(σ
2−2r)τ K

S3

[
ϕ(d3)

σ
√
τ

− ω2Φ(ωd3)
]

Vega ν ∂f
∂σ

Sϕ(d1)
√
τ e−rτ

[
ϕ(d2)

√
τ − ωe(σ

2−r)τστ 2K
S
Φ(ωd3)

]

Volga νo ∂2f
∂σ2

√
τϕ(d1)S

d1d2
σ

e−rτ√τϕ(d2)
d2d1
σ

− ω2
K

S
τe(σ

2−2r)τ×[
Φ(ωd3)(1 + 2σ2τ)− σϕ(d3)

(
−d1
σ

−
√
τ

)]
Vanna νa ∂2f

∂S∂σ
−ϕ(d1)

d2
σ

ωe(σ
2−2r)τ×

K

S2

[
2τσΦ(ωd3) + ωϕ(d3)

(
−d1
σ

−
√
τ

)]

Theta ϑ − ∂f
∂τ

ω[−re−rτKΦ(ωd2)]

− σSϕ(d1)

2
√
τ

− e−rτ

(
ϕ(d2)σ

2
√
τ

− ωrΦ(ωd2)

)
+ ωe(σ

2−2r)τ K

S
(σ2 − 2r)Φ(ωd3)

Figures 4.8 (4.10) and 4.9 (4.11) illustrate the delta, gamma, vega, theta, volga and vanna

of inverse and quanto inverse calls (puts) as a function of K for fixed S, σ and r and for

different τ . We set σ = 75% and we compare the inverse options hedge ratios in blue with the

corresponding ratios for the quanto inverse option in red, for options of different maturities.

First compare the deltas. The inverse call (put) delta has the usual shape of a monotonically

increasing (decreasing) normal distribution function. But the quanto inverse call delta is

not monotonic but has a maximum when the underlying price just exceeds the strike and

declines thereafter eventually becoming zero for deep ITM options. This is because the payoff

is capped at X̄, i.e. even for large price movements the change in the payoff is limited, as has



4.7. HEDGE RATIOS 74

already been discussed above when commenting on the shift from convexity to concavity in

the pricing function. Comparing the term structure in the two call deltas, short-term OTM

(ITM) inverse call deltas are smaller (larger) than their long-term counterparts. The quanto

inverse call deltas are similar but invert this relationship.

Very frequent rebalancing of a delta-hedged position can have an adverse impact on the

volatility of the underlying, especially for short-dated ITM standard calls or puts where the

delta is close to ±1 (Golez and Jackwerth, 2012; Ni et al., 2021). Now, the delta is so much

greater on ITM direct (or standard) calls than it is for quanto inverse calls of the same

moneyness, it even approaches zero for very deep ITM quanto inverse calls. Therefore the

unwanted volatility impact of frequent rebalancing on a delta-hedged position will be very

much less for quanto inverse calls. By contrast with deep ITM quanto inverse calls, a deep

ITM quanto inverse put delta can be very much greater than the delta of a direct (or standard)

put of the same moneyness, so the adverse volatility impact of rapid delta-hedge rebalancing

referred to above would be exacerbated. And a delta-hedge of a short position on such an

option could require buying more of the underlying than the option’s notional. However,

if this buying pressure causes the underlying price to rise the put would becomes less ITM

and its delta would then decline. Finally, we note that long-term quanto inverse put deltas

are generally lower than their short-term counterparts, irrespective of moneyness, except for

short- and mid-term near-ATM options.

The inverse call gamma and vega are both positive, following the standard normal density

and are identical for call and puts. But this is not the case for quanto inverse options because

the non-monotonicity in the quanto inverse call delta influences the shape of its gamma.

Specifically, quanto inverse call gammas have a similar shape to inverse call gamma at high

strikes but the gamma becomes negative at lower strikes, before eventually converging to

zero as the strike tends to zero. This is due to the change from a convex to concave pricing

curve. Both inverse and quanto inverse put deltas are monotonic, but the quanto inverse

deltas decrease faster as a function of strike, so for strikes above ATM the quanto inverse

gamma is the greater of the two. Just as the standard option gamma decreases as time to

expiry increases, the quanto inverse call gamma gradually decreases with maturity, without

a lower boundary. The consequences become severe for hedging, as to be delta-neutral the

issuer would need to buy more and more units of the underlying, eventually exceeding the

notional of the option. We have already discussed the negative theta for inverse and quanto

inverse options. Figures 4.9 and 4.11 show that the only inverse options with a positive theta

are in fact low strike quanto inverse calls. Another notable feature from these figures is that

the volga for longer-maturity quanto inverse puts can very large and positive, and that the

vanna can take either sign. For inverse calls and puts it is negative for low-strike options

and positive for high-strike options. For low-strike quanto inverse calls and puts the vanna is

negative but for high-strike calls it is positive and for most high-strike puts it is negative.



4.7. HEDGE RATIOS 75

Figure 4.8: Inverse and Quanto Inverse Call Greeks I

Inverse and quanto inverse Greeks for calls as a function of the strike level K with fixed underlying St and
X̄ = St = $25, 000, volatility σ = 75% and different times to maturity: from 10 days (bold), 30 days (dashed)
and 90 days (dotted). The left, blue column represents the inverse Greeks, while the right, red column shows
the quanto inverse Greeks, using the same vertical scale for ease of comparison.
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Figure 4.9: Inverse and Quanto Inverse Call Greeks II

Inverse and quanto inverse Greeks for calls as a function of the strikeK with fixed underlying and predetermined
conversion factor St = X̄ = $25, 000, volatility σ = 75% and different times to maturity: from 10 days (bold),
30 days (dashed) and 90 days (dotted). The left, blue column represents the inverse Greeks, while the right,
red column displays the quanto inverse Greeks, using the same vertical scale for ease of comparison.
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Figure 4.10: Inverse and Quanto Inverse Put Greeks I

Inverse and quanto inverse Greeks for puts as a function of the strikeK with fixed underlying and predetermined
conversion factor St = X̄ = $25, 000, volatility σ = 75% and different times to maturity: from 10 days (bold),
30 days (dashed) and 90 days (dotted). The left, blue column represents the inverse Greeks, while the right,
red column displays the quanto inverse Greeks, using the same vertical scale for ease of comparison.
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Figure 4.11: Inverse and Quanto Inverse Put Greeks II

Inverse and quanto inverse Greeks for puts as a function of the strikeK with fixed underlying and predetermined
conversion factor St = X̄ = $25, 000, volatility σ = 75% and different times to maturity: from 10 days (bold),
30 days (dashed) and 90 days (dotted). The left, blue column represents the inverse Greeks, while the right,
red column displays the quanto inverse Greeks, using the same vertical scale for ease of comparison.
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4.8 Concluding Remarks

Understanding the different products in the bitcoin option market is fundamental for any

participants, not only for trading and hedging, but also concerning the exact payoff of their

positions. In this chapter, we highlight the key differences between standard (or direct)

and inverse options. While standard or direct options have a plain vanilla payoff and hence

should can be prices using standard (stochastic volatility) option pricing models, we show

that inverse options, which account for over 85% of trading on crypto options, have the same

payoff structure as a standard FX option, and should therefore be priced in accordance to

(Garman and Kohlhagen, 1983). Furthermore, we emphasise the mathematical models to

price and hedge these, even if one side of the trading pair is regarded as a security.

Nevertheless, the Deribit options market, which virtually monopolises the trading on in-

verse options is theoretically incomplete. We indicate that accounting for this incompleteness

requires a preference-based approach, under which the option price would depend on the

trader’s utility and risk tolerance. All Deribit options, and those on other unregulated ex-

changes are accounted in bitcoin, ether or a stablecoin, and only these currencies can be used

for deposits and withdrawals. But it takes time for USD-based traders to convert between

USD and these crypto, perhaps using a US-based exchange like Coinbase or Kraken. This

friction induces non-zero liquidity premium on the prices of Deribit inverse options or any

other crypto/stablecoin-denominated option, as investors are forces to transfer funds between

exchanges and pay transaction costs.

In an attempt to mitigate these risks, we explain how quanto direct options can offer all

traders protection against decoupling of a stablecoin from its 1:1 USD peg. Another use case

for quanto crypto options is to provide exposure to another crypto without traders needing to

change their base currency. As a natural extension, quanto inverse options pose a new type

of exotic option which allow USD-denominated traders to gain exposure to the expanding

crypto market without taking any crypto on the balance sheet. For instance, a trader could

fix a BTCUSD quanto factor, so that any options that are settled in BTC have all profit and

loss automatically converted to USD. The concave (call) and convex (put) payoff structure

of quanto inverse options possess features that are attractive to both buyers and sellers. The

uncapped USD put payoff is a perfect insurance against crypto price crashes. Motivated by

the discussion and ATM prices of Section 3.2, we emphasise that the capped USD payoff for

a quanto inverse call results in prices that are lower than standard (or direct) calls of the

same moneyness and maturity, depending on the conversion factor and thus attractive for

retail trader. Market maker can collect a premium by offering these production in addition

to standard/direct or inverse options across exchanges.



CHAPTER 5

DELTA HEDGING BITCOIN OPTION

Motivation: Delta-hedging an options portfolio is a fundamental strategy that

every options trader must employ to effectively manage their risk exposure. The

Black-Scholes model, which is widely considered a benchmark for delta-hedging

analyses, has been challenged as various empirical studies in financial literature

have questioned its assumptions. Constant volatility in both traditional and crypto

markets is not given, with implications on the delta-hedging position. Traders

need to consider the correlation between the underlying and implied volatility

to hedge effectively. Furthermore, exchanges that operate continuously, without

closing, present opportunities to hedge positions continuously, thereby minimising

the hedging error.

Summary: We conduct a comprehensive delta-hedging study for options with

maturities up to one month and strike levels 30% above and below the underly-

ing asset, using the Black-Scholes delta as a benchmark. Our analysis considers

both fixed-maturity and perpetual futures as respective hedging instruments. The

model-free deltas considered are smile-adjusted, smile-implied, and are meant to

minimise the instantaneous variance of a delta-hedged portfolio. Given the 24/7

operational hours of the bitcoin options markets, our research does not restrict

itself to daily rebalancing but instead adjusts positions every eight hours. While

we are unable to identify a single model that outperforms the BS delta across

all strike levels based on the variance of hedging errors, our findings do indicate

promising results for ATM and deep OTM tails.

80
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5.1 Delta Hedge

The assumption that implied volatility serves as an unbiased estimate of future realised volatil-

ity is inaccurate. In fact, the fair valuation of implied volatility should be slightly above the

expected realised volatility, primarily due to the associated hedging costs. Hence, the practice

of selling options and delta-hedging the position has become a popular trading strategy for

equities and other asset classes to generate additional yield.1 Nevertheless, this does not apply

for cryptocurrency markets. Short position in equity volatility is similar to a long position

the underlying equity, mainly due to the leverage effect.2 We will demonstrate in this chapter

that the correlation between the bitcoin price and its implied volatility is subject to frequent

fluctuations and prolonged periods of positive correlation, making this form of yield farming

untenable. Hence, understanding bitcoin’s delta-hedging behaviour is of utmost importance.

Another key distinction between crypto and equity delta-hedging lies in the derivatives

exchange structure. The Black and Scholes (1973) framework assumes, among other criteria,

constant volatility and allows the delta position to be hedged continuously. However, these

assumptions are not present in traditional markets because (i) volatility is not constant; and

(ii), markets close overnight, weekends and bank holidays. Consequently, the payout of a

delta-hedged option in traditional markets is the sum of the variance attributable to hedging

with unknown volatility and the variance resulting from discrete delta-hedging. In certain

aspects, cryptocurrency derivatives markets exhibit a more advanced state compared to their

conventional counterparts. The majority of cryptocurrency exchanges facilitate trading on a

continuous basis, 24 hours a day, 365 days a year, thereby permitting, at least theoretically,

the continuous delta-hedging of a position. This increased frequency of hedging, even beyond

standard trading hours, might minimise hedging errors. More significantly, it avoids potential

price jumps between closing and opening times, as these are non-existent for crypto.

The assumption of constant volatility, and consequently zero correlation between the un-

derlying price and its volatility has far-reaching impact on the hedging itself. While the

benchmark for any study of dynamic delta-hedging is the Black and Scholes (1973) model,

is well known that equity index options have a large and negative spot-volatility correlation

which leads to a pronounced skew in the implied volatility curve. The sticky (local volatility)

models, first introduced by Derman (1999), have become the industry standard of implied

volatility-adjusted delta-hedging and we shall discuss them in greater detail in the next sec-

tion. Following the basic idea from Bates (2005), and the more general results of Alexander

1The term ‘delta’ describes the sensitivity exhibited by an option with respect to changes in the underlying.
The process of neutralising this exposure is referred to as ’delta-hedging’. This strategy consists of a long
(short) position in the option and an opposing position in the underlying with size delta. Typically, the
hedging is done with forwards of identical maturity as the option. However, cryptocurrency markets offer a
suitable alternative in form of non-expiring perpetual swaps. This approach results in a convex payoff, thereby
representing the most rudimentary form of volatility trading. Traders can capitalise on the discrepancies in
implied volatility by continuously re-hedging their position, i.e. adjust size of the underlying position based
on the changed of delta.

2The leverage effect here refers to the negative relationship between underlying return and implied volatility
– see for example Bouchaud et al. (2001).
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and Nogueira (2007a), it is possible to use the slope of the implied volatility curve to imply

an adjustment to the BS delta which is model-free, in the sense that it is the same for any

scale-invariant model. Indeed, Alexander and Nogueira (2007b) show that every stochastic

and/or local volatility equity option pricing model for a tradable instrument falls into the

scale-invariant class, as discussed already in Chapter 2. Consequently, the additional infor-

mation gained from using any SV model become virtually negligible and differences arise only

due to calibration error.

It is standard practice for equity option market makers to hedge their exposures using

simple model-free adjustments to the BS delta, because these are regarded as so-called ‘robust

finance’, i.e. the hedge ratios are model independent. The smile-implied and other smile-

adjusted adjusted delta-hedges are particularly popular with practitioners, as evidenced by

numerous articles and forums.3 There are several previous empirical studies of smile-implied

and/or smile-adjusted delta-hedging, but all of them study equity index options. Not all

of the results are consistent, as seen in Chapter 2. Much less is known about the success

of smile-adjusted delta-hedges for other types of options. The purpose of this chapter is to

examine the performance of various smile-implied and other smile-adjusted delta-hedges when

applied to bitcoin options. A great practical advantage of our study is that all deltas are very

easy to compute. There is no requirement for model calibrations because all information is

derived from the volatility smile in a straightforward and robust, model-free manner. We

present results for delta-hedging using various adjustments of the BS delta which depend on

the current regime of the market, the shape of the IV smile, and/or the spot-vol correlation.

Our focus is on short-term options with expiry ranging from ten to 30 days, which account

for roughly 80% of all trading volume on bitcoin options as discussed in Chapter 3. Moreover,

we need a proper smile to apply a smile-adjustment to the BS delta, and the range of liquid

strikes for these short-term options is considerable. In fact, the moneyness of the options used

in our empirical analysis ranges from 0.7 to 1.3. We only study dynamic delta-hedging with

regular rebalancing, every eight hours at funding payment times or once per day at 00:00

UTC. This choice of experimental design is based on the bitcoin option market characteristics

which are novel as explained in Chapter 1. The transaction costs for futures are very much

smaller than they are for options. For instance, the spread on a futures contract ranges

from approximately one to five basis points, depending on the expiry, but the spread on

the short-term at-the-money options that would normally be used for gamma hedging are

typically about 200 to 300 basis point. So gamma hedging is very much more expensive than

regular dynamic delta-hedging. The transaction costs from rebalancing a gamma hedge could

erode any profits made from reducing the hedging error, whereas the transaction costs from

rebalancing a delta-hedge are tiny, especially when the perpetual contract is used as hedging

instrument.

3See for instance, this recent CAIA article, another one on medium, and several quantitative finance forums
such as risklatte and stackexchange.

https://caia.org/blog/2021/01/21/strategic-note-improved-smile-implied-hedging
https://volquant.medium.com/volatility-smile-and-delta-hedging-part-2-down-the-rabbit-hole-of-smile-risk-hedging-7867e955bb3b
https://www.risklatte.xyz/Articles/QuantitativeFinance/QF127.php
https://quant.stackexchange.com/questions/47196/how-does-the-volatility-skew-smile-relate-to-hedging-trading-vanilla-contracts
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5.2 Bitcoin Implied Volatility

The dynamic relationship between bitcoin’s price and its implied volatility offers an intriguing

point of investigation. The upper plot of Figure 5.1 illustrates the daily bitcoin implied

volatility for ATM options with constant 30-day maturity, in red, interpolated from market

data in an arbitrage-free way and the underlying bitcoin spot price in black from January 2020

to January 2023. At first glance, the implied volatility resembles other asst classes’ implied

volatilities with sudden upward jumps, followed by mean-reverting corrections. For instance,

the red graph illustrates a sharp increase in implied volatility following abrupt price shocks,

which can be attributed to diverse causes such as the COVID-19 pandemic or events related to

digital platforms like and FTX. Implied volatility on such occasions has been observed to reach

peaks of up to 170%, but subsequently, adjusting itself in a mean-reverting manner towards an

average level approximating 75%. During calm, range-bounded periods like the last quarter of

2022, the implied volatility tends to decrease further, reaching lowest levels of just below 50%.

Interestingly, we find an extensive period around January 2021 where the implied volatility

is slowly building up, rather than explosively jumping. Additionally, the correlation between

spot and volatility for bitcoin exhibits greater complexity than what is typically observed for

equity indices or commodities. A pertinent example is the quarter leading up to January

2021, during which implied volatility appears to increase concurrently with an increase in the

underlying value. Additionally, we find an interesting relationship between these variables in

the period spanning August 2021 to May 2022, where there appears to be very low correlation.

For a deeper analysis of the spot-volatility relationship, the lower graph of Figure 5.1,

presents the correlation between bitcoin price returns and 30-day constant maturity ATM

implied volatility returns, depicted daily between January 2020 and January 2023. We find

frequent changes, not only in size but also in the sign if the correlation. This oscillation,

particularly its (frequent) shifts towards the positive territory, is somewhat atypical when

compared with traditional markets, where the spot-volatility correlation is negative. Notably,

in the period preceding the COVID-19 crash of March 2020, we observe a positive correlation

that approaches 0.6. This correlation then pivots into the negative domain, falling to ap-

proximately -0.7 following the crash, before subsequently stabilising and fluctuating around

zero over the next six months. While equity trader might hedge a long position on S&P 500

volatility by a short position in the index, this position might work adversely for crypto and

point towards the same direction. Overall, we identify periods of high positive correlation

(August and November 2020; September 2021; November 2022), high negative, as well as

intervals of low correlation, ranging up to ±0.25 (June 2020; October 2021). This lends cred-

ibility to the hypothesis that the correlation between bitcoin returns and implied volatility is

regime-dependent, with implications on not only the hedging of ATM, but also OTM options.
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Figure 5.1: Bitcoin Spot, ATM Implied Volatility and its Correlation

Daily implied volatility of ATM bitcoin options with 30-day constant maturity (red; upper plot) in percentage
points and the underlying bitcoin price in USD (black; upper plot). The sample covers the three-year period
from January 2020 to January 2023. We display the forward looking 30-day correlation of daily implied
volatility returns with bitcoin returns (blue; lower graph) over the same period on the same frequency.
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Figure 5.2 illustrates the dynamics of the implied volatility curve derived from Deribit

options, charting its structure daily over a three year period.4 Given the high liquidity for

OTM options, we consider OTM puts for the moneyness 0.8 to 1, and OTM calls 1 to 1.2.

The depicted data is interpolated in an arbitrage-free way at a fixed-maturity of 30-days

throughout. The shape of the curve varies considerably over time. During the period around

the ‘Black Thursday’ event in March 2020, when the bitcoin price fell over 30% in a few hours,

the implied volatility curve was almost flat at the highest level recorded, i.e. around 170%.

Typically, market makers add a high premium to options after sudden crashes due to the

high uncertainty and panic in the market. Shortly after, the implied volatility developed the

negative skew shape which is typical of equity index options, where OTM puts have much

higher volatility than OTM calls. However, bitcoin options have very much higher implied

volatilities than equity index options, in general.

During much of the sample period the implied volatility curve resembles a hockey stick,

which at particularly tranquil times flattens into a slight symmetric smile. There are also

instances of a positive skew, e.g. January 2021, where OTM calls have much higher volatility

than OTM puts. The features exhibited are not commonly observed in equity index options

markets, where the name ‘skew’ rather than ‘smile’ almost always applies. Throughout most

of the sample, OTM puts with moneyness 0.8 have the highest implied volatility. In traditional

(equity) markets, these deep OTM puts are an attractive means of insurance against falling

prices. For instance, in the S&P 500 the pronounced and almost linear skew shape of the

implied volatility curve means that the option prices that increase most following a fall in

the underlying are those with lowest moneyness. By contrast, the bitcoin implied volatility

curve was relatively symmetric prior to the crash on 12 March 2020. The lowest volatility of

about 50% was for ATM options and both OTM puts and calls had roughly equal but higher

volatilities, at around 75% for moneyness 0.8 and 1.2. However, a clear asymmetry in the

smile emerges after price crashes, e.g. May 2021 or November 2022, with OTM puts drawing a

higher premium from risk-averse investors seeking insurance against another significant price

drop. Throughout 2022, there was a pronounced negative skew in bitcoin, but this shape is still

much flatter than the skew one normally observes for equity index options. This asymmetry

persisted but gradually diminished as the level of implied volatility dropped and the shape of

the implied volatility curve once more began to resemble a smile as seen in December 2022.

The ATM implied volatility appears to be the lowest point of the smile with a negative

skew during most of our sample data but, unlike equity index options, there are periods of

high volatility, when the smile has a (strongly) pronounced positive skew. For instance, the

slope of the smile increased during bitcoin’s rally in June 2021, exhibiting a positive skew for

several months. And whereas the equity index spot-volatility correlation is almost always large

4Implied volatility smiles emerge due to a variety of different factors. For example, put options are can be
seen insurance, higher priced for sharp market falls, while call options serve as speculative tools. Divergent risk
perceptions among market participants, skewed returns distributions, and the volatility-of-volatility contribute
to these smiles further. Ultimately, supply and demand dynamics play a pivotal role.
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and negative, the correlation between bitcoin and its implied volatility appears to be regime-

dependent, as seen in Figure 5.1. However, it is important to note that other asset classes like

FX, commodities or some single stocks present changing spot-vol correlation and alternating

implied skews, see for example Carr and Wu (2007). Nevertheless, some features are not

unlike those of equity index option implied volatilities: (i) volatilities at different moneyness

move along with ATM volatility of the same maturity in a highly correlated fashion; and

(ii), bitcoin’s implied volatility term structure exhibits regular swings between high-volatility

periods of backwardation and relatively calm periods of contango.5

Figure 5.2: Bitcoin Implied Volatility Curves and Term Structure

Implied volatility curves for bitcoin options with 30-day constant maturity, daily between 1 January 2020 and
30 June 2022, derived from OTM and ATM options. Implied volatilities are interpolated in an arbitrage-free
way. Strike levels range from 20% below to 20% above the current value of the underlying BTC index.

Figure 5.3 depicts the bitcoin ATM implied volatility term structure over the same period

and frequency for 10, 20, 30, 60, 90 and 120 days constant maturity. It shows that, similar

to equity index volatility term structures, bitcoin implied volatilities move along closely with

little dispersion during most of the backwardation periods. In fact, throughout our three-

year sample, we find only two occasions (July 2020, December 2022) in which the difference

5Eross et al. (2019) use 5-minute bitcoin spot data and find trading patterns which indicate a rise in volume
during the day, but decline starting around 4 pm UTC and continuing until midnight. The authors conclude
that this trend aligns with the typical intraday fluctuations seen in the FX markets. The bitcoin realised
volatility remains relatively stable throughout the day but peaks around the opening hours of the world’s three
key stock markets, i.e. US, Europe and Asia. Finally, they find that bitcoin markets generally experience
lower liquidity in the early morning hours. Wang et al. (2020) find similar results. The authors conclude that
bitcoin spot market exhibit higher trading volume and volatility during European and US daytime hours. Shen
et al. (2022) analyse the bitcoin intraday momentum and find significantly opportunities to predict intraday
movements both in- and out-of-sample. Furthermore, the authors conclude that intraday momentum-based
trading yields substantial economic gains and that that intraday momentum is appears stringer on high trading,
high volatility days.
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between short- and ultra long-term implied volatility is greater than 15%. On the other

hand, during contango periods (March 2020, January 2021 or November 2022), the difference

between long- and short-maturities can reach up to 85%, although these occasion appear to

happen rather rarely and we see an immediate correction.

Figure 5.3: Bitcoin Implied Volatility Term Structure

Implied volatility term structure for bitcoin options with 10, 20, 30, 60, 90 and 120 days constant maturity,
daily between 1 January 2020 and 1 January 2023, interpolated to constant from at-the-money strike levels in
an arbitrage-free way.

We conclude this section by using the characteristics of bitcoin options that we have

highlighted above to motivate the rest of this chapter. A long bitcoin holder might buy one

out-of-the-money put for insurance against a large price fall and consider the spot position

suitably hedged. But market makers and other professional traders actively engage in dynamic

delta-hedging because, as liquidity providers, it is essential for them to hedge the risk of writing

options. They could do this using the BS delta, but in view of the popularity among equity

option traders of smile-adjusted deltas it is interesting to study the effectiveness of such deltas

for bitcoin options. We have reviewed a literature which debates the effectiveness of smile-

adjusted deltas for hedging equity index options which reports many circumstances when

the BS delta works just as well as any smile-adjusted one. However, no previous study has

examined this question for bitcoin options, and it is clear – from the very different behaviour

of the bitcoin implied volatility curve that we have just discussed as well as the array of new

hedging instruments that are available for bitcoin – that one cannot simply extrapolate what

is known about options on equity index options to reach a conclusion about hedging bitcoin

options. Therefore, the goal of this study is to introduce and compare the various smile-

adjusted deltas that are commonly used by practitioners to analyse their effectiveness for

minimising the standard deviation of the hedging error for bitcoin options, based on different
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choices of hedging instrument. In fact, the study could be extended even further, to the

level of the exchange where the option is traded and/or hedged. For instance, is it better

to use Binance or Deribit futures or perpetuals to hedge the options listed on the Deribit

exchange? But we do not discuss this level of detail of the bitcoin option hedging problem in

this study. At least currently, the Deribit options marketplace represents over 90% of trading

volume on all bitcoin options at the time of writing, and personal correspondence with the

Deribit option market makers indicates that they only use the Deribit futures platform for

their delta-hedging activities.

5.3 Methodology

In our experimental design we write a standard European option on a Deribit bitcoin index

futures worth one bitcoin and delta-hedge the position by entering a long position in a certain

amount of a futures contract. The T -maturity futures allow traders to enter an agreement to

buy or sell a certain amount of bitcoin at a future time T at a bitcoin-USD exchange rate

agreed now. The underlying of both futures and options is the Deribit bitcoin index, BTC

which is an aggregate non-tradable index. However, we could also hedge a T -maturity option

with a position on the perpetual contract, instead of the T -maturity futures contract. We can

suppress the running time t in our notation without confusion, and we denote the time t price

of an inverse option with strike K and maturity T as f(K,T | F, σ), where F is either the

perpetual price or the T -maturity futures price, at time t, and σ := σt(K,T |F ) denotes the

option’s implied volatility also at time t.6 By incorporating the relationship between volatility

and the underlying in our hedging framework, we aim to achieve a more accurate delta than

the BS delta, δBS using a smile-adjusted delta δadj which is based on the chain rule:

δadj (K,T |F, σ) = ∂f

∂F
+

∂f

∂σ

∂σ

∂F
= δBS (K,T |F, σ) + νBS (K,T |F, σ) σF (K,T |F, σ) ,

where δBS is the standard BS delta, νBS is the volatility-sensitivity of the BS option price

(vega) and σF = ∂σ
∂F is the volatility-price sensitivity, i.e. the change in implied volatility for

changes in the underlying. While the BS delta and vega have a closed-form formula and are

easy to calculate, σF is rather difficult to quantify and several different approaches exist.

The first adjustments to the BS delta that we discuss have their roots in different parame-

terisations of local volatility depending on the current state of the market, or ‘market regime’.

Starting with classic papers by Dupire (1994) and Derman et al. (1996) the concept of local

volatility has been developed in a broad-ranging academic literature. Of particular interest

here are the ‘sticky models’, advocated by Derman (1999) for hedging equity index options,

in the context of applying different parameterisations for the local volatility at the nodes in

the binomial tree that models the underlying price evolution. Derman et al. (1996) proposed

6Note that we are transition form a C (call) and P (put) notation as used in Chapter 3. We are following
standard literature convention.
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an approximation to σF as the slope of the implied volatility with respect to the strike:7

σF (K,T |F ) ≈ k σK (K,T |F ) , (5.1)

where σK = ∂σ
∂K is the derivative of the volatility with respect to the strike level and k should

depend on the prevailing market regime. In fact, Derman (1999) introduced three different

‘sticky models’ to represent the behaviour of local volatility in different market regimes. The

sticky strike model describes a trending market situation where he assumes the volatility to

be independent of future price movements of the underlying and, as with the BS assumptions,

it is constant and the same for every option. The delta in this regime is just equal to the BS

delta. The sticky moneyness (also sometimes called the sticky delta) model considers a range-

bounded market. During this regime an option’s volatility depends only on its moneyness (or

equivalently delta). So the local volatility is again the same at every node in the tree, but

each option has a different tree, with a different local volatility, depending on the option’s

moneyness. As the underlying price moves, so the option’s moneyness changes, we must

move to a different tree to price the option.8 Finally, the sticky tree model captures the

local volatility behaviour in a rapidly falling market, i.e. it describes the smile adjustment

when there is a strong negative correlation between volatility and the underlying price. This

implied tree model gets its name from the local volatility model proposed by Derman and

Kani (1994). Again, the local volatility is a deterministic function, but it can be different

at each node in the tree, and the same tree is used to price all options. Under these three

different types of parameterisation for local volatility, the values for k in (5.1) would differ

according to the market regime, as follows:

k =


0 (SS)

1 (ST) .

−K/F (SM)

Both Crépey (2004) and Alexander et al. (2012) extend the approximation (5.1) to add state-

dependence to k. Also note that a little algebra, combining equations (1) and (2) of Alexander

et al. (2012) with equation (3) of Alexander and Nogueira (2007b) shows that the smile-

implied, scale-invariant delta of Bates (2005) is identical to the sticky-money approximation.

Considering that bitcoin is very volatile, the range of available strikes changes consider-

ably over time. Therefore, to provide the framework for examining options with identical

characteristics over a longer time horizon we therefore switch from a strike to a moneyness

metric. We now denote the implied volatility by θ(m,T |F ) = σ(mK,T |F ). Denoting the

partial derivatives of θ(m,T |F ) with respect to F and m as θF (m,T |F ) and θm(m,T |F )

7Such an approximation has also been advocated by Coleman et al. (2001) and many other authors since.
8In practice, implied volatility is usually floored around the lowest ATM level and capped close to all-time

highs of realised volatility, which leads to an range-bounded implied volatility over long time. The surface
in absolute dimensions needs to shift to keep the surface in relative dimensions. This idea is referring to the
sticky delta model.
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respectively, we can rewrite the adjusted delta as:

δadj (m,T |F ) = δBS (m,T |F ) + νBS (m,T |F ) θF (m,T |F ) ,

and also rewrite (5.1) in the moneyness metric as:

θF (m,T |F ) ≈ κ θm (m,T |F ) . (5.2)

We estimate the volatility-price sensitivity θF using the local volatility assumptions proposed

by Derman (1999) where the type of tree used to model the option price evolution varies

according to three possible market regimes: a stable-trending market (SS), a range-bounded

market (SM) and a crash-jump regime (ST). This way, translating the sticky deltas of Derman

(1999) into the moneyness metric, the values for κ in (5.2) should differ according to the market

regime as follows:

κ =


0 (SS)

1/F (ST) .

−m/F (SM)

As before, the model-free, smile-implied, scale-invariant delta of Bates (2005) and Alexander

and Nogueira (2007a) is identical to the sticky moneyness delta of Derman and Kani (1994).

Next we consider the minimum variance (MV) delta δmv, i.e. the delta that minimises the

instantaneous variance of a delta-hedged portfolio. Here we follow Bakshi et al. (1997) who

introduce an approximation which minimises local variance. Lee (2001) shows that this MV

hedge ratio has an adjustment of the same size as the (SM) smile-implied delta but with the

opposite sign, that is:

δmv (m,T |F ) = δBS (m,T |F ) +
m

F
νBS (K,T |F ) θm (m,T |F ) .

As explained in detail in Chapter 4 of Alexander (2008), and in other texts on implied volatil-

ity, the smile-implied delta produces a counter-intuitive ‘floating smile’ dynamic which also

implies that the SM adjustment produces a hedging performance that is significantly worse

than the BS delta when the volatility-price correlation is large and negative, i.e. when there

is a pronounced negative skew. Since the MV adjustment has the opposite sign to the SM

adjustment, the MV delta should out-perform the BS delta for hedging equity index options,

and indeed for any option where the implied volatility curve has a marked negative slope.

Our final smile-adjusted delta which we denote δhw was proposed by Hull and White

(2017). It is derived from an empirical estimate of a quadratic relationship between the

absolute value of the daily PnL ∆P of a BS delta-hedged portfolio with value P , and the BS

delta. That is:

y =
νBS

√
τ

∆F

F

(
a+ b δBS + c (δBS)2

)
+ ϵ.

where ∆F is the daily PnL of the futures. Having used historical data to obtain the parameter
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estimates (â, b̂, ĉ), the Hull and White (HW) delta is then calculated as follows:

δhw = δBS +
νBS

F
√
τ

(
â+ b̂ δBS + ĉ (δBS)2

)
where δBS and νBS denote the classic BS delta and vega. The current underlying price is

denoted as F , its change is denoted ∆F and τ is the option’s time to expiry. We estimate

(â, b̂, ĉ) through a least square regression over a rolling window adjustable size.

This section has covered a wide range of simple adjustments to the BS delta which which

have proven effectiveness in previous studies of hedging options on stock indices and in other

traditional asset classes. The question is now whether they can also out-perform a simple BS

delta-hedge in bitcoin options markets – which are less mature than most traditional options

markets, have more pronounced volatility and directional buying pressures, and where market

makers rebalance their inventories based on information from these pressures. We summarise

the BS-adjusted delta-hedge ratios considered in this study in a single formula as follows:

δadj =



δBS (SS/BS)

δBS + νBSθm
1
F (ST)

δBS − νBSθm
m
F (SM/SI) .

δBS + νBSθm
m
F (MV)

δBS + νBS 1
F
√
τ

(
a+ bδBS + c (δBS)2

)
(HW)

(5.3)

We conclude with some remarks on the above:

1. The MV adjustment is identical to the ST adjustment when m = 1, i.e. for ATM

options, otherwise it is greater in magnitude than the ST adjustment when m > 1, i.e.

for OTM calls and smaller in magnitude than the ST adjustment when m < 1, i.e. for

OTM puts;

2. The MV adjustment is always equal and opposite to the SM adjustment, and the SM

delta is also the scale-invariant model-free delta of Alexander and Nogueira (2007a), i.e.

the delta of any type of stochastic volatility jump process for the bitcoin option price;

3. The sign of the ST, SM and MV adjustments depends on the slope of the implied

volatility curve, θm. When it has a negative slope the MV and ST deltas are less than

– and the SM/SI delta is greater than – the BS/SS delta. When it has a positive slope

the MV and ST deltas are greater than – and the SM/SI delta is less than – the BS/SS

delta.
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5.4 Empirical Results

Motivated by our discussions in Sections 3.2, 4.3 and 5.2 we regard the inverse option as a

plain vanilla FX option, i.e. we convert its bitcoin price to the corresponding USD value

using the current value of the option’s underlying. Our focus is on short-term options with

expiry ranging from 10 to 30 days, which are far more liquid and have a much wider strike

range than the options studied by Matic et al. (2023).9 This choice is because bitcoin options

with maturity between one and three months represent only 20% of total trading volume and

roughly 80% of all trading volume on bitcoin options is on options that expire in 30 days or

less. Moreover, we need a proper smile to apply a smile-adjustment to the BS delta, and the

range of liquid strikes for these short-term options is considerable. In fact, the moneyness of

the options used in our empirical analysis ranges from 0.7 to 1.3. Our design is constructed for

rebalancing the hedge either every eight-hours or every day, and the sample spans a two-year

period from 1 January 2020 to 1 January 2022 which is divided into two one-year samples for

presentation of the results. This is is mainly motivated by the traded volumes and differences

in futures and perpetuals basis, as discussed in Chapter 3.

At each time t we short a European option with moneyness m and maturity T and hedge

this with a long position in either the perpetual or the futures contract with the same maturity

as the option and record the PnL of this portfolio as the hedging error under the physical

measure, in the usual manner – see Hull and White (2017) for example.10 Intraday market

moves can be very considerable and the transactions costs from rebalancing are tiny, as already

discussed. Therefore, we set the base frequency for presenting the tables of results to eight

hours. We also time the eight-hourly rebalancing with the funding payment on the perpetual,

i.e. at 00:00, 08:00 and 16:00 UTC. This is because the rebalancing of a hedge using the

perpetual contract could be also be used to make profits from its funding payments.

We only study dynamic delta-hedging with regular rebalancing, every eight hours at fund-

ing payment times or once per day at 00:00 UTC. This choice of experimental design is based

on the bitcoin option market characteristics which are novel as discussed earlier. The trans-

action costs for futures are very much smaller than they are for options. For instance, the

spread on a futures contract ranges from approximately one to five basis points, depending

on the expiry, but the spread on the short-term at-the-money options that would normally

be used for gamma hedging are typically about 200 to 300 basis point. So gamma hedging is

very much more expensive than regular dynamic delta-hedging. The transaction costs from

rebalancing a gamma hedge could erode any profits made from reducing the hedging error,

whereas the transaction costs from rebalancing a delta-hedge are tiny, especially when the

9Options used for the empirical study are interpolated in an arbitrage-free way. This provides a sense
of hedging performance across a wide grid of maturity and moneyness. Through interpolation to constant
maturity/strike, we are able to compare the models directly and get deeper insight into the hedging behaviour.

10Note that the option’s delta differs whether one uses the futures or perpetuals contract. We remain the
delta derived from the underlying as Deribit defines it and use both futures and perpetuals as (proxy-)hedge
based on the calculated deltas.
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perpetual contract is used as hedging instrument. In fact, these two one-year periods are

already sufficient to to highlight key properties of the delta-adjustments at hand. Any further

period would add value only in terms of robustness – which we already include – rather than

extending findings. Furthermore, as seen in Figure 3.2 the basis of the futures/perpetuals

during the last year of our sample is virtually negligible and hence would not yield any ad-

ditional information. Data from August 2019 is indeed available but the trading volumes in

the second half of 2019 were too low, and traded strike levels too narrow to consider useful.

All the deltas in (5.3) except the HW delta require us to calculate the slope of the implied

volatility curve every time we rebalance the hedged portfolio. We examined various numerical

techniques to calculate the derivative of the implied volatility curve, finding that fitting a

polynomial of degree three was the most accurate yet simple. Given our numerically-derived

value for this slope, for each option as defined by its moneyness and maturity, we then applied

(5.3) with the BS delta and vega calculated using the standard BS formulae. For the Hull

and White (2017) delta we did not mimic their 36-month in-sample calibration period, which

they used their empirical study of equity index options. Bitcoin options do not even have 36

months of useful data available. Besides, bitcoin prices are very much more volatile than S&P

500 index values, which another reason why we want to consider rebalancing the hedge more

than once per day. Taking all these considerations into account, we used a rolling window

of 30 observations at the daily frequency and 90 observations at the eight-hourly frequency

to calibrate the HW delta parameters. Our results will compare the hedging error using the

fixed-maturity futures, and using the perpetuals, with the HW regressions being performed

twice, depending on the hedging instrument.

We shall display our results using a standard F-test for the difference in variances, using

the BS delta as the benchmark, i.e. the Sticky Strike delta in (5.3). First, Table 5.1 presents

the results for hedging 10-, 20- and 30-day options with moneyness between 0.7 and 1.3, and

where each option is hedged with the corresponding fixed-maturity futures and rebalancing

is performed every eight hours. The entries in this table and the following tables are the

variance ratios, i.e. the variance of the δadj-hedging error relative to the variance of the BS

delta-hedging error. The greater the effectiveness of the hedge the lower the variance of the

hedging error and the efficiency gain from using the smile-adjusted delta is one minus this

variance ratio. For instance, the SM/SI delta yields a variance ratio of 0.562 for hedging

10-day puts with moneyness 0.8. This indicates an efficiency gain of 43.8% compared with

the BS delta-hedge, which is very significant, so the entry is marked + ++. In the tables of

variance ratios the superscripts denote the significance of one-sided F-tests on the variance

ratios at 10%, 5% and 1%. For instance ∗ ∗ ∗ denotes that the δadj-hedging error has a very

significantly larger variance than the BS hedging error, at the 1% level. And ++ denotes that

the δadj-hedging error has a significantly lower variance than the BS error, at the 5% level.

First consider the results for 2020 in Table 5.1. This part of the sample is characterised by

slow but steady rising prices consistent with the Derman (1999) stable-trending regime when
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we expect the SS delta (BS delta) to provide the most efficient delta-hedge, or the range-

bounded regime when the SM delta prevails. Overall, the 2020 results in Table 5.1 display

a pattern where the success of a particular delta to out-perform the BS hedge depends on

the options moneyness, but not its maturity. For instance, for ATM options the ST delta is

best.11 The efficiency gain ranges from 9.7% for 30-day ATM options to 12.3% for 20-day

options and 11% for 10-day options. The relative performance of the smile-implied (i.e. SM)

delta is in the opposite direction to both the ST and MV deltas, not just for ATM options

but for options of all moneyness. It out-performs the BS delta for OTM puts but not for

OTM calls (except for 10-day calls with moneyness 1.2). For hedging 20-day deep OTM puts

the efficiency gain from using the smile-implied (SM) delta throughout the whole of 2020 was

1 − 0.693 = 30.7%, which was very highly significant. And it was almost as high for 30-day

deep OTM puts, where the efficiency gain was 28.7%. The efficiency gains from using the

smile-implied hedge for other put options were much smaller, between only 3.1% and 7.6%.

Otherwise, for every other option, all the smile-adjusted deltas perform worse than the BS

delta. However, this is not really surprising since the bitcoin price was stable-trending during

a large part of 2020. The practical HW hedge ratio introduced by Hull and White (2017) and

the minimum variance hedge of Lee (2001) also result in no improvement on the BS delta

(except for ATM options). The HW delta also has a major drawback in that it uses regression

to estimate its parameters which makes i.i.d. assumptions not appropriate for bitcoin which

is very prone to jumps in returns. The impact of any jump remains within a rolling window

for a long time and therefore has a large influence on the HW hedge ratio.

Figure 5.1 showed that 2021 was characterised by much higher and more turbulent prices,

and an increase in the general level of volatility accompanied by a flatter but still asymmetric

smile-shaped implied volatility curve. During the entire year of 2021 the market was charac-

terised by huge swings in the bitcoin price as it ranged between $30,000 and almost $70,000,
and as one can see from Figure 5.2 the smile at 30-days became relatively flat towards the

end this period. But a flat smile makes the key ingredient the adjusted deltas, i.e. the slope

of the smile, almost redundant. So it is not surprising that all smile-adjusted deltas presented

no significant improvements on the standard BS hedge ratio during the second year of our

sample, for all 20-day and 30-day options. However, the very short-term, 10-day smile exhib-

ited some strange features in 2021, becoming upward sloping during the bull market phases

of the bitcoin price. This is why the SI delta-hedge showed some very significant efficiency

gains of 15.9% compared with using the BS delta for hedging 10-day OTM call options.

Next, Tables 5.2 and 5.3 examine the robustness of the results in Table 5.1 in two ways:

first by repeating the analysis with rebalancing at the daily frequency (Table 5.2) and then by

using the perpetual contract instead of the same-maturity futures as the hedging instrument.

The results in Table 5.2 display a similar pattern to those in Table 5.1 except that they are

less significant overall – but we are not surprised by this because there are now only 365

11The ST and MV delta are the same for ATM options, so the results are identical but only in this case.
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instead of 1095 observations per year. They confirm our conclusion from Table 5.1 that no

smile-adjusted delta can improve on the BS delta during 2021. In 2020 we also see the same

pattern of performance relative to the BS delta, in that the ST delta does out-perform for

ATM options but now there is some evidence that the HW deltas also beat BS, for ATM

options and OTM puts with moneyness 0.9 – but none of these variance ratio statistics are

statistically significant. Table 5.3 repeats exactly the same analysis as for Table 5.1, with the

eight-hour rebalancing frequency, but it uses the perpetual contract as the hedging instrument

for all options. We see exactly the same pattern of under- or out-performance of the BS delta

as in Table 5.1, with very highly significant efficiency gains for hedging OTM puts using the

SI/SM delta and the ST/MV delta for ATM options. Apart from the smile-implied delta-

hedge which again provides large and significant efficiency gains for hedging 10-day OTM

calls, no smile-adjusted delta significantly out-performs the BS delta in 2021. There are also

some small (< 5%) efficiency gains from using the ST/MV delta for ATM options and the

variance ratios are almost always smaller in Table 5.3 than they are in Table 5.1.

This finding leads us to question weather the perpetual contract provides a better hedging

instrument than the futures of the same maturity as the option. To answer this question we

examine variance ratios where the numerator is the variance of the perpetual-hedging error,

and the denominator is the variance of the futures-hedging error. Again we divide the sample

into two one-year periods, and present results by delta (now including the BS delta) and by

option and Table 5.4 displays the results. In the table a variance ratio less than (greater

than) one indicates that a superior (inferior) hedge is obtained using the perpetual contract.

The significance of the F-statistics are marked depending on whether the perpetual provides

a superior (+) or inferior (*) hedging instrument, compared with the same-maturity futures.

It is clear that the results depend little on the moneyness of the option, but more on its

maturity and the prevailing market state. For the 10-day options the ratios are mostly less

than one for OTM calls. For 20-day and 30-day options some highly significant improvements

from hedging with the perpetual are evident, especially during 2021.

Although the tables of results have provided a big picture about the overall relative ef-

ficiency of different smile-adjusted deltas, our two-year sample spans a variety of market

regimes. As already observed from Figure 5.1, there are periods when the bitcoin market

fluctuated quite quickly between stable-trending, range-bound and crash-jump regimes. So to

help understand which delta performed best in which market state, Figure 5.4 depicts time

series of the variance ratio, i.e. the variance of the smile-adjusted-delta-hedging error divided

by the variance of the BS-delta hedging error. This is for rebalancing the hedge every eight

hours and now each variance is calculated using only the last 90 observations – the same

window as used for the HW delta parameter estimation. We emphasise that a value greater

than one indicates that the smile-adjusted delta yields an inferior delta-hedging performance

relative to the BS delta and we present the results on a log scale for clarity, so a variance ratio

of one translates to zero in these plots. Any line below zero indicates that the delta improves
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on the BS delta, but a line above zero shows the delta provides a less effective hedge than BS.

Results for 10-day options are exhibited in the upper set (a) of three plots, and results

for 30-day options are exhibited in the lower set (b) of three plots. In each case (a) and (b),

the top graph is for OTM put options, and these confirm the results from Table 5.1: both ST

(blue) and MV (green) deltas under-perform BS for almost the entire period; as expected from

the sticky classification of regimes, the SM delta out-performs the BS delta during periods

when the market is range-bounded but not when it is trending, e.g. during the first big bull

run starting in January 2021 and the second bull run later that year; and the performance of

the HW delta is mixed. The middle graph of each set presents the variance ratios for hedging

ATM options. Here all the smile-adjusted deltas are very similar because the bitcoin smile is

often quite flat at this point. The bottom graph of each set shows the performance of different

deltas for hedging OTM call options. Again the SM delta appears best but only for 10-day

options and the improvement over BS is less than it is for OTM put options. For 30-day

options no delta provides a sustained improvement over BS, especially during 2021.
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Table 5.1: F-Test Hedging Results (8 Hour Rebalancing, Fixed-Maturity Futures)

Variance ratios and significance levels for one-sided F-tests on the null hypothesis H0 : σ2
BS = σ2

delta with
alternative H+ : σ2

BS > σ2
delta and H∗ : σ2

BS < σ2
delta, respectively. Hedges are based on the futures contract

with the same maturity as the option, and are rebalanced every eight hours. We compare the variance of the
hedging error for different deltas, relative to the variance obtained using the BS delta-hedge, and divide the
two-year sample into two. We use options with three different maturities and moneyness ranging from 0.7 to
1.3, using OTM put options for moneyness < 1 and OTM calls for > 1. The 10%, 5% and 1% significance
levels are denoted *, ** and *** respectively for H∗, and similarly for H+.

Moneyness

0.7 0.8 0.9 1 1.1 1.2 1.3

10 Days
2020

ST 1.164
∗∗∗

1.194
∗∗∗

0.890
++

1.131
∗∗

1.298
∗∗∗

SM 0.562
+++

0.714
+++

1.043 1.089
∗

0.896
++

MV 1.016 1.139
∗∗

0.890
++

1.163
∗∗∗

1.463
∗∗∗

HW 1.022 1.098
∗

1.038 1.296
∗∗∗

1.090
∗

2021

ST 2.045
∗∗∗

1.125
∗∗

0.984 1.054 1.220
∗∗∗

SM 0.986 1.008 1.037 0.841
+++

0.841
+++

MV 1.698
∗∗∗

1.083
∗

0.984 1.063 1.284
∗∗∗

HW 1.991
∗∗∗

1.651
∗∗∗

1.285
∗∗∗

1.412
∗∗∗

2.782
∗∗∗

20 Days
2020

ST 2.241
∗∗∗

1.679
∗∗∗

1.234
∗∗∗

0.877
++

1.044 1.228
∗∗∗

1.207
∗∗∗

SM 0.693
+++

0.969 0.924
+

1.208
∗∗∗

1.217
∗∗∗

1.184
∗∗∗

1.132
∗∗∗

MV 1.806
∗∗∗

1.476
∗∗∗

1.196
∗∗∗

0.877
++

1.061 1.316
∗∗∗

1.322
∗∗∗

HW 1.073 1.105
∗∗

1.299
∗∗∗

1.101
∗

1.074 1.121
∗∗

1.584
∗∗∗

2021

ST 1.972
∗∗∗

1.630
∗∗∗

1.067 1.046 1.037 1.100
∗

1.179
∗∗∗

SM 1.014 1.029 1.031 1.079 1.039 1.012 0.983

MV 1.673
∗∗∗

1.493
∗∗∗

1.088
∗

1.046 1.045 1.132
∗∗

1.262
∗∗∗

HW 1.037 1.076 1.120
∗∗

1.021 1.131
∗∗

1.303
∗∗∗

1.104
∗∗

30 Days
2020

ST 2.462
∗∗∗

1.657
∗∗∗

1.258
∗∗∗

0.903
++

1.029 1.176
∗∗∗

1.264
∗∗∗

SM 0.713
+++

0.969 0.942 1.181
∗∗∗

1.197
∗∗∗

1.179
∗∗∗

1.144
∗∗∗

MV 1.981
∗∗∗

1.471
∗∗∗

1.223
∗∗∗

0.903
++

1.043 1.247
∗∗∗

1.407
∗∗∗

HW 1.001 1.299
∗∗∗

1.454
∗∗∗

1.172
∗∗∗

1.342
∗∗∗

1.361
∗∗∗

1.369
∗∗∗

2021

ST 1.686
∗∗∗

1.372
∗∗∗

0.966 1.022 1.044 1.102
∗

1.122
∗∗

SM 1.074 1.098
∗

1.077 1.152
∗∗∗

1.031 0.993 0.998

MV 1.459
∗∗∗

1.287
∗∗∗

1.017 1.022 1.052 1.134
∗∗

1.180
∗∗∗

HW 1.024 1.194
∗∗∗

1.241
∗∗∗

1.202
∗∗∗

1.264
∗∗∗

1.135
∗∗

1.134
∗∗∗
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Table 5.2: F-Test Hedging Results (Daily Rebalancing, Fixed-Maturity Futures)

Variance ratios and significance levels for one-sided F-tests on the null hypothesis H0 : σ2
BS = σ2

delta with
alternative H+ : σ2

BS > σ2
delta and H∗ : σ2

BS < σ2
delta, respectively. Hedges are based on the corresponding

fixed-maturity futures and rebalanced every day. We compare the variance of the hedging error for different
deltas, relative to the variance obtained using the BS delta-hedge, and divide the two-year sample into two.
We use options with three different maturities and moneyness ranging from 0.7 to 1.3, using OTM put options
for moneyness < 1 and OTM calls for > 1. The 10%, 5% and 1% significance levels are denoted *, ** and ***
respectively for H∗, and similarly for H+.

Moneyness

0.7 0.8 0.9 1 1.1 1.2 1.3

10 Days
2020

ST 1.012 1.020 0.953 0.978 1.196
∗∗

SM 0.978 1.108 1.083 1.108 0.990

MV 1.001 1.011 0.953 0.990 1.281
∗∗∗

HW 1.091 0.940 0.967 1.150
∗

1.159
∗

2021

ST 2.067
∗∗∗

1.218
∗∗

0.978 1.046 1.165
∗

SM 0.987 1.085 1.087 0.992 0.975

MV 1.737
∗∗∗

1.174
∗

0.978 1.055 1.213
∗∗

HW 2.917
∗∗∗

2.324
∗∗∗

2.166
∗∗∗

2.464
∗∗∗

2.591
∗∗∗

20 Days
2020

ST 2.819
∗∗∗

1.029 1.010 0.910
+

0.999 1.206
∗∗

1.443
∗∗∗

SM 0.693
+++

1.137 1.102 1.133 1.200
∗∗

0.983 0.840
++

MV 2.213
∗∗∗

1.005 1.003 0.910
+

1.008 1.285
∗∗∗

1.630
∗∗∗

HW 1.238
∗∗

1.134 0.958 0.992 1.109 1.401
∗∗∗

1.102
2021

ST 2.013
∗∗∗

1.551
∗

1.049 0.997 1.025 1.090 1.131

SM 1.130 1.210
∗∗

1.203
∗∗

1.117 1.057 1.013 1.013

MV 1.633
∗∗∗

1.368
∗∗∗

1.031 0.997 1.032 1.120 1.195
∗∗

HW 3.271
∗∗∗

2.386
∗∗∗

2.058
∗∗∗

2.135
∗∗∗

2.700
∗∗∗

2.168
∗∗∗

1.796
∗∗∗

30 Days
2020

ST 2.699
∗∗∗

1.061 1.011 0.930 1.019 1.119 1.272
∗∗∗

SM 0.838
+++

1.154∗ 1.090 1.117 1.142 1.179 0.930

MV 2.115
∗∗∗

1.026 0.959 0.930 1.028 1.172+ 1.401
∗∗∗

HW 1.241
∗∗

1.541
∗∗

1.129 1.139 1.031 1.129 1.429
2021

ST 1.850
∗∗∗

1.428
∗∗∗

1.022 1.015 1.027 1.093 1.113

SM 1.104 1.198
∗∗

1.177
∗

1.196
∗∗

1.059 1.001 1.034

MV 1.527
∗

1.282
∗∗∗

1.009 1.015 1.034 1.122 1.170

HW 3.554
∗∗∗

3.335
∗∗∗

2.534
∗∗∗

2.072
∗∗∗

2.423
∗∗∗

2.410
∗∗∗

1.852
∗∗∗
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Table 5.3: F-Test Hedging Results (8 Hour Rebalancing, Perpetual)

Variance ratios and significance levels for one-sided F-tests on the null hypothesis H0 : σ2
BS = σ2

delta with
alternative H+ : σ2

BS > σ2
delta and H∗ : σ2

BS < σ2
delta, respectively. Hedges are based on the perpetual futures

and rebalanced every wight hours. We compare the variance of the hedging error for different deltas, relative
to the variance obtained using the BS delta-hedge, and divide the two-year sample into two. We use options
with three different maturities and moneyness ranging from 0.7 to 1.3, using OTM put options for moneyness
< 1 and OTM calls for > 1. The 10%, 5% and 1% significance levels are denoted *, ** and *** respectively
for H∗, and similarly for H+.

Moneyness

0.7 0.8 0.9 1 1.1 1.2 1.3

10 Days
2020

ST 1.134
∗∗

1.164
∗∗∗

0.908
+

1.118
∗∗

1.363
∗∗∗

SM 0.655
+++

0.709
+++

1.031 1.123
∗∗

0.995

MV 0.992 1.112
∗∗

0.908
+

1.149
∗∗

1.488
∗∗∗

HW 1.080 0.943 0.969 1.329
∗∗∗

1.365
∗∗∗

2021

ST 1.988
∗∗∗

1.089
∗

0.995 1.040 1.198
∗∗∗

SM 0.996 1.022 1.045 0.860
+++

0.859
+++

MV 1.654
∗∗∗

1.051 0.995 1.048 1.257
∗∗∗

HW 1.791
∗∗∗

1.503
∗∗∗

1.212
∗∗∗

1.358
∗∗∗

2.736
∗∗∗

20 Days
2020

ST 2.275
∗∗∗

1.673
∗∗∗

1.198
∗∗∗

0.932 1.029 1.189
∗∗∗

1.184
∗∗∗

SM 0.742
+++

0.995 0.933 1.150
∗∗

1.233
∗∗∗

1.215
∗∗∗

1.144
∗∗

MV 1.846
∗∗∗

1.478
∗∗∗

1.166
∗∗∗

0.932 1.045 1.267
∗∗∗

1.290
∗∗∗

HW 1.099 1.367
∗∗∗

1.689
∗∗∗

1.085 1.371
∗∗∗

1.556
∗∗∗

1.384
∗∗∗

2021

ST 1.809
∗∗∗

1.475
∗∗∗

0.957 0.995 1.019 1.077 1.122
∗∗

SM 1.104
∗

1.125
∗∗

1.106
∗∗

1.057 1.068 1.050 1.038

MV 1.548
∗∗∗

1.370
∗∗∗

0.985 0.995 1.025 1.105
∗∗

1.184
∗∗∗

HW 1.280
∗∗∗

1.252
∗∗∗

1.271
∗∗∗

1.245
∗∗∗

1.319
∗∗∗

1.213
∗∗∗

1.400
∗∗∗

30 Days
2020

ST 2.364
∗∗∗

1.597
∗∗∗

1.213
∗∗∗

0.941 0.997 1.138
∗∗

1.231
∗∗∗

SM 0.734
+++

0.986
∗∗∗

0.965 1.174
∗∗∗

1.214
∗∗∗

1.195
∗∗∗

1.151
∗∗

MV 1.915
∗∗∗

1.426
∗∗∗

1.183
∗∗∗

0.941 1.007 1.198
∗∗∗

1.359
∗∗∗

HW 1.067 1.127
∗∗∗

1.330
∗∗∗

1.191
∗∗∗

1.273
∗∗∗

1.356
∗∗∗

1.428
∗∗∗

2021

ST 1.690
∗∗∗

1.349
∗∗∗

0.958 1.011 1.008 1.066 1.079

SM 1.190
∗∗∗

1.241
∗∗∗

1.206
∗∗∗

1.160
∗∗∗

1.075 1.036 1.057

MV 1.416
∗∗∗

1.221
∗∗∗

0.953 1.011 1.012 1.091
∗

1.124
∗∗

HW 1.220
∗∗∗

1.342
∗∗∗

1.415
∗∗∗

1.259
∗∗∗

1.410
∗∗∗

1.216
∗∗∗

1.390
∗∗∗
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Table 5.4: F-Test Futures and Perpetual Comparison (8 Hour Rebalancing)

Variance ratios and significance levels for one-sided F-tests on the null hypothesis H0 : σ2
fut = σ2

perp with
alternative H+ : σ2

fut > σ2
perp and H∗ : σ2

fut < σ2
perp, respectively. Hedges are based on the corresponding

fixed-maturity futures and rebalanced every day. For each delta we compare two variances of the hedging
error, the numerator is the variance when the perpetual is the hedging instrument and the denominator is the
variance when the hedging instrument is the futures with maturity matching the option. Again we divide the
two-year sample into two. We use options with three different maturities and moneyness ranging from 0.7 to
1.3, using OTM put options for moneyness < 1 and OTM calls for > 1. The 10%, 5% and 1% significance
levels are denoted *, ** and *** respectively for H∗, and similarly for H+.

Moneyness

0.7 0.8 0.9 1 1.1 1.2 1.3

10 Days
2020

BSM 1.027 1.031 1.015 0.962 0.924
+

ST 1.001 1.005 1.036 0.952 0.970
SM 1.015 1.023 1.003 0.993 0.996
MV 1.003 1.006 1.036 0.951 0.940

HW 1.086 0.886
++

0.948 0.987 1.158
∗∗∗

2021
BSM 0.982 0.993 1.007 0.992 1.016
ST 0.955 0.961 1.017 0.979 0.998
SM 1.003 1.007 1.015 1.014 1.038
MV 0.957 0.964 1.017 0.978 0.994

HW 0.884
++

0.904
++

0.969 0.954 1.009

20 Days
2020

BSM 0.949 0.987 1.001 0.907
+

0.936 0.966 0.989

ST 0.963 0.984 0.973 0.964 0.923
+

0.935 0.970

SM 1.016 1.014 1.011 0.864
+++

0.948 0.991 1.000

MV 0.970 0.989 0.976 0.964 0.922
+

0.930 0.965

HW 0.883
+++

1.132
∗∗∗

1.225
∗∗∗

0.951
∗∗∗

1.108
∗∗

1.254
∗∗∗

0.902
++

2021

BSM 0.896
++

0.870
++

0.864
+++

0.878
++

0.849
+++

0.898
++

0.927

ST 0.822
+++

0.788
+++

0.775
+++

0.835
+++

0.834
+++

0.879
++

0.882
++

SM 0.976 0.952 0.927 0.861
+++

0.873
++

0.931 0.979

MV 0.829
+++

0.799
+++

0.782
+++

0.835
+++

0.833
+++

0.876
++

0.870
++

HW 1.106∗ 1.012 0.980 1.071 0.991 0.836
+++

1.176
∗∗∗

30 Days
2020

BSM 1.003 1.000 1.022 1.057 1.025 1.022 1.026
ST 0.963 0.964 0.985 1.101 0.993 0.988 0.999
SM 1.033 1.017 1.047 1.050 1.039 1.036 1.033
MV 0.969 0.970 0.989 1.101 0.989 0.982 0.991

HW 1.070 0.867
+++

0.934 1.074 0.972 1.018 1.070
2021

BSM 0.839
+++

0.818
+++

0.850
+++

0.910
++

0.867
+++

0.917
+

0.945

ST 0.841
+++

0.804
+++

0.843
+++

0.900
++

0.837
+++

0.887
++

0.909
+

SM 0.930 0.924
+

0.952 0.917
+

0.905
+++

0.956 0.991

MV 0.815
+++

0.776
+++

0.797
+++

0.900
++

0.835
+++

0.882
++

0.901
++

HW 0.999 0.920
+

0.969 0.953 0.968 0.983 1.158
∗∗∗
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Figure 5.4: Hedging Performance on a Rolling Sample

Variance ratios showing performance of the various perpetuals hedge ratios relative to the BS delta, using
8-hourly rebalancing, where variances of the hedging errors are calculated using the previous 90 observations.
We present results for (a) 10-day and (b) 30-day options over the two-year sample. The solid line at 0 acts as a
reference value, with ratios above 0 indicating inferior performance relative to BS and ratios below 0 indicating
superior performance relative to BS. The top graph in (a) depicts the performance for OTM put options with
m = 0.8 and for (b) put options with m = 0.7, the middle graph shows ATM options for both (a) and (b), and
the bottom one is OTM call options with (a) moneyness 1.2 and (b) moneyness 1.3.

(a) Results for 10-day Options

(b) Results for 30-day Options
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5.5 Concluding Remarks

We compare the hedging effectiveness for the most actively traded bitcoin options on the

Deribit exchange, i.e. options with strike levels ranging 30% above and below the current

BTC index and with expiry up to one month. We analyse the variance of the delta-hedging

errors where the hedging instrument is either the futures of the same maturity as the option,

or the perpetual contract – an innovative product that is unique to cryptocurrency derivatives

markets. With rebalancing of the hedge either every eight hours (to coincide with funding

payments on the perpetual) or daily, and using either the same-maturity futures or the per-

petual as the hedging instrument, we find some very robust results. Also, rather than a simple

tabular comparison of the mean square errors from different hedge ratios, we have applied

a simple variance-ratio test which provides the statistical significance of efficiency gain from

using a given delta, relative to the BS delta.

This way we have demonstrated that the smile-implied (sticky-moneyness) delta can pro-

vide a significantly better hedge than a standard Black-Scholes delta for out-of-the-money

options, with efficiency gains of over 40% in some cases. The minimum-variance delta is

also better than the BS delta, but only for at-the-money options, where it coincides with

the sticky-tree delta. No other smile-adjusted delta can improve on the Black-Scholes delta

consistently, and even the smile-implied and minimum-variance delta-hedge performance were

poor during much of 2021. The exception is the smile-implied hedge for short-term out-of-

the-money calls, at times when the slope of the implied volatility curve became positive. In

contrast to equity indices like the S&P 500, the bitcoin price does not trends upwards in a

stable fashion and then suddenly crash – its upwards price jumps can be as large as its down-

ward price jumps so its smile can be quite symmetric – or even completely upwards sloping.

We have also shown that the perpetual contract is a significantly better hedging instrument

than the same-maturity futures as the option, irrespective of the option’s moneyness. This is

particularly evident for options with longer maturity, where the basis between the perpetual

and the futures is greatest.

The focus of this chapter on dynamic delta-hedging with frequent rebalancing may help

market makers in bitcoin options gain a competitive edge in a market that only started

maturing in 2021. However, at the time of writing the trading costs of hedging price and

volatility risk with options might erode any extra profits made from potentially increasing

trading volumes through a reduction in spreads.



CHAPTER 6

IMPLIED VOLATILITY INDEX

Motivation: One of the primary attributes of bitcoin, and a principal motivation

to trade it, is indisputably its pronounced volatility. Nevertheless, until recently,

the direct trading of bitcoin volatility was solely achievable through a combination

of options and spot. Standard tools for volatility trading of traditional markets,

such as variance swaps or futures on volatility indices were yet to be introduced. A

bitcoin volatility index offers invaluable insight into the prevailing options market.

Such an index summarises the future volatility expectations of sophisticated option

traders. It gauges market sentiment, enables traders to mitigate and manage

risk and provides an underlying to trade volatility directly. More important, the

index allows to examine empirical properties of the bitcoin variance risk premium,

thereby fostering a comprehensive understanding of the bitcoin options market.

Summary: We present a bitcoin implied volatility index, the first of its kind,

using a variance swap fair-value formula. Motivated by liquidity and trading

clusters, we construct bitcoin implied volatility indices with different maturities

at daily frequency and investigate the BTC realised volatility. Subsequently, we

discuss the features of the index and the associated bitcoin variance risk premium,

and examine the relationship between bitcoin’s monthly realised variance, the

volatility index, and the variance risk premium, compared to their equivalents

for US equities, oil, gold, and the EURUSD exchange rate. Surprisingly, we find

bitcoin VRP behaves like other asset classes and showed over long periods the

most attractive VRP profile for swap writers.

103
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6.1 Trading Volatility

There are three distinct approaches to trade volatility of traditional assets, which are also

partially applicable to cryptocurrency markets: (i) trading delta-hedged options or specific

option strategies; (ii) entering volatility or variance swap agreements; and (iii), using futures

on implied volatility indices. The delta-hedging strategies discussed in Chapter 5 present the

most rudimentary form of volatility trading, as it eliminates the underlying bitcoin exposure

completely. Assuming all input factors, aside from the underlying, remain constant, the payoff

of delta-hedged options depends on the variance of the underlying. If an investor believes the

implied volatility is lower (higher) than the realised volatility throughout the option’s lifespan,

he can profit by buying (selling) volatility, continuously re-hedge the position and lock in

profits. This technique, often referred to as gamma scalping, capitalises on the option’s carry,

i.e. the difference between implied and realised volatility. Other option strategies, such as

straddles, strangles or butterflies allow to take directional positions in future realised volatility.

Note what all these strategies have in common is that they are generally delta-neutral, or delta

flat, at inception, but are influenced by – among others – gamma, vega and theta.

In theory, having knowledge of future volatility and the capacity to continuously hedge

would result in a fixed profit for a delta-hedged option, which would be based solely on the

carry. However, in practice, the combination of discrete delta-hedging and unknown future

volatility prevents this simplified assumption and led to the introduction of swap derivatives.

Particularly, volatility, variance or gamma swaps are prominent and liquid derivatives in equity

markets, providing pure volatility exposure and remove the need to continuously delta-hedge

an option.1 The payoff of volatility and variance swaps at maturity T are straight forward:

(RV − σSR)× notional (Volatility Swap)(
RV 2 − σ2

SR

)
× notional (Variance Swap),

where RV denotes the Realised Volatility (RV) over the life of the contract and σSR reflects

the swap rate volatility which is fixed at the start of the contract. Assuming the underlying

follows a geometric diffusion process, similar to (4.3.2), the continuously monitored realised

variance RV 2 from time t to T is given by:

RV 2 = (T − t)−1Σt,T where Σt,T =

∫ T

t
σ2
udu,

and thus the risk-neutral fair value swap rate is given as:

σ2
SR

= (T − t)−1 E [Σt,T ] .

Hence, these derivatives allow investors to trade future realised volatility (variance) against

1The term swaps is rather misleading as these derivatives have fixed maturities and no payments in-between.
Hence, they resemble more forward contracts.
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current implied volatility (variance) with the same maturity. As such, they are designed to

have a constant exposure to volatility, resulting in a flat vega profile that appeals to traders.

While these swaps enjoy great popularity for equity, their trading for bitcoin remains nascent.

At the time of writing, variance swaps for cryptocurrencies are traded OTC, or on-chain

only, if at all. Indeed, only the digital asset trading firm GSR officially launched the first

on-chain variance swap but expressed concerns regarding insufficient interest and liquidity.2

As discussed in the literature review, a variance swap can be replicated through a static

options portfolio with same maturity, wherein each option is weighted by the squared inverse

strike (Neuberger, 1994; Demeterfi et al., 1999), and does not require further transactions

throughout the span of the swap.3 As such, these weightings make the options portfolio take

a long position in implied skew, as there is more exposure to downside put than to upside

calls; as well as convexity, due to the greater weight on the wings. However, the limitations of

this replication are self-evident: The assumption that all strikes can be bought is not assured.

Particularly OTM options – and even stronger for cryptocurrency options – show low liquidity

which leave any writer of these swaps vulnerable to short tail risk.

The variance swaps replication serves as the fundamental methodology of modern volatility

indices, which complete our introduction of most common volatility trading tools. It provides

information as a risk-neutral expectation of the S&P500 variance and its interpretation of both

stock market uncertainty, i.e. the ‘physical’ expected volatility, and as variance risk premium,

which is the expected premium from selling variance swap contracts. A volatility index

summarises, in a single value, the information embedded within the implied volatility smile for

a specified maturity. 4 However, there exist substantial disparities between volatility indices

and variance swaps. First, volatility indices commonly exclude extremely high and low strikes,

thereby enhancing stability but undermining the significance of deep OTM puts. Second,

variance swaps are usually priced using a continuous implied volatility surface, whereas the

discrete sampling of listed options and the noise due to rolling expiries introduces small

discrepancies. Finally, a linear interpolation between expiries assumes a flat volatility term

structure which is not evident in practice, neither in equity nor cryptocurrency markets,

see Bennett (2014) for an in-depth analysis. The variance risk premium may be defined as

the reward required by a risk-averse investor to compensate for the risk of both stochastic

volatility and jumps in price of the underlying asset, see Todorov (2010) and Konstantinidi

and Skiadopoulos (2016a).

Typically, soon after an exchange quotes a volatility index they begin listing futures and

options on it. These exchange-traded derivatives allow large institutions to trade volatility

as an asset class in its own right instead of indirect trades such as option straddles which

2See GSR Variance Swaps for more details.
3However, this formula is only an approximation of the realised variance as the integral over the strike

range, discussed in Chapter 2, goes from zero to infinity which is practically not possible.
4Theoretically, the index signifies a fair value for a variance swap that exchanges a fixed for a floating

realised variance over the life of the swap. Consequently, these indices measure the variance risk premium
across different investment horizons.

https://www.gsr.io/reports/introducing-cryptocurrency-variance-swaps
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require constant and costly rebalancing.5 This development is currently observable within

the cryptocurrency market. Our work in this chapter marked the pioneering introduction and

highlighted the importance and necessity of an implied volatility index for bitcoin. Following

the publication of our study, Deribit launched their own Deribit Implied Volatility Index

(DVOL), which is based on and expands our methodology.6 A year later, in March 2023, the

exchange initiated futures trading on this novel underlying, allowing traders to directly trade

bitcoin volatility directly without resorting to costly option transactions. As such, Deribit

is the sole exchange offering listed futures on any cryptocurrency implied volatility index.

Although the trading volumes and open interest of these futures remain very low, and their

diversification or hedge potential is not as robust as for equities, as discussed in Section 5.2,

we believe that offering these futures constitutes the appropriate and logical next step in the

continuously maturing and evolving bitcoin derivatives market.

This chapter introduces volatility indices for bitcoin with various maturities between ten

days and four months. Having explored the time series properties of our bitcoin VIX indices,

we use them as fair-value variance swap rates for estimating bitcoin variance risk premia of

different maturities. As elaborated in Chapter 2, a substantial body of empirical research

literature analyses the variance risk premia in different asset classes. This risk premium is

typically negative, as investors are willing to pay for the highly effective diversification afforded

by including volatility in a portfolio – variance usually has a very high negative correlation

with equity returns. Contrary to expectations, our findings suggest that the bitcoin VRP does

not adhere to the anticipated pattern of low negative payoffs with infrequent yet sudden jumps

with indications of option overpricing. Additionally, when compared to other asset classes,

our analysis reveals that bitcoin has been the most lucrative option for any variance swap

writer, and it continues to outperform the S&P 500 index as a more attractive underlying

asset for writing a variance swap. Finally, our study uncovers evidence suggesting a significant

relationship between the implied volatility indices of gold and FX markets, and bitcoin.

6.2 Methodology

Initially, volatility indices were calculated as the mean of the implied volatilities of eight dis-

tinct ATM options (Carr and Wu, 2004). The CBOE was the first exchange to introduce an

ATM volatility index, adhering to the methodology established by Whaley (2000). For each

maturity, the implied volatility of two call and put options with strike levels encompassing

the underlying value are averaged, followed by a linear interpolation to derive an ATM im-

plied volatility. Subsequently, these two ATM implied volatilities for varying maturities are

5The usual next development is to bring this volatility trading to individual speculators via exchange-traded
funds and notes – albeit with extremely high risk Alexander and Korovilas (2013).

6See Deribit Volatility Index for more details.

https://insights.deribit.com/exchange-updates/dvol-deribit-implied-volatility-index/
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interpolated once more to obtain a fixed-maturity ATM implied volatility.7 The final index

(VXO) was the equally weighted volatility between the two straddling maturities. As such, it

was an estimate of the one-month ATM implied volatility and an accurate approximation of

the volatility swap rate.

This methodology was later updated as soon as practitioners started to realise that vari-

ance, not volatility was the correct measure of deviation.8 Today, most provider use a variance-

based calculations, e.g. vStoxx (V2X), VSMI (V3X) or CBOE VIX index. However, a great

number of researchers (Leontsinis and Alexander, 2017; Griffin and Shams, 2018) underscore

the limitations of variance swap-based calculations, including jump errors and susceptibility

to manipulation, and advocate for more robust methodologies. The proposed bitcoin implied

volatility index follows the same variance swap-based calculation, and we shall explore its

characteristics, as well as alternative index calculations, in greater depth in the next section.

All existing volatility indices pertain a constant 30 days maturity, and are frequently

described as a representation of option traders’ expectations of average volatility on the un-

derlying over the next calendar month. However, it is possible to modify the methodology to

quote indices of any constant maturity on any underlying asset or index, provided there is suf-

ficient trading volume on the options. Alternatively, for assets such as bitcoin whose market

prices move much more quickly than equities, indices that represent expectations of average

volatility over the next days or weeks may be of interest. Hence, we do not restrict ourselves

to these maturities. As discussed in Section 3.2, the majority of active trading occurs on

options set to expire within the next month. As such, we examine short (10 days), mid (20

days), and long (30 days) maturities, which collectively account for 80% of the aggregated

trading volume. Moreover, diverging from the hedging study in Chapter 5, we explore ultra-

long maturities of 60, 90, and 120 days, despite the diminished active trading and liquidity

associated with these maturities. Furthermore, as seen in Section 3.2, these maturities hold

most of the open interest. An investor holding an option with an ultra-long maturity may

perceive an implied volatility derivative as the optimal hedge, in lieu of engaging in costly,

frequent rebalancing.

7Additionally, the CBOE implemented an artificial “trading-day conversion” that contrasts the actual 365-
day annualisation of the Black-Scholes implied volatility, and converts it to ‘trading-day’ volatility:

TV (τ) =
σt(1, τ)

√
NC√

NT
,

where σt(1, τ) is the BSM ATM IV with time to maturity τ , NC is the number of calendar days and NT
number of trading days.

8Bennett (2014) points out three main reason why variance, not volatility should be considered as the
measure of deviation: (i) Variance takes into account the implied volatility of all strike levels for option with
same maturity; (ii) the sum of squared deviations, i.e. the variance, is usually taken to avoid cancelling; and
(iii), the profit of a delta-hedged option depends on the squared returns of the underlying and hence variance
is a better measure.
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6.2.1 Variance-Swap Based Calculation

We introduce the family of bitcoin implied volatility indices, which we call the BVIN. We call

indices based on the CBOE VIX methodology ‘geometric’ not because they assume the under-

lying follows a geometric Brownian motion (without jumps) but because they represent the

fair-value variance swap rate for a realised variance defined as the average sum of squared log

price changes over the life of the swap. We follow the exact calculation of CBOE Global Mar-

kets (2003) assuming the risk-free rate r is zero, which makes virtually no difference to our

calculations, and employ a Riemann sum to approximate the fair-value integral. That is, for

j = 1, 2 we set:9

θjt = 2

kj∑
i=1

K−2
i f(Ki, Tjt | FTjt,t

)∆Ki −

(
FTjt,t

K0
− 1

)2

, (6.1)

where T1t is the actual traded maturity closest to but less than or equal to the target constant

maturity T and T2t is the actual traded maturity closest to but greater than T ; kj is the

number of options available at maturity Tjt; FTjt,t is the price of the forward contract with

maturity Tjt derived from the option prices; f(Ki, Tjt | FTjt,t
) is the price of the OTM option

with the same maturity and strike Ki; K0j is the separation strike, i.e. the first strike below

the forward price – we use puts for strikes Ki < K0j and calls for strikes Ki > K0j ;
10 and

∆Ki = Ki+1−Ki−1

2 . Then if the (constant) maturity T is measured in days, the geometric

index at running time t is calculated as:

V T
t =

√
ωT
t θ1t + (1− ωT

t )θ2t ×
√

365/T , (6.2)

with

ωT
t =

n2t − n

n2t − n1t
,

where n is the number of minutes for the constant maturity and njt is the number of minutes

until maturity Tjt, for j = 1, 2. In equation (6.1) K0j is the model price of the futures inferred

from put-call parity.The difference between K0 and Ft,T is minuscule. Therefore, the second

term in (6.1) only has a tiny effect on the BVIN indices and we can ignore it.

Having constructed the BVIN indices for different maturities, we use the T -maturity index

at time t as the fair-value swap rate to derive a VRP for maturity T , at time t. We use the

average squared log return on the bitcoin spot over the life of the swap to compute the realised

volatility (RV) and equate the geometric VRPG to the variance swap payoff:

VRPG

t,T = N
[
RV2

t,T − BVIN2
t,T

]
, (6.3)

9We omit the division by maturity Tjt here, although the implied variance formula is often presented in
that (annualised) form. This is because the subsequent formulae are simplified when we annualise only at the
end result, as in (6.2).

10To avoid overcomplicating the notation we assume the strikes are all of the same maturity.
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where N is a nominal amount in USD, with realised volatility defined as:11

RVt,T =

√√√√AM−1

M−1∑
i=0

r2t+i, (6.4)

where A is the annualising factor, M is the number of time-intervals in the constant maturity

T and rt is the log return from time t to t+1, based on a partition of [0, T ] into M intervals.

A comprehensive body of literature, both theoretical (Griffin and Shams, 2018) and prac-

tical (Bennett, 2014), underscores the susceptibility of such calculations to index and futures

settlement manipulations. As the calculation is heavily tilted towards deep OTM put, only

relatively minimal effort would be required to manipulate these few downside puts and sub-

sequently impact the entire index. In response to this issue, other indices employing similar

calculations, such as vStoxx, have transitioned to use a 30-minute average ending price. Nev-

ertheless, this presents a considerable challenge for bitcoin options, as the number of traded

contracts used to generate this type of index is still very small compared to US equity. An

attacker would merely need to manipulate the price of two, or at most four, deep OTM put

options to attain the desired index value. To tackle this issue, we consider an arithmetic index

calculation proposed by Leontsinis and Alexander (2017), which is less prone to manipulation.

6.2.2 Arithmetic Calculation

In this sub-section, we can examine the disparities between the CBOE methodology and an

index based on the ‘arithmetic’ variance swap rates of Leontsinis and Alexander (2017). The

authors deduce a formula for the fair-value of a realised variance, defined as the average sum of

squared price changes, rather than the change in log prices. Their motivation lies in employing

a definition that satisfies the aggregation property introduced by Neuberger (2012) and later

generalised by Alexander and Rauch (2021).12 The benefit of defining realised variance this

way is that the fair-values have no jump bias. By contrast, in the presence of jumps, the

standard ‘geometric’ formula used by the CBOE can have very large errors (Aı̈t-Sahalia

et al., 2020). If bitcoin prices jump, the arithmetic index would be a more accurate fair value,

and also be a better, unbiased, measure of the bitcoin variance risk premium. As discussed in

Chapter 2, bitcoin is prone to jumps, justifying the application of the arithmetic alongside the

geometric calculation. This would be particularly significant for longer-term premia, spanning

the next month or beyond, as the impact of jumps accumulates with maturity.

This discussion motivates the use of the arithmetic variance swap rate introduced by

Leontsinis and Alexander (2017) which has no jump error, being valid for any martingale

11Note that there are other methodologies to calculate the realised variance. However, we refer to the
standard market convention using discrete squared log-returns as outline in J.P. Morgan variance swap pricing
document.

12The aggregation property describes a characteristic of financial assets that measures the volatility (or any
other characteristic) of the underlying. It states that the sum of volatilities over any non-overlapping time
intervals should be equal to to volatility of the entire combined period.

https://quantlabs.net/academy/download/free_quant_instituitional_books_/%5BJP%20Morgan%5D%20Variance%20Swaps.pdf
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underlying price process, such as bitcoin futures. The resulting index, denoted AVXB (AV T
t )

is calculated using the same interpolation (6.2) but now setting:

ζjt = 2F−2
Tjt,t

kj∑
i=1

f(Ki, Tjt | FTjt,t
)∆Ki. (6.5)

and

AV T
t =

√
ωT
t ζ1t + (1− ωT

t )ζ2t ×
√
365/T , (6.6)

where we use the same notation as for equation (6.1) and (6.2).

By contrast with (6.1), (6.5) aligns with a realised variance definition that satisfies the

aggregation property introduced by Neuberger (2012). As a result, the arithmetic fair value

remains unaffected by the jump biases that present challenges for the standard calculation.

The only assumption required is that the underlying asset follows a martingale process. The

primary distinction between the two formulas is the use of futures prices rather than option

strikes in the Riemann sum. Consequently, this formula offers the advantage of being truly

model-free while eliminating distortions that impact the VIX when low-strike options (i.e.,

deep OTM puts) possess stale prices.13 Additionally, the formula (6.5) is less susceptible

to manipulation via large buy or sell pre-settlement orders on illiquid low-strike options,

which have been previously used to manipulate the VIX (Griffin and Shams, 2018), as briefly

mentioned in the preceding section. While there is no evidence of price manipulation in Deribit

options, there are indications that liquidity of OTM puts diminishes when volatility rises –

precisely when issuers of bitcoin variance swaps require their hedges the most. Analogous to

the geometric VRP calculation, we define the arithmetic VRPA as follows:

VRPA

t,T = N
[
ARV2

t,T −AV2
t,T

]
, (6.7)

where ARV is the realised volatility calculated using changes in the underlying price rather

than log-returns as advocated in Leontsinis and Alexander (2017).

6.3 Bitcoin Volatility Index and its Risk Premia

In this section, we present an empirical analysis of the two index calculation methodologies

outlined earlier, assessing their performance as fair variance swap rates for bitcoin variance

swaps across various maturities. The first subsection examines the BVIN, which corresponds

to the geometric variance-swap based indices with maturities of 10, 20, 30, 60, 90, and 120

days. The motivation behind investigating the short-term maturities lies in the rapid price

13The VIX and other equity index volatility indices are normally calculated using daily close option prices.
That is, the price of the last recorded trade of the day. But this could be hours old, especially for deep OTM
options where trading volume is often lower than for near ATM options. But the VIX formula places more
weight on deep OTM puts than it does on other options, and this feature is well-known to produce distortions
in the VIX, and other similar indices.
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fluctuations inherent in bitcoin markets, which significantly surpass the volatility observed in

fiat currencies, conventional commodities, or other established capital markets. Additionally,

Deribit bitcoin options tend to be issued at shorter maturities than most other options,

allowing for the calculation of BVIN indices at shorter maturities than any other implied

volatility indices. The motivation for analysing longer date maturities stems from the open

interest clustering observed for quarterly maturities and the potential hedging purpose of

the implied volatility index. In the second subsection, we evaluate the performance and

characteristics of the arithmetic volatility index and draw comparisons between the arithmetic

and geometric volatility indices, and their associated risk premia.

6.3.1 The BVIN

Let us consider first Figure 6.1, which illustrates the daily evolution of the bitcoin implied

volatility indices with different fixed maturities, from January 2020 to 2023. Each data point

is calculated using (6.1) and (6.2), using the whole chain of option prices. The term structure

of the BVIN starts with contango during an initial three-month stable period up to 12 March

2020, with the 10-day BVIN at approximately 55% and the 120 day BVIN closer to 70%.

On black Thursday, when the COVID-19 crisis reverberated through the financial landscape,

bitcoin’s value plummeted by over 30% in a single day. This systematic risk shifted the BVIN

term structure into backwardation, at record levels between 130% for the 120-day and 220% for

the 10-day BVIN, respectively. As the market transitioned into a more range-bounded period

from June to November 2020, the term structure reverted to contango around the 60% level.

This pattern recurs quite frequently; generally, the term structure remains in contango with

with varying magnitudes. Following sudden price jumps, such as those in January and May

2021 (Crypto Winter), and May and July 2022, the term structure transitions to (strong)

backwardation, before correcting in a mean-reverting manner back to contango. The only

exception being Spring 2021, after Bitcoin’s bull run, where the positive correlation between

the underlying and implied volatility causes the BVIN to decline from approximately 150% to

70%, while maintaining the backwardation structure. This behavior is characteristic of many

other implied volatility indices, such as the S&P 500 VIX and other VIX-type indices analyzed

in Section 6.4. Towards the end of the sample period, the curve remains in a calm contango

around the 60% volatility level, with differences between short- and long-term maturities

reaching highest recorded levels. In fact, since July 2021, excluding the systematic impacts

on the underlying (May 2022, TerraLuna Crash; June/July, missed CPI target; November

2022, FTX collapse), bitcoin’s implied volatility has been steadily declining, indicating a

maturing market with increasing liquidity.

Now, let us turn our attention to the realised volatility calculations based on (6.4). Figure

6.2 illustrates exemplary the 30-day BVIN (depicted in red) alongside the 30-day forward

looking realised volatility (shown in black) on a rolling window.14 Similar to the declining

14We do not depict other maturities as they all follow a rather similar structure, not adding much more
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Figure 6.1: Bitcoin Implied Volatility Indices

Bitcoin implied volatility indices for different maturities constructed from out-of-the-money put and call bitcoin
option prices using formula (6.1) for 10 (blue), 20 (green), 30 (red), 60 (cyan), 90 (light green) and 120 (orange)
days maturity. Each time series is constructed at daily frequency between January 2020 to 2023 and we present
volatilities in percentage points.

observation for the BVIN, we find the same declining tendency for the RV. In fact, since the

peak of the bull-run in Spring 2021, the RV exhibits a clear downward trend. The BVIN

is generally higher than the RV across our three-year sample, falling below the RV on only

eight exceptional occasions which include price jumps due to systematic risk or unprecedented

(frequent) change of spot-vol correlation. This suggests that bitcoin options generally have a

positive carry, implying that volatility is overpriced. Indeed, it is only for the COVID crisis

that the RV exceeds the BVIN by more than 140%; for the other seven occasions, we find

relatively low discrepancies ranging between 3% and 30%. The duration during which the RV

exceeds the BVIN varies significantly as well. It is only during the pandemic (March 2020)

and the FTX (November 2022) crash that the RV surpasses the index throughout the entire

30-day span. In all other instances, it ranges between two days and three weeks. The sudden

jumps in RV in March 2020 or November 2022 are statistical artefacts or ‘ghost-features’.

Figure 6.3 depicts the VRP calculated using (6.3), with RV derived from daily log returns

for all maturities. The forward-looking nature of RV is evident here, as the k-day VRP

experiences an upward jump precisely k days prior to a substantial positive or negative return

on bitcoin. The COVID crisis is frequently referred to as a ‘once in a lifetime’ event, and as

such, the VRP for short maturities reached approximately 100,000 USD. That is, an issuer of

a bitcoin variance swap with 1 USD notional would be obligated to pay out 100,000 USD on

any swaps maturing at this time. Longer-term VRPs exhibit less variability and have been

information.
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Figure 6.2: 30-Day BVIN and Realised Volatility

The 30-day BVIN calculated using (6.1) and forward looking 30-day realised volatility using (6.4). We keep
the same color for the BVIN and depict the RV in black on a daily frequency between January 2020 to 2023.
All values are presented in annualised percentage points.

predominantly negative since January 2021, with the buyers of realised variance being required

to pay the issuer anything between 100 to 8,000 USD, primarily dependent on the maturity

date. In fact, short-term swaps transition into positive territory more frequently, exactly 18

times within our three-year sample. In contrast, the 30-day swap only enter positive terrain

in eleven instances, and the 120-day swap merely four times, making short-term swaps less

appealing for writers. A noteworthy characteristic of Figure 6.3 is the increased stability of

the bitcoin VRP from July 2021 onwards, displaying a striking resemblance to an equity VRP

in recent times. Consequently, the VRP remains negative most of the time, only transitioning

to positive for a few days when the bitcoin VIX term structure enters into backwardation.
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Figure 6.3: Bitcoin Variance Risk Premia

The bitcoin variance risk premia for for different maturities, derived using formula (6.3) with daily monitoring
of the forward looking realised variance from January 2020 to January 2023. We set the notional amount
N = $1 and keep the same colors for different maturities. Fo the sake of clarity, we break the payoff axis
(y-axis) between $24,000 and $48,000.

6.3.2 Arithmetic Index

In this subsection, we focus on the arithmetic index calculation by Leontsinis and Alexander

(2017) for bitcoin options data. Figure 6.4 depicts the arithmetic bitcoin VIX indices (upper

plot), and the difference between the BVIN and AVXT (6.1) − (6.5) (lower plot), both in

percentage points of volatility. The arithmetic index exhibits similar patterns and trends to

the geometric calculation, with the term structure primarily in contango but transitioning to

backwardation following abrupt price jumps. A notewothy difference are the distinct magni-

tudes in both contango and backwardation between the BVIN and AVXT. As expected, the

arithmetic indices are generally higher than the geometric BVIN due to the negative jump bias

in the latter. This difference becomes more prominent during particularly volatile periods,

such as March 2020 and summer 2021, and increases with maturity because the likelihood

of a price jump before the swap expires also increases. For instance, the difference for the

120-day swap reaches up to 22 percentage points. Interestingly, maturities up to 30 days

demonstrate only minor discrepancies between the two calculation methods, rarely exceeding

±1%, relative to the BVIN. This can be attributed to the diminished impact of the jump error

for shorter maturities. Another contributing factor is that the strike range traded expands

with maturity, especially for deep OTM puts. The geometric BVIN assigns greater weight

to these low-strike options, which also have considerably lower prices than ATM options.

Nonetheless, there appears to be a shift in future expectations as the difference between the

geometric and arithmetic approaches increasingly zero. The arithmetic index follows the de-
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clining volatility trend and exhibits a less pronounced backwardation. The two crypto-specific

crashes (TerraLuna and FTX) result in slightly lower arithmetic indices compared to their

geometric counterparts, a discrepancy that is corrected between the two crashes.

Next, we examine the arithmetic index value as the fair variance swap rate. The top half

of Figure 6.5 presents the VRP for a $1 notional using (6.7), while the bottom illustrates the

difference between the geometric and arithmetic VRP (6.3 - 6.7). Initially, both calculations

seem to yield similar outcomes in terms of absolute values and patterns. In fact, the difference

between swap maturities up to one month is nearly negligible, excluding unanticipated market

crashes. The number of jumps into positive payoff for the swaps is identical to those of the

geometric VRP, with the sole exception being the 30-day swap being positive nine times

instead of eleven. The primary differences arise from the large discrepancies of the AVXT.

Specifically, longer-term swaps remain negative for extended periods and are generally smaller

than their geometric counterparts. We conclude that, for the 30-day variance swap rate, the

arithmetic calculation captures the expected future realised variance more accurately, as its

deviation from the RV is smaller than the geometric calculation. Longer maturities tend to

overestimate the RV, and thus are less likely to result in a trade.
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Figure 6.4: Arithmetic Bitcoin Implied Volatility Indices & BVIN Differences

Arithmetic bitcoin implied volatility indices for different maturities constructed from out-of-the-money put and
call bitcoin option prices using formula (6.5) for 10 (blue), 20 (green), 30 (red), 60 (cyan), 90 (light green) and
120 (orange) days maturity (upper plot); and the difference (BVIN-AV) on the lower figure. Each time series
is constructed at daily frequency between January 2020 to 2023 and we present volatilities and differences in
percentage points.
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Figure 6.5: Arithmetic Bitcoin Variance Risk Premia

Arithmetic bitcoin variance risk for different swap maturities with $1 notional using (6.7) for 10 (blue), 20
(green), 30 (red), 60 (cyan), 90 (light green) and 120 (orange) days maturity (upper plot); and the difference
(VRPG-VRPA) on the lower figure. Each time series is constructed at daily frequency between January 2020
to 2023 and we the payoff and differences in USD.
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6.4 Determinants of the Bitcoin Volatility Index

This section examines the co-movement of bitcoin variance and its risk premium with more

traditional assets viz. the S&P 500 index, crude oil, gold and the USD/EUR foreign exchange

rate. This research is an intriguing point for both probationers and scholars. First, under-

standing bitcoin’s implied volatility makes it imperative to understand its dynamics and its

potential influence on broader financial stability. Secondly, examining correlations between

bitcoin and established asset classes can provide valuable insights into the evolving role of

cryptocurrencies within diversified portfolios. Thirdly, as cryptocurrency adoption grows, it

becomes more and more important to understand how bitcoin’s volatility interacts with more

conventional assets, shedding light on potential hedging opportunities or systemic risks. Such

an analysis not only enhances the comprehension of cross-asset relationships but also informs

risk management. We download 30-day CBOE implied volatility indices for these assets from

the CBOE website as follows: for the S&P 500 the VIX; for oil (.USO) the OVX; for gold

(.GLD) the GVZ; and for the EURUSD rate (.FXE), i.e. the price of a EUR in USD, the

EVZ.15 We also compare their volatilities in the physical measure, using daily data on the un-

derlying of the options used to compute the volatility indices. The underlying asset data are

downloaded from Refinitive and we calculate the RV on a 30 calendar days basis, considering

only the trading days that are common to all assets. All prices are taken at the time of the

CBOE exchange daily close. Finally, we use the respective volatility indices as a fair-value

variance swap rates to compare the VRP on all five assets from January 2020 until 2023.

Figure 6.6 illustrates the 30-day forward looking realised volatility calculated using equa-

tion (6.4, upper plot) and the volatility indices for all five assets (bottom graph) between

January 2020 to January 2023. The exchange rate exhibits relatively low RV, barely surpass-

ing 9%, even amidst the pandemic. This is unsurprising, as the event affected all currencies

and states. Nonetheless, the impact of the COVID-19 outbreak on the other assets is ap-

parent: all assets record their highest RV during March 2020, ranging from 40% (gold) to

170%/180% (oil/bitcoin). Evidently, bitcoin has the highest overall RV, although the oil RV

(150%) surpasses bitcoin RV (75%) for roughly two months in April 2020 and subsequently

in October 2020 (7%), March and September 2022 (10% each). Between November 2020 and

February 2022, the bitcoin and oil RV appear to develop in opposing directions, indicating a

negative correlation. The S&P 500 realised volatility fluctuates between 8% and 90% (30%

excluding COVID), matching bitcoin’s RV on only three brief occasions of approximately five

days and appears to be independent from other RV developments. The EURUSD VIX expe-

riences a slight ‘jump’ from 5% to 9% during COVID, but remains fairly low afterwards till

the end of our sample. Both VIX and GVZ oscillate around a similar level of approximately

20%, with their positions interchanging as to which is higher. We expect both bitcoin and oil

implied volatility indices to display display similar trends as their RVs. Indeed, bitcoin and oil

15 We would consider macroeconomic factors such as growth or inflation but these are not monitored at
sufficiently high frequency to be included in our analysis.
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stand apart, developing at significantly higher average levels, i.e. at no point do we find any

other index surpassing the BVIN or OVZ. Similar to the RV, the bitcoin VIX surpasses the

oil counterpart during most periods. In fact, only during COVID and shortly afterwards does

the OVZ exceed the BVIN. Notably, in April 2020, a barrel of oil was traded at about -$40,
which led the OVZ jump to over 320%. Beside the absolute magnitudes, all volatility indices

appear to evolve similarly, i.e. a sudden upward jump and a correction in a mean-reverting

correction afterwards, only exception being bitcoin during January 2021.

Figure 6.6: Realised Volatility and Volatility Indices for different Assets

Forward-looking 30-calendar-day realised volatility of bitcoin (red), equities (S&P 500, blue), oil (grey), gold
and FX (EURUSD, green) calculated using (6.4) (upper plot) and the volatility indices of the assets downloaded
directly at the CBOE or through Refinitive. Each time series here is constructed at the trading day frequency
between January 2020 to 2023 and volatilities are presented in percentage points.
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Next, we examine the resulting risk premia for 30 calendar day variance swaps across the

five asset classes. Figure 6.7 compares the VRP time series for the respective assets. We retain

the same colors for each asset class, but employ distinct notional amounts for different assets

when calculating the variance risk premia to enhance clarity. The bitcoin and oil swaps have a

notional N=$1, the equity swap has a notional of $3, gold has N=$10, and finally, N=$50 for

the foreign exchange swaps. These notional values serve to scale the VRP to comparable levels

in the lower graph, given the disparities in realised volatilities displayed in the upper graph

in Figure 6.6. With the exception of bitcoin, all assets adhere to the anticipated pattern of

low negative swap payoff with occasional jumps into positive territory following price surges.

In fact, across the three-year sample, the S&P 500 VRP is negative in 79.32%, oil VRP in

80.95%, gold VRP in 86.62%, and the EURUSD rate in 64.62% of the time, each with varying

magnitudes. In other words, a short position in a variance swap on any of the asset classes

under consideration would yield a profit for the majority of the time. Although bitcoin has an

comparable distribution of negative values (77.57% of the time), it records considerably lower

values than the other assets and displays significantly higher jumps when volatility enters the

market. This can be attributed to bitcoin’s inherently high volatility level, which is further

amplified due to the squared factor of the variance swap.

It is essential to emphasise the March 2020 scenario once more, wherein all assets exhibit

a (strong) positive VRP, followed by a substantial (negative) correction. Excluding commodi-

ties, throughout the initial quarter of 2020, all assets appear to move in a similar manner,

suggesting high correlation. This structure is later disrupted, as the virus’s aftermath led

investors into presumably safe heavens such as gold. Remarkably, following the COVID-19

crash, bitcoin’s VRP remained consistently below zero until the underlying began its rally

(December 2020) and reached its (at the time) all-time height in April 2021. Indeed, from

April 2021 until June 2022, bitcoin emerged as the ‘safest’ asset class among those compared

concerning the duration of negative risk premia. Over the course of 14 months, bitcoin’s VRP

jumped into positive territory merely twice and remained negative in 95.11% of the time. In

contrast, US equities experienced twice as many positive VRP jumps and remained negative

only 84.44% of the time, while oil and FX leapt three times as much as bitcoin, exhibiting a

negative VRP in 84% and 54.67%, respectively. Additionally, gold demonstrated three jumps

with a negative VRP in 90.18% of the time. In fact, from April 2021 to the end of our sample,

bitcoin VRP (80%) remained longer negative than the S&P 500 VRP (76%).

This observation suggests that bitcoin option traders tend to overprice the derivatives,

making variance swaps on bitcoin a prime opportunity for writers. Within a hypothetical

framework – writing daily variance swaps on each asset class with $1 notional starting from

May 2021 and disregarding transaction costs – bitcoin yields the highest overall (daily average)

profit exceeding one million USD ($2552). Oil ranks second, albeit considerably trailing, with

a total (daily) PnL of $260,350 ($660), succeeded by equity and gold at $54,480 ($138) and

$43,340 ($110), respectively. A short position on the FX variance swap would be nearly offset.
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Figure 6.7: Variance Risk Premia for different Assets

The 30-calendar-day VRP for bitcoin, equities (S&P 500), oil, gold and FX (EURUSD). We keep the same
colours and use a notional of N=$1 for bitcoin and oil, N=$3 for equity, N=$10 for gold and N=$50 for FX
to depict the VRP more clearly. For the sake of readability, we break the y-axis between -$39,000 to -$20,000;
and between $15,000 and $25,000. All calculations are on a daily basis, using the CBOE’s closing time. Each
time series is constructed at the trading day frequency between January 2020 to 2023.

Certain observations from Figures 6.6 and 6.7 are supported by the correlation matrices

reported in Table 6.1. It shows pairwise correlations among daily changes in the three different

variance matrices depicted in the graphs. The first matrix displays correlations between

implied volatility indices, the middle matrix outlines correlations between the RVs of the

assets, and the bottom matrix reports correlations between each asset’s VRP. Generally, the

highest correlation appear among RVs, as shown in the middle matrix of the table and seen in

Figure 6.6. To some extent, this can be attributed to the pandemic’s impact on the market.

It is important to note that the RV does not provide any information on the direction of the

volatility. The high (positive) correlation between gold and equity, or gold and FX, is most

likely attributed to the leverage effect of equities and safe heaven properties of gold. That

is, when stock prices decline (RV↑), investors tend to allocate their capital into commodities,

which subsequently elevates their prices (RV↑). Particular emphasis should be placed on the

FX column. Note that we consider the EURUSD rate, i.e. the USD value of AC1. Consequently,

an increase in the EUR is equivalent to the decrease in USD, implying that the purchasing

power of $1 diminishes. This factor might explain the (strong) positive correlation between

FX and other asset classes’ RV.We find the highest correlation of bitcoin RV with equities,

which is less surprising given the increasing correlation between bitcoin and equity indices.16

16For example, this Nasdaq article highlights the changes in S&P 500 and bitcoin correlation over recent
years and points out an increasing (> 0.6) correlation between bitcoin and US equity indices. Accessed on 01
May 2023.

https://www.nasdaq.com/articles/is-bitcoin-correlated-to-the-sp-500
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Volatility indices exhibit lower degree of correlation, with a few notable exceptions con-

cerning equity and gold. These strong correlations signify contagion in the expectations of

options traders. For instance, when the S&P 500 index falls, the VIX increases (leverage

effect), causing investors to rush into gold, and subsequently raising its price. Traders price

this panic-driven behaviour into the options, which increases the GVZ and thus the (strong)

positive correlation between the indices. By the same token, we can argue for the positive

correlation of gold and FX. Assuming high future volatility for the EURUSD rate, it would

most likely drive holder of either side of the currency towards gold, consequently increase both

implied volatility indices (Lucey and Tully, 2006). The bottom part of Table 6.1 reveals rather

low correlations between changes in the bitcoin VRP and changes in the VRP for all other

assets. Paradoxically, despite bitcoin’s potential classification as a currency, it demonstrates

a very low but significant correlation with the EURUSD exchange rate VRP, making it an

optimal diversification choice for any currency portfolio.

Table 6.1: Correlation Matrices

Perason correlation between daily changes in volatility measures and risk premia in bitcoin, oil, equities (S&P
500), gold and FX (EURUSD). The sample covers all trading days within the period from January 2020 to
Janaury 2023 and has a sample size of 761 trading days. We display the statistical significance of the correlation
at the 1%, 5% and 10% level with one, two and three asterisk, respectively.

Bitcoin Equity Oil Gold FX

Volatility Index

Bitcoin 1 0.147
∗∗∗

0.021 0.115
∗∗∗

-0.026

Equity 1 0.263
∗∗∗

0.356
∗∗∗

0.342
∗∗∗

Oil 1 0.198
∗∗∗

0.244
∗∗∗

Gold 1 0.442
∗∗∗

FX 1

Realised Volatility

Bitcoin 1 0.342
∗∗∗

0.060 0.221
∗∗∗

0.133
∗∗∗

Equity 1 0.339
∗∗∗

0.237
∗∗∗

0.238
∗∗∗

Oil 1 0.066
∗

0.145
∗∗∗

Gold 1 0.281
∗∗∗

FX 1

Variance Risk Premium

Bitcoin 1 0.168
∗∗∗

0.014 0.292
∗∗∗

0.061
∗

Equity 1 0.153
∗∗∗

0.325
∗∗∗

0.196
∗∗∗

Oil 1 0.082
∗∗

0.150
∗∗∗

Gold 1 0.320
∗∗∗

FX 1
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We want to investigate the determinants of the bitcoin implied volatility index. For this,

we perform a linear regression of the BVIN time series using the other assets as regressors to

evaluate to the level to which other assets influence the bitcoin volatility index. That is, we

consider:

BVINt = α0 + α1VIXt + α2OVXt + α3GVZt + α4EVZt + ϵt,

where α = (α0, ..., α4) denotes the coefficient vector for the respective volatility indices.

We assure stationarity of each implied volatility index time series.17 Table 6.2 summarises

the results of the ordinary least square regression. The OLS model has two statistically

significant regressors (GVZ and EVZ) which impact the dependent variable (BVIN), while

the other two regressors do not appear to have a significant effect. Surprisingly, equity and

oil VIX loose their significant impact on the BVIN. The variance inflation factor (VIF) shows

no multicollinearity between the predictors but we find clear suppression effects. That is,

we perform individual linear regressions and find that GVZ changes from statistically non-

significant in a single regression to significant in a multiple regression. Similar, the VIX

becomes statistically non-significant in the multiple regression while being significant in the

single. 18 The model as a whole is statistically significant, but only explains approximately

12.1% of the variation in the dependent variable. These findings align with the correlation

matrices of Table 6.1 and indicate that only gold (positive impact) and currencies (negative

impact) influence the bitcoin implied volatility significantly.

The rationale behind the negative GVZ impact on the BVIN could be attributed to cur-

rency fluctuation and the interplay of BTC/USD/EUR. In currency markets, a jump in either

direction generates considerable volatility, as FX-rates are considered low-volatility assets.

Consequently, the leverage effect for FX-rates may not be as pronounced or consistent as it

is in equity markets. Thus, a declining or small GVZ indicates a fairly stable relationship

between EUR and USD over the next calendar month. During periods of heightened un-

certainty, particularly the two years following the pandemic, the general demand for USD

increases as it is commonly perceived as the world’s reserve currency. In such instances, we

see a leverage effect for currencies, wherein option trader anticipate an increased demand of

USD – equivalent to a decrease in the EURUSD rate – and price this expectation into options,

leading to a higher GVZ. As the USD value of euro depreciates, the purchasing power of the

dollar increases, making it (relatively) more affordable to buy bitcoin options. This (relative)

price reduction of the options influences implied volatilities, ultimately decreasing the index.

We would expect similar, if not identical, results for other currencies, such as GBP or JPY,

as G10 central banks have nearly identical adjustments to their recent interest rate policies.

17In fact, we try different manipulation techniques, e.g. integrating the data or performing the regression
on the log, but none show better results. Additionally, we change the depending variable to any of the other
volatility indices to investigate to what extend the BVIN influences the other volatility indices but we do not
find any more significant results other than the ones we present here.

18These findings confirm Badshah et al. (2013), who perform a similar analysis (excluding bitcoin) and find
bi-directional spillovers only for gold and the FX rate.
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Hence, no isolated event has led to one currency possessing significant more purchasing power

than another.19 Another explanation might be personal preferences of investors. As the

GVZ increases, investors might consider alternative assets like bitcoin to be more attractive

regarding their risk-reward profile and consider bitcoin safe(er) in a sense of stability.

An explanation for the positive impact of the GVZ on the BVIN might be bitcoin’s diver-

sification potential (Platanakis and Urquhart, 2020), or its promise of an inflation hedge. In

the event that fiat currencies loose value, as recently seen with the Turkish Lira or Argentinian

Peso, investors tend to rush into commodities like gold or digital commodities, like bitcoin.

Another plausible explanation might be due to common investor behaviour. Both bitcoin and

gold are often compared due to their shared characteristics, i.e. finite resources and potential

stores of value. As such, they might share common drivers such as macroeconomic events

of fluctuation in the USD. Some even consider both to be safe havens, although disputable.

Hence, the positive relationship might reflect the behaviour of investors trading both assets.

Table 6.2: OLS Regression Results

Summary statistics of an ordinary least square regression on the BVIN. We display the number of observation,
degree of freedom of the residuals and model, (adjusted) R2 and F-Test statistic, among other performance
criteria. Furthermore, we show the α coefficient, standard deviation, t-test value and the p-value for the four
regressors VIX, OVX, GVZ and EVZ.

Dep. Variable: BVIN R-squared: 0.121
Model: OLS Adj. R-squared: 0.117
Method: Least Squares F-statistic: 26.08
No. Observations: 761 Prob (F-statistic): 2.80e-20
Df Residuals: 756 Log-Likelihood: -3255.4
Df Model: 4 AIC: 6521.
Covariance Type: nonrobust BIC: 6544.

coef std err t P> |t| [0.025 0.975]

const 69.638 3.054 22.803 0.0 63.643 75.633
VIX 0.141 0.154 0.917 0.359 -0.161 0.443
OVX 0.027 0.034 0.8 0.424 -0.04 0.094
GVZ 1.346 0.256 5.265 0.0 0.844 1.848
EVZ -2.23 0.326 -6.847 0.0 -2.869 -1.59

Omnibus: 60.987 Durbin-Watson: 0.124
Prob(Omnibus): 0.0 Jarque-Bera (JB): 78.251
Skew: 0.67 Prob(JB): 1.02e-17
Kurtosis: 3.819 Cond. No. 323

19However the CBOE does not provide a volatility index on these currencies and we omit them from our
research.
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6.5 Concluding Remarks

Throughout the course of this chapter, we construct a new set of volatility indices which we call

the crypto ‘investor fear gauge’, after the classic paper by Whaley (2000) that introduces the

equity investor equivalent. The bitcoin market structure differs from markets for other assets

because there are literally hundreds of spot exchanges and numerous derivatives exchanges,

almost all of them are unregulated and they trade 24/7 on every day of the year. As such, the

bitcoin price moves very much more quickly than those for standard asset classes. Thus, when

designing volatility indices for bitcoin, in addition to the standard curve of one month and

longer we examine the empirical behaviour of bitcoin volatility indices that are constructed

using the CBOE methodology at short (10 days), mid (20 days), long (30 days) and ultra-

long (60, 90 & 120 days) terms. We compare the indices with those based on an alternative

methodology which represents a fair value for the average sum of squared price increments

and which has no jump risk, unlike the CBOE formula

We use the k-day bitcoin VIX as the fair-value of an k-day variance swap, compare this

with the k-day realised volatility and hence examine the empirical properties of the bitcoin

variance risk premium. The premia have some features in common with the variance risk

premia on other assets. While the swap payoff is generally negative with occasional jumps,

the magnitude of bitcoin VRP across all maturities is much more pronounced and jumps occur

more frequent for short-term swaps. However, it is not clear that they are closely correlated

with the variance risk premia on other assets. Bitcoin itself has been regarded as a safe-haven

asset that offers considerable diversification potential for traditional assets and we ask the

question whether this is also true of for variance?

To address this question we compare our 30-day bitcoin VIX with the CBOE volatility

indices for the S&P 500 (the original VIX), crude oil, gold and the EURUSD exchange rate.

We examine the relationships between all five assets in terms of their realised volatility, implied

volatility and variance risk premia. Bitcoin itself and also its variance has been behaving very

similarly to traditional assets. Its implied volatility and realised volatility shows positive

correlation with all assets except the FX rate. Remarkably, bitcoin emerges as the safest

asset in our portfolio, as its variance risk premium sustains a negative value longer than

any other asset over an extended duration of 14 months. Consequently, any variance swap

writer would have reaped great profits from writing variance swaps on bitcoin. In fact, by

the end of our data sample in January 2023, maintaining a short position in the bitcoin

variance risk premium proved more lucrative than the equity variance risk premium. Finally,

we investigate the relationship between our volatility index and the indices of other asset

classes to discern their influence on the BVIN. Only gold (positive) and foreign exchange

rates (negative) exhibit a significant relationship with the BVIN. In summary, it remains

challenging to attribute diversification potential to Bitcoin or its variance, at least within the

prevailing market conditions. However, it does present an exceptional opportunity for any

writer of variance swaps.



CHAPTER 7

IMPLIED VOLATILITY DYNAMICS

Motivation: The option implied volatility is essential for market participants

and traders. It serves as a key metric for future market volatility and reflects the

belief of sophisticated traders about future returns of the underlying. Moreover,

the implied volatility acts as the standard pricing unit for options among traders

and plays a significant role in risk management. Naturally, the ability to forecast

and control the dynamics of future changes in the implied volatility is of utmost

importance for pricing and hedging options, as well as for trading systematic

volatility. Practitioners and academics still try to exploit the predictability of the

surface.

Summary: We model and predict the dynamics of the bitcoin implied volatility

surface. To accomplish this, we employ a robust cross-sectional ordinary least

square to fit intra-day surface data to a second-order Taylor expansion and gener-

ate a time series of model parameters. Subsequently, we use a vector-autoregressive

and long-short-term memory model to analyse and forecast the time series and

evaluate the predictions based on a set of statistical measures, e.g. squared, di-

rectional and absolute error. To evaluate the economical impact, we assess the

profitability of two potential trading strategies derived from our predictions and

benchmark their performance against that of a naive model. Although we are able

to predict the surface accurately for some moneyness-maturities and leverage this

to create profitable trading strategies, real world implications such as transaction

costs and spreads nullify the profit.

126
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7.1 Modelling the Implied Volatility Surface

The Black and Scholes (1973) assumption of constant volatility throughout the entire options

chain has been refuted by numerous studies in the financial literature. In fact, the implied

volatility depends strongly, but not exclusively, on the option’s strike level and its time to

maturity. On a more general level, even on the asset class itself. These variations in implied

volatility across different strike level and TTM result in the implied volatility surface. For

equity index options, e.g. S&P 500 index options, the surface structure has been researched

extensively and is well understood. Particularly, the so-called ‘leverage effect’ describes a

(strong) inverse relationship between ATM implied volatilities and the underlying asset, see

for example Haugen et al. (1991) or Bouchaud et al. (2001). During periods of low volatility,

the implied volatility’s term structure displays an concave structure, increasing with maturity,

which is inverted in high volatility regimes, and the entire surface shifts upwards. The strike-

dependency results in the famous volatility skew which resembles an asymmetric smirk or

smile, i.e. the OTM put exceeds OTM call IV, which tends to flatten out for longer maturities.

Unfortunately, these simplified rules of thumb do not hold entirely for the bitcoin im-

plied volatility surfaces. Figure 7.1 provides an exemplary illustration of two bitcoin implied

volatility surfaces backed out from traded option prices on Deribit on 15 January 2021 and 17

March 2022. The surfaces cover moneyness ranging from 0.6 to 1.4 and maturities between

five days and two months. For clarity, we interpolate and extrapolate in an arbitrage-free

way considering only ATM and OTM options due to higher liquidity. Note that, like options

on other asset classes, bitcoin implied volatilities display a clear strike-dependency, resulting

in an asymmetric skew that holds across all maturities. The convex ‘U’-shape of the skew

is most prominent for short-term maturities and flattens as TTM increases. Considering the

implied volatility skew of equity index options as a function of moneyness, it typically displays

a higher IV for OTM puts than calls with same delta due to the negative correlation between

underlying and volatility. Hence, put options provide an excellent insurance against falling

index values and traders are willing to pay more. The March 2022 bitcoin surface illustrates

a similar smile pattern; however, this observation is not consistent with the January obser-

vation. Specifically, while the skew keeps its smile structure, the IVs for OTM calls exceed

their put counterparts. The short-term deep OTM (m = 1.4) call option in January 2021

depicts a 20 percentage point surplus compared to its put counterpart (m=0.6). As we have

seen in Section 5.2, the leverage effect does not hold for bitcoin which indicates either an

extremely bullish trend or a positive correlation between underlying returns and volatility, a

phenomenon hardly seen for equity options. Furthermore, we observe a substantial change

in the overall surface level between the two dates despite similar underlying values ($39,500
in January 2021 and $41,000 in March 2022). This characteristic, however, is not unique to

bitcoin as it is well known that IVS dynamically changes its shape and level depending on

traders’ beliefs of future returns. Overall, the base level of the surface has changed from 120%

to 80% due to different prevailing market regimes.
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Figure 7.1: Bitcoin Implied Volatility Surfaces

Implied volatilities backed from traded bitcoin options on Deribit on 17 March 2022 and 15 January 2021,
respectively. The underlying prices on these days were $41,000 and $39,500. We illustrate options with
moneyness ranging from 40% below (put) and above (call) the current underlying value. The maturities range
from five days to two months, covering more than 95% of the overall traded volume. We interpolate the surface
to finer grids in an arbitrage-free way.

(a) 15 January 2021 (b) 17 March 2022

Modelling the implied volatility surface and its dynamics poses significant challenges, let

alone predicting it. A variety of models are capable of explaining the observed behavior

documented above. However, sudden shifts in the surface, variations in shape, and uneven

changes in the smirk, particularly for the tails, make capturing it a difficult task. In this

chapter, we aim to capture and predict the dynamics of the bitcoin IVS and examine their

behavior. Our approach is twofold: we first consider a parametric representation of the

surface, and subsequently model the time series of the parameters. Intriguingly, we are able

to predict the surface accurately and leverage this information to execute profitable trading

strategies. Nonetheless, transaction costs and the bid-ask spread eliminate our profits.

7.2 Experimental Design

The academic standard of predicting implied volatility is two-fold. First, we capture the key

elements driving the surface; and second, we model the time series of these elements. As such,

this study examines (i) the accuracy of the chosen model to capture the surface; and (ii), how

well the time series model predicts changes.

7.2.1 Implied Volatility Model

Daglish et al. (2007) propose an intuitive approach, where the implied volatility, given as

a function of moneyness and time to maturity, is modelled through a second-order Taylor
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expansion around the two dependent variables.1 This approach builds on the earlier implied

volatility model proposals of of Rubinstein (1994), Derman and Kani (1994) and Dumas et al.

(1998), who emphasise different (multi-dimensional) polynomial functions of quadratic order

to express the implied volatility:

σt(m, τ) = β0,t + β1,tm+ β2,tm
2 + β3,tτ + β5,tmτ + ϵ

or

σt(m, τ) = β0,t + β1,tm+ β2,tm
2 + β3,tτ + β4,tτ

2 + β5,tmτ + ϵ,

where σt(m, τ) is the implied volatility at time t of an (OTM) option with moneyness m

and TTM τ , and ϵ describes the noise or error term.2 These polynomial models are well-

suited to capture the instantaneous implied volatility across both the moneyness and maturity

dimension, whilst providing an intuitive interpretation of each beta coefficient. At the same

time, these models offer a simple and easy-to-implement approach which is often preferred by

practitioners and tend to level the results created by more sophisticated models. Furthermore,

unlike stochastic volatility models, this representation requires no additional assumptions.

Each parameter corresponds to an observable surface characteristic: The constant, β0 ,

captures the overall level of the surface; the parameter β1 captures the slope of the implied

volatility smile with respect to the moneyness, while β2 reflects its curvature. By the same

token, β3 reflects the slope of the term structure and β4 its curvature. Any possible synergy

between time to maturity and moneyness is seized in β5 . However, despite providing excellent

surface fits, this approach presents slightly unstable parameters over time as Dumas et al.

(1998) points out but this poses a negligible problem since the time series are stable enough

to to be modelled, as Gonçalves and Guidolin (2006) explain in their two-step approach.

In light of the documented advantages and the outstanding success for equity index im-

plied volatility prediction and trading (Bernales and Guidolin (2014)) as well as cross-sectional

pricing (Brandt and Wu (2002)), we opt for a deterministic IVS representation of Dumas et al.

1Recall that the aim of this study is not to price or hedge bitcoin options across the surface accurately, but
rather predict their implied volatility a step ahead. Alternatives involve various filtering methods and principal
component approaches in which surface data is reduced to a set of driving factors. (Cont and Da Fonseca, 2002)
first smoothing and then model the S&P500 or various foreign-exchange (FX) surfaces (Beer and Fink, 2019)
using a Nadaraya-Watson estimator with a Gaussian kernel. However, these type of models require additional
steps in form of a principal component analysis (PCA) to generate a time series. Consequently, predictions
are less intuitive for traders and the multi-step process gives little incentive to implement these models in a
practical environment. Furthermore, a PCA approach yields best results if correlation between parties is high,
i.e. high correlation between implied volatilities for different strike and maturity, which is not the case for
bitcoin ATM/OTM IVs, as seen in Chapter 5. Fengler et al. (2007) propose a semiparametric factor model in
which the use a the quartic kernel, similar to a Kalman filter, to estimate three parameters on a three year
daily DAX IVS dataset. Similar to our approach, they use a VAR model to forecast their parameter yielding
accurate surface forecasts, see Audrino and Colangelo (2009) for a summary.

2We excluded two more models since these reflect the BSM assumption of a constant volatility and the a
model which captures only the smirk, similar to the second order polynomial representation of the IV smile
proposed by Lewis (2000). However, these two models are not suitable to model the surface. First, the surface
is never constant, second, the absence of a maturity factor makes it impossible to obtain feasible values in the
first place.
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(1998). However, it is important to note that the two model mentioned earlier form just a

baseline. Hence, we explore various data manipulation techniques that could potentially lead

to an improved overall fit. Pena et al. (1999) compare and extend the structural forms of

Dumas et al. (1998) to different implied volatility (smile) models. In addition to the existing

models, the authors introduce alternative parametric frameworks using log moneyness for the

explanatory variables and conclude that this data transformation yields a better fit compared

to the base models. Other authors (Tompkins and D’Ecclesia, 2006) advocate the use of

time-adjusted moneyness, M(m, τ) = lnm√
τ
, rather than standard moneyness. Although this

approach is intended to normalize moneyness across all maturities, it could potentially affect

the explanatory power of the moneyness as it depends on another variable. Furthermore, both

Gonçalves and Guidolin (2006) and Bernales and Guidolin (2014) assume the relationship ex-

pressed in the previous models holds for the log surface. We consider all feasible deterministic

models and decide on the best for our further research. For this, we compare numerous vari-

ations of the base model documented above, taking into account goodness-of-fit evaluated

based on various criteria. We classify the variations into three main categories: base, log and

time-adjusted moneyness (tam) models, and test the fit with different numbers of parameters

within each category. In total, we test the following models:3

σ
t
(m, τ) = β

0,t
+ β

1,t
m+ β

2,t
m2 + β

3,t
τ + β

5,t
mτ + ϵ (Base I) (7.1)
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1,t
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3,t
τ + β
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5,t
mτ + ϵ (Base II) (7.2)

σt(m, τ) = β0,t + β1,t lnm+ β2,t lnm
2 + β3,tτ + β5,t lnm τ + ϵ (Log I) (7.3)
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lnσt(m, τ) = β0,t + β1,tM(m, τ) + β2,tM(m, τ)2 + β3,tτ + β5,tM(m, τ)τ + ϵ (Tam I) (7.5)
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lnσ
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0,t
+ β
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M(m, τ) + β

2,t
M(m, τ)2 + β

3,t
τ + β

4,t
τ2 + β

5,t
M(m, τ)τ + ϵ (Tam III) (7.7)

In the following paragraph, we outline the parameter estimation method we use. While

a simple cross-sectional ordinary least squares regression is the intuitive approach to esti-

mate the beta coefficients, Hentschel (2003) cautions that measurement errors such as non-

synchronous underlying prices or tick sizes could lead to heteroskedasticity in the residuals or

autocorrelated errors of the OLS. Such violations of the OLS assumptions may result in false

or biased conclusions.4 To mitigate this risk, we employ a robust cross-sectional OLS and use

3Note that there exist theoretically infinite permutations of the base models documented above. Each
extension of this would probably yield a better results. However, we need to consider a feasible trade-off
between further improvements and overcomplicating the problem. We decide to consider only the following
as these has been proven effective for alternative asset classes in the past. Furthermore, the betas and error
notation is the same across all models. This, however, is a manipulative use of notation and should not imply
that the betas are identical across the models. We use this notation for the sake of clarity and shall distinguish
more precisely at a later stage if needed.

4The author proposes an alternative approach to fit the deterministic model using the generalized least
square (GLS) method which takes into account the covariances of the residuals.
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the standard Newey and West (1994) method to correct standard errors for heteroskedasticity,

autocorrelation and other misspecification of the data. Furthermore, we validate the station-

arity of the dependent variable data by performing an Augmented Dickey-Fuller (ADF) test

on the time series of constant-moneyness and constant-maturity (log) implied volatilities.5

At any time step t we estimate the vector of coefficients βt = (β0 , β1 , β2 , β3 , β4)
⊺ and

βt = (β0 , β1 , β2 , β3 , β4 , β5)
⊺, respectively, using a robust cross-sectional OLS on all suitable

implied volatilities. For the sake of clarity and readability, we omit the time-dependent

subscript and model-dependent superscript for each single beta coefficient. First, we filter out

all options that violate the no-arbitrage, no-trading or spread constrain explained in Section

3.1. While other researchers often filter out short-term options, we retain these in our dataset

as long as they satisfy the no-arbitrage and trading conditions previously mentioned. Indeed,

the interest in bitcoin options is heavily concentrated on short-term options up to ten days, as

seen in Section 3.2. However, we filter out ultra-short-term options, i.e. those with less than

three days to maturity. We do this because (i) ultra-short-term options generally trade only

one ATM strike, thus not adding much information to the surface shape; and (ii), modeling

the implied volatility of these ultra-short maturities proves immensely challenging, as the term

structure shows ‘bumps’ in the implied volatility.6 We then perform regressions based on the

seven models presented above, i.e. using various manipulated market implied volatilities, to

determine which yield optimal estimates for β. To ensure viable results, we only conduct

the regression if the sample size exceeds 50 suitable options. These regressions are conducted

on market data snapshots captured every eight hours from August 2019 to August 2022,

resulting in over 3200 observations and more than 1.5 million option prices. This process

produces a time series of beta vectors, or multiple time series of individual beta parameters.7

Additionally, we provide various statistical measures to evaluate the model fit.

Table 7.1 presents a comparison of various model selection criteria, including the average

Akaike information criterion (AIC), the Bayesian information criterion (BIC), (adjusted) R2

with a special emphasis the root mean square error for each of the tested models over all

regressions.8 We concur with the findings of Pena et al. (1999) that the log model provides a

5We perform an augmented Dickey-Fuller test on the (log) implied volatilities time series for different
constant moneyness and maturity options, interpolated in an arbitrage-free way. Independent of the moneyness
or maturity, we are able to rejecting the null hypothesis of an unit root existence at 1% significance, hence
assuming the data to be stationary.

6This phenomena is not exclusive visible for bitcoin and seen in ever asset class (Medvedev and Scaillet,
2007). The delta-gamma-vega hedging costs of these options are immense, resulting in a very sensible area of
the surface. Indeed, as an example, on October 4, 2022 the day-ahead ATM option had a IV of 59.98%, the
2 Days to Expiration (DTE) 60.73%, the 3 DTE 63.71%, the 10 DTE 63.15% 17 DTE 63.05%, the 24 DTE
62.91% and the 52 DTE 65.69%. This ‘bump’ in the IV term structure, albeit small, is quite common for these
ultra-short term options across all asset classes.

7Contrary to the two previous chapters, we include a much wider dataset. Note that we considered in
Chapters 5 and 6 only volatility skews for certain maturities and required a wide range of strikes. While this
was not given prior to 2020, we are confident that the options data is sufficient enough to draw conclusions on
the entire implied volatility surface. Additionally, a larger dataset will be beneficial for further research in this
chapter. Overall, the average number of contracts per regression was 117. The lowest number was 50 and the
maximum 245.

8To evaluate model performance and account for real-world conditions, we divide our data into three sets:
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superior fit compared to the base form. However, the models with time-adjusted moneyness

demonstrate exceptional performance, surpassing both base and log models across all metrics.

Among the Tam models, Tam III offers the best fit, largely due to its incorporation of six beta

coefficients, compared to the five independent parameters in Tam I and Tam II. Furthermore,

the penalty term for the extra parameter does not seem to significantly affect the fit, as

suggested by the smaller AIC and BIC values compared to the other Tam models. Based

on these results, we opt to exclude the base and log models from further consideration and

proceed with the Tam models.

We now evaluate the significance of each beta parameter on the implied volatility, con-

sidering the average p-value of a two-sided t-test for each parameter across all regressions.

Surprisingly, the β5 parameter, which is the coefficient capturing synergies between moneyness

and maturity, exerts only a slight impact on the implied volatility. This coefficient exhibits

a significant impact in only 46% (Tam I) and 56% (Tam III) of cases, respectively, using a

standard 10% significance level. Despite this, we choose not to eliminate this model based

solely on one less significant parameter. In Tam II, each coefficient demonstrates a substantial

impact on the implied volatility fit, as indicated by the 25th percentile of each beta parame-

ter’s p-value being below 0.01. This high significance of coefficients leads us to select Tam II

as our primary model, even though its fit is second-best compared to Tam III. For the sake

of clarity and readability, henceforth we will refer to Tam II (7.6) as ‘Model 1’ and Tam III

(7.7) as ‘Model 2’.

Table 7.1: Model Evaluation Criteria

Summary of statistical model evaluation measures. For each model, we present the Akaike information criterion
(AIC), Bayesian information criterion (BIC), R2 as well as adjusted R2 value and the root mean square error
(RSME) as an average over each regression. The cross-sectional regressions are performed considering suitable
options on an eight hour frequency coverings a three-year period starting from August 2019.

Criterion Base I Base II Log I Log II Tam I Tam II Tam III

AIC -208.76 -219.2 -244.57 -256.58 -350.77 -372.74 -382.91
BIC -195.63 -203.44 -231.44 -240.83 -337.64 -359.61 -367.15
R2 0.419 0.475 0.571 0.6178 0.86 0.886 0.898
Adjusted R2 0.394 0.447 0.553 0.597 0.853 0.88 0.892
RMSE 0.092 0.087 0.079 0.074 0.053 0.047 0.045

To support our decision, we replicate implied volatilities using beta coefficients derived

from the two models (7.6) and (7.7), and compare these volatilities with the observed market

surface data. Figure 7.2 illustrates the market implied volatility alongside the volatility repli-

cated from the fitted beta coefficients of the two models. The top row of the figure focuses

an in-sample (or train) set, a validation set, and an out-of-sample (or test) set. This division is based on a
30:6:5 month ratio and covers the periods August 2019 to January 2022, February 2022 to July 2022, and
August 2022 to end December 2022, respectively. We adopt this ratio in line with the recommendation of
Hastie et al. (2009), which allows for robust training of potential relationships while accommodating different
regimes. For each of the models, we define and calibrate the optimal model parameter using the 73% of the
data.



7.2. EXPERIMENTAL DESIGN 133

on the implied smile for synthetic 30-day constant maturity, with a strike range between 0.8

(OTM puts) and 1.2 (OTM calls). We interpolate observed implied volatilities using shape-

preserving PCHIP splines in an arbitrage-free manner for the market IVs (top left graph),

while we calculate the smiles for Model 1 and Model 2, respectively. Both models replicate

the general smile and smirk shape, with the transition from negative to positive skew clearly

evident in both models, mirroring actual market observations. Overall, the smile replication

using either model yields highly satisfactory results and correctly captures the general level of

the smile. Furthermore, we examine whether the arbitrage-free constraints hold for the mod-

elled surface and find no violation for any strike level or maturity up to nine months. Given

the model structure, the long-term maturities might violate the no-arbitrage constraints. We

find that on some occasions this happens for maturities longer than nine months. Therefore,

we omit these from further consideration. However, neither model is capable of perfect repli-

cation, particularly for out-of-the-money tails and extreme long-term structures. Indeed, we

find significant discrepancies, particularly for deep OTM options.
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Figure 7.2: Market and Model Implied Volatility Comparison

Comparison of daily market and model implied volatility smiles (upper row) and term structure (lower row) over a three-year sample period starting from August
2019. Both the x− and z−axis are identical for all six graphs, i.e. the date (x−axis) and implied volatility in percentage points (z−axis). The y− axis on the
upper half is given as moneyness (K/S) while the lower y−axis reflect the options’ time to maturity in years. The left column depicts the actual market skew
and term structure, the middle column presents the implied volatilities calculated using the betas of Model 1 in (7.6) and the last columns illustrates the results
obtained using Model 2 from (7.7). The upper half of the figure considers 30-day constant maturity bitcoin options with strike levels 20% below and above the
current underlying values. This is due to the high liquidity for wide strike ranges of this particular maturity. We decide to consider only OTM implied volatilities,
i.e. puts with m < 1 and calls for m ≥ 1. The lower half illustrates the ATM IV term structure of bitcoin options, ranging between three days to three months
till expiry. We decide to focus on the ATM options as these are the most traded strike level s with highest information content. Maturities between one and three
months already lack trading volume, hence there is no point in considering longer maturities.
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Given that both models are proficient in replicating the surface, we aim to analyse each

beta coefficient in more detail. Figure 7.3 illustrates the time series of the four beta coefficients

estimated using the robust OLS method from Model 1 in (7.6), depicted in red, during our

in-sample period from August 2019 to August 2022 at eight-hour intervals. It presents each

beta coefficient on the same time scale, in increasing order from β0 to β4 . Likewise, Figure

7.4 depicts each beta coefficient estimated using Model 2 in (7.7), represented in blue, on

the same time scale and frequency. The first four coefficients of both Model (7.6) and (7.7)

capture the same surface characteristics. Consequently, we observe that the time series of

each coefficient follow comparable paths, despite not being identical in terms of their values.

Take, for example, the intercept of the regression, denoted by β0. This coefficient measures

the overall surface level. Consequently, we expect the time series of β0 to resemble the constant

maturity ATM implied volatility development in Figure 5.1. For both models, the intercept

fluctuates between ±1 exhibiting a mean-reverting behaviour, with sudden positive jumps

following bitcoin price shocks. As we are modelling the log surface, a coefficient value of

zero implies a constant volatility of 100%. The parameter generally exhibits negative values

throughout most of the sample period, indicating base volatility levels below 100%. Note that

modelling the IVS solely through β0 would imply the BS assumption of constant volatility.

Contrary to prior research, we did not detect any significant instability in this parameter over

time. In fact, the parameter exhibits no more noise than the ATM implied volatilites.

The next parameter, i.e. β1 , captures the slope of a linear representation of the implied

volatility smile for increasing (decreasing) strike levels, similar in concept to Derman and

Kani (1994), who model the implied smile as a linear function of the strike level and ATM IV.

Analogous to the first beta coefficient, both models show an almost identical path but differ

in absolute values. The economic interpretation of this parameter is a general correlation

between the strike level and IV. A negative value indicates an increasing IV for decreasing

option delta. Throughout the sample period, we would generally expect β1 to be negative,

as deep OTM put options are considered an effective insurance against market crashes and,

hence, have a greater IV compared to their OTM call counterparts. However, the alternating

behaviour of this coefficient for bitcoin implied volatility indicates a shift in the IV smiles,

where traders value a deep OTM call over a put, in line with the findings of Section 5.2. Here

again, we find a surprisingly stable development throughout time.

However, isolating this parameter will not yield any useful information as it displays the

smile as a straight line. It needs to be considered in combination with β2 , as this quadratic

factor gives rise to the familiar smile/smirk structure of the IV. Hence, β2 depicts a strictly

positive development throughout the sample data and assures the convexity of the IV smile,

where the magnitude of β2 influences the intensity of the curvature, i.e. a high (low) beta

results in a steep (flat) smile. A common observation after underlying price jumps is that

option market makers price this uncertainty in a way that raises the general IV level and

flattens the smile across the moneyness. Thus, it is not surprising that β2 reaches its lowest



7.2. EXPERIMENTAL DESIGN 136

values shortly after jumps (March 2020, June 2021 or May 2022) when the smile curvature is

minimal. Some authors (Lewis, 2000) stop here and propose a linear combination of β0 , β1 ,

and β2 to replicate the IV smile. Overall, the time series depicts a satisfactorily stable trend.

In a similar vein, β3 and β4 capture the same IV attributes, but consider the implied

volatility as a function of time to maturity. For instance, β3 captures the co-movement of IV

with increasing time to maturity, i.e. an expression of the IV as a linear function of maturity.

Note that the longest, currently actively traded expiry for bitcoin options does not exceed six

months, which makes a comparison to the equity IV term structure rather challenging, where

we see maturities of up to two years. In the case of bitcoin, the term structure follows the

well-known concave saturation curve, similar to the term structure of interest rates, but is

much less pronounced. The difference between short- and long-term ATM IV rarely exceeds

five percentage points, except during tranquil periods, when the term structure inverts after

crashes. Nevertheless, β3 can capture the increasing (decreasing) term structure as seen

in Figure 7.2. Positive coefficients indicate increasing IV for higher maturities, with clear

identification of bitcoin jumps (March 2020, May 2022) and the bubble fear period (Winter

2020/21) as β3 becomes strongly negative, pointing towards an inverted term structure where

short-term IV exceeds long-term IV. Initially, we find a rather unstable development of the

parameter which could be a statistical artefact of the relatively low sample period of around

50 options. However, the time series subsequently stabilizes with distinct regime-dependent

tendencies. After the COVID crash, the coefficient rarely exceeds the lower limit of -1 and the

upper limit of 2. Particularly, during the last year starting from July 2021, it demonstrates a

range-bounded development hardly exceeding ±1, except for May 2022 during the TerraLuna

collapse. In contrast to the two coefficients capturing smile dynamics, which have no other

restriction but a positive curvature, we expect the term structure betas to be negatively

correlated to replicate the bond-type term structure of the implied volatility. Indeed, at first

glance, the β4 time series looks like a mirrored version of β3 with different absolute values.

Note that up to this point, the beta coefficients exhibit similar patterns, albeit with

different absolute values. In Model 2, we introduce an additional coefficient, β5 . By con-

ceptualising the surface in a three-dimensional, xyz-Cartesian coordinate system, where the

x-axis represents the option’s moneyness, the y-axis represents the time to maturity, and the

z-axis represents the implied volatility, Model 1 is capable of capturing movements parallel to

the x-axis (β1 , β2) and the y-axis (β3 , β4), while Model 2 can capture additional movements

on the xy-plane (β5). Arguably, β5 plays an important role in surface modelling, as it allows

for a relationship between two distinct grid points on the surface that are not parallel to the

x- or y-axis, despite only having a significant impact on the overall fit roughly 60% of the

time. This coefficient exhibits a range-bounded evolution, uncorrelated with the other four

parameters. Specifically, after January 2021, β5 rarely exceeds a value of around ±0.15.



7.2. EXPERIMENTAL DESIGN 137

It is worth noting that all beta coefficients in both models exhibit greater stability after

January 2021. This could be due to several factors, including a maturing options market, an

increasing number of tradable options, or newly issued maturity/strike combinations, which

create a finer surface grid. Nonetheless, the apparent stability does not justify splitting the

dataset, even though restricting the analysis to the second half of the sample produces more

efficient model results.9 These potential improvements do not outweigh the inevitable loss

of information contained in 1.5 years of historical surface data, particularly in hindsight of

training deep learning models which require an extensive amount of data.

Table 7.2 reports an array of statistics for the estimated coefficients using Model 1 (upper

panel) and Model 2 (lower panel) over the past three years using the robust OLS regression. It

presents – for each beta – the mean and standard deviation of the time series, the average of a

two sided t-test over all regressions as well as the percentage of the time is shows significance

at a standard 10% in parentheses. To evaluate the stationarity of the time series, we perform

an augmented Dicky-Fuller test and investigate the serial autocorrelation using a Ljung-Box

(LB) test with lag one (eight hours) and three (one day) for each parameter time series. Our

ADF test results indicate that the unit root hypothesis can be rejected for all parameters at

the highest significance level, which indicates that each beta time series is stationary.

The mean and standard deviation of each beta time series for both models depict similar,

albeit slightly different absolute values. For instance, the mean of β0 is identical for both at

-0.344 which points towards a general surface level of 70.89%. This value is in close proximity

to the 10-days ATM IV average over the sample period of 71.57%, as previously noted. Indeed,

correlation between Model 1 (Model 2) β0 and the constant 10-days ATM implied volatility

is 0.94 (0.94). Additionally, the standard deviation for both models is nearly identical at a

relatively high level, reflecting wide fluctuations in the base surface level caused by abrupt

(downward) movements in the underlying asset, such as the COVID crash in March 2020.

Both models depict a negative mean for β1 , implying a negative relationship between strike

level and implied volatility with a negative β1 in 79.92% (82.56%) of the time. Combining this

with the positive value for β2 demonstrates a declining implied volatility in moneyness but

increasing in squared moneyness. This indicates an asymmetric volatility smirk, pronounced

more for OTM put than calls as seen in Figure 7.1 and consistent with the typical equity index

implied volatility shapes (Neumann and Skiadopoulos, 2013). Similar, the positive mean for

β3 illustrates an upward movement for increasing maturity, observed in 78% (79%) of the

time. In contrast, the β4 mean is negative, as discussed earlier, and has high correlation with

β3 (-0.95 for both models). A linear increasing β3 requires a concave, i.e. negative β4 , to

approach the yield curve pattern of volatility term structure.

9For instance, considering Model 1 (Model 2) we see an improvement of the average RMSE from 0.047 to
0.039 (0.045 to 0.037); the R2 value increases from 0.886 to 0894 (0.898 to 0.906), the adjusted R2 enhances
from 0.88 to 0.891 (0.886 to 0.902) as well as AIC from -372 to -502 (-382 to -515) and BIC from -359 to -488
(-367 to -497).
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Figure 7.3: Model 1 Time Series β Coefficients

Time series of each β coefficient of the deterministic implied volatility surface model estimated using the robust
ordinary least square method on Model 1, covering our sample period from August 2019 to August 2022 in
eight hour steps. We omit the horizontal time axis for the sake of clearly but keep it for the last panel. The
vertical axis is unit-free and changes for each parameter.
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Figure 7.4: Model 2 Time Series β Coefficients

Time series of each β coefficient of the deterministic implied volatility surface model estimated using the robust
ordinary least square method on Model 2, covering our sample period from August 2019 to August 2022 in
eight hour steps. We omit the horizontal time axis for the sake of clearly but keep it for the last panel. The
vertical axis is unit-free and changes for each parameter.
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Table 7.2: Coefficient Time Series Properties

Summary statistics of the deterministic surface coefficients. It depicts the mean and standard deviation of
each beta coefficient time series estimated by Model 1 (7.6; upper panel) and Model 2 (7.7; lower panel) via
robust OLS. We further depict the average value of a two-sided t-Test statistic for each parameter across all
regressions. The percentage of significant value with a standard 10% size for each parameter is presented in
parentheses underneath. Furthermore, we present the ADF test value to investigate for stationarity and a
Ljung-Box (LB) test with lag one and three to asses for autocorrelation of the coefficient time series. We
illustrate statistical significance with the asterisk at the 1%

∗∗∗
and 5%

∗∗
level. The presented results cover

the whole sample data, i.e. three years of eight-hour options data, starting in August 2019

Coefficient Mean
Std.
Dev.

t-Test ADF LB(1) LB(3)

Model 1

β
0

-0.344 0.269
-25.59
(98.2)

−4.248
∗∗∗

2978
∗∗∗

8602
∗∗∗

β1 -0.033 0.04
-5.51
(82.46)

−3.004
∗∗

2865
∗∗∗

8236
∗∗∗

β
2

0.087 0.039
13.37
(99.97)

−3.55
∗∗∗

2752
∗∗∗

7896
∗∗∗

β
3

0.539 0.813
4.01

(86.54)
−5.061

∗∗∗
2659

∗∗∗
7199

∗∗∗

β4 -0.694 1.222
-3.05
(82.04)

−5.263
∗∗∗

2513
∗∗∗

6589
∗∗∗

Model 2

β
0

-0.344 0.27
-23.38
(98.46)

−4.243
∗∗∗

2978
∗∗∗

8603
∗∗∗

β1 -0.043 0.048
-4.93
(82.46)

−3.751
∗∗∗

2673
∗∗∗

7456
∗∗∗

β
2

0.085 0.0381
13.2

(99.90)
−3.592

∗∗∗
2727

∗∗∗
7805

∗∗∗

β
3

0.56 0.821
4.35

(88.18)
−4.96

∗∗∗
2671

∗∗∗
7246

∗∗∗

β4 -0.738 1.219
-3.47
(85.22)

−5.051
∗∗∗

2517
∗∗∗

6605
∗∗∗

β
5

0.048 0.098
1.58

(56.50)
−5.952

∗∗∗
2119

∗∗∗
5863

∗∗∗

As stated previously, the main objective of this chapter is to explore the predictability of

coefficients driving the implied volatility surface. To verify the presence of serial autocorre-

lation, we conduct a Ljung-Box (LB) test with lag one (eight hours) and three (one day) for

each parameter time series. Our results in Table 7.2 indicate that each parameter is highly

autocorrelated at the highest significance level, regardless of the model. These findings sup-

port and motivate the use of Vector Auto-Regressive (VAR) models as a suitable tool for

analysing and predicting the dynamics and interrelationships among the parameters.
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7.2.2 Predictive Models

The core of our prediction analysis lies in modelling the β time series. For this, we compare

three distinct approaches – naive, statistical, and machine learning – and select the best model

on its mean squared error (MSE) and R2 value. In the following, we keep the notation for

the observed beta vector at time t as βt and denote any prediction or estimate as β̂t . To

evaluate model performance and account for real-world conditions, we divide our data into

three sets: an in-sample (or train) set, a validation set, and an out-of-sample (or test) set.

This division is based on a 30:6:5 month ratio and covers the periods August 2019 to January

2022, February 2022 to July 2022, and August 2022 to end December 2022, respectively. We

adopt this ratio in line with the recommendation of Hastie et al. (2009), which allows for

robust training of potential relationships while accommodating different regimes. For each of

the models, we define and calibrate the optimal model parameter using the first 73% of the

data, validate the optimal hyperparameters using the subsequent 15%, and apply the model

to the remaining 12%. When appropriate, we will update the models recursively following

each new time step.

Naive Model

Most academic papers on predictive model forecasting fail to provide a baseline which is both

simple and does not require much computational power. Without a baseline, sophisticated

models may be set up needlessly, as a ‘quick and dirty’ or naive approach might achieve same

or better results. A naive forecasting model is a very simple and deterministic framework

which requires only a minimum of input and set-up costs. If any more sophisticated model

fails to exceed this baseline, the approach should be abandoned. To this end, we follow

both Gonçalves and Guidolin (2006) and Bernales and Guidolin (2014) and apply the ‘ad-hoc

strawman’ model. This model goes back to Christoffersen (2004) and is simply a Random

Walk (RW) process for each beta time series. Under this model, the best prediction for the

next time step is the current value with a noise term:

β̂t = βt−1 + εt ,

where εt is a normal Φ
(
0,Σ

β

)
-distributed noise-term. The risk horizon for variance is a

crucial element. To obtain an accurate estimation, we define Σ
β
as a vector of rolling window

realised variances for each beta parameter return over the past p lags.

We compare different lags p, corresponding from day up to two months, respectively.

A longer history may introduce spurious – or ghost – features, particularly for the rolling

window approach, which could bias the results. We use the math library to evaluate the MSE

and R2 and calculate the realised variance using the random.normal function of numpy to

simulate the normal-distributed error. Note that simulations are generated randomly and no

two are identical, hence, to enhance the reliability of our results, we adopt the average of
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five simulations. We test the random walk model with different lags, ranging from one day

to three months, on the validation set and find that using the last month returns’ realised

variance outperforms any other lag in terms of MSE.10.Therefore, we set the window size to

30 days and consider the random-walk model to be the baseline.

Statistical Model

There exists a plethora of statistical techniques to model any type of time series. However,

given the specific problem we face, i.e. a multivariate stationary time series with serial auto-

correlation, we employ a Vector Auto-Regressive (VAR) model. The rationale behind this is,

due to autocorrelation in time series, the relevant information for making a prediction is often

within a small window of past observations. The simplistic nature of linear models make them

a prominent class of time series prediction models. Granger and Newbold (1974) are among

the first to introduce the Vector Auto-Regressive model of lag p which is a generalisation of

the univariate AR model (Box and Gwilym, 1970) allowing multiple time series to intact with

each other linearly. In this setup, each variable is modelled as a linear function of its own

past p lags as well as the past values of other variables in the system. For this, we consider

the time series of the beta vector β and forecast the step-ahead coefficients by:

β
t
= γ +

p∑
i=1

Ψiβt−i + ut ,

where γ is the intercept vector, Ψi are the coefficient matrices capturing the linear relationship

between the responsive variable and its own p lags, and ut ∼ Φ (0,Σt) is the i.i.d. distributed

error term. Here, Φ denotes the normal distribution where Σt is the covariance matrix of the

individual error terms. The assumption of this VAR(p) model, which follows a multivariate

normal distribution with a zero mean and constant covariance matrix, may not hold over time

as the covariance matrix Σt changes. In order to address this, we employ a recursive daily

refitting strategy, in which we use p lags to predict β̂t+1 , then observe the real value and

use again the last p lags at t + 1, i.e. βt+1−p , ...,βt+1 to predict β̂t+2 , and so on, for three

observations. By continuously refitting the model daily this way, the assumption of constant

Σt is more reasonable and the resulting predictions more accurate. Note that we assure the

stationarity of the data as we include more days and integrate the time series if necessary. In

order to ensure a fair comparison between models, we select p based on the best performance

on the validation set. Our analysis covers the same lag size as before, i.e. p = 1, ..., 180, and

indicates that lag p = 75 (79) yields the minimal MSE of 0.0017 (0.0016) for Model 1 (2),

respectively. For the technical implementation, we use the time series analysis library (tsa)

of statsmodel to fit the VAR model with different lags.

10The random walk model with p = 90 lags achieves an average MSE of 0.0108 and R2 = 82.69%, outper-
forming the other kags
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Machine Learning Model

The machine learning model completes our group of predictive models. Here again, there exists

a plethora of different models under the umbrella of supervised, unsupervised or reinforcement

learning. First, we need to understand that we face a regression problem and we want to model

the time series in order to obtain predictions. Unsupervised learning models are not suited

for this task as they are generally used for clustering or association problems. By the same

token, reinforcement learning models are not ideal as these aim to solve Markovian decision

problems, i.e. it provides an optimal behaviour for an agent in an environment with different

states and actions. As such, it does not model or predict the time series. The supervised

learning category can be split up into a classification and regression subclass. Particularity

the latter is of interest for us. Here, a wide cohort of scholars and practitioners (D’Amato

et al., 2022; Brownlee, 2021) advocate the Long-Short Term Memory model.11 Given the

success of the LSTM application to implied volatility data (Medvedev and Wang, 2022; Bolch

and Book, 2022), we decide to add a LSTM model as final predictive model to our portfolio.

The LSTM model is a special type of recurrent neural network which can process and

predict sequential data effectively while accounting for historical dependencies between the

input variable, see Chapter B of the Appendix for an in-depth description of the model

architecture. As such, it promises to learn complex non-linear relationships between past

lags and beta parameter by defining a mapping function which takes historical beta as input

and yields a prediction. Many scholars see it as a natural non-linear extension of VAR-type

models. In this framework, the vector forecast is given by:

β̂t = f
(
ω,Bt−1

)
,

where f denotes the mapping function of the machine learning algorithm for a given inter-

nal, fully trained set of weights ω, and Bt−1 describes the (#samples, #lags, #features)-

dimensional input tensor, i.e we provide a (1, p, 5)-dimensional input Model 1, and (1, p, 6) for

Model 2, respectively. In light of the regression problem in hand, we choose the MSE as des-

ignated loss function and use the adaptive moment estimation (adam) optimisation algorithm

(Kingma and Ba, 2015) for the optimisation process. This optimisation algorithm is widely

accepted and used in the industry for its efficient use of memory and speed. Other loss func-

tions such as the log or hinge loss are more suitable for classification problems. An alternative

could have been the mean absolute loss, but given the broad acceptance by practitioners, we

decide to proceed with the industry standard for regression problems.

Initially, we scale each time series to [0,1] individually, and use the same scaling factor to

invert the prediction to interpretative values. During the training process, it might be that

11There exist different variations of the plain-vanilla LSTM model such as the convolutional LSTM or
Transformer (Vaswani et al., 2017) which have shown great results in financial time series and natural language
processing. However, these models require an amount of data to train which simply cannot provide with our
database.
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the best fit, i.e. the optimal model weights, is found not at the end, but prior. To obtain

the best possible overall model and not waste time/computational energy after the model

converged, we add CheckPoint and EarlyStopping to our algorithm. In our case, we observe

the loss function and stop the training iff there is no improvement over the span of 20 epochs.

We determine the optimal set of hyperparameters, e.g. 103 input samples, 200 epochs, 150

nodes, and a batch size of 64 based on our grid-search approach across over 1200 different

permutations. Furthermore, we apply the Monte Carlo Dropout (MCDO) and compute each

time step in our prediction based on the average of ten simulations, taking into account a

trade-off between computational efficiency and accuracy. Our model achieves a R2 value of

88.38% (80.23%) for the train (validation) set and a MSE of 0.0019 (0.0014) and refer to

Section C.1 of the Appendix for a detailed description of the choice of parameter.

The prediction procedure is similar to the VAR case, i.e. it involves training the model

with all available data, followed by generating predictions for the next time step (β̂t+1) and

comparing these to observed values (βt+1). Subsequently, we use the observed values as new

input to generate additional predictions (β̂t+2). Model retraining occurs only after three

consecutive observations, corresponding to a one-day interval, and this process is repeated

daily over the period from August to December 2022. Again, we ensure that the updated

data is stationary and update the scaling factors. Similar to the previous models, all coding

is done in Python using the TensotFlow and Keras libraries.

7.2.3 Performance Measures

Both statistical and economic measures play a critical role to evaluate the performance of

our forecasting models. We use statistical measures to assess the accuracy and reliability

of our model’s forecasts, while the economic side explain the profitability of the forecasts.

Our statistical measures include root mean square error, mean absolute error, among others

others; and the profitability of three distinct trading strategies based on the forecasting signal

is measured on PnL and return-ratios. First, we translate the beta predictions using formulae

(7.6) and (7.7) into implied volatilities and replicate the predicted surface. For the statistical

analysis of the model performances, we follow Bernales and Guidolin (2014) and define the

following measures:

• Root Mean Squared Error (RMSE): This is the average of the square root of

the squared deviations of market implied volatilities from the model’s forecast implied

volatilities, averaged over the number of options traded. This gives insight about the

distance between forecast and observed IV.

• Mean Absolute Error (MAE): This is the prediction error in implied volatilities as

the average of the absolute differences between the market IV and the model’s forecast

implied volatility across traded options. This considers the correct direction of the

prediction as well as the distance.
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• Mean Correct Direction (MCD): This is the average frequency (percentage of ob-

servations) for which the change in implied volatility predicted by the model has the

same sign as the realised change in implied volatility indicates.

• Diebold and Mariano (1995) (DM): This test statistic measures the forecasting

performance and significant differences of different models. It tests the null hypothesis

that two models have the same forecast accuracy. If the DM test statistic exceeds the

critical value, we can reject the null hypothesis and conclude that one model outperforms

the other with statistical significance.

The second part of our study aims to evaluate the effectiveness of our forecasts in sup-

porting portfolio decisions. We introduce a signal q
t
(m,T ), which represents the difference

between the expected or forecasted implied volatility and the current market implied volatility

at an arbitrary grid point (m,T ) on the implied volatility surface at time t. The signal is

positive (negative) if the model forecasts an increase (decrease) of the implied volatility at

(m,T ) from t to t + 1. As the implied volatility reflects the price of an option, we will buy

(sell) this option when receiving a positive (negative) signal. We denote the set of options

receiving a positive signal, i.e. a buy sign, as:

Q+
t = {(m,T ) : q

t
(m,T ) > 0},

as well as the options receiving a negative signal

Q−
t = {(m,T ) : q

t
(m,T ) < 0, }.

Note that we consider the implied volatilities with over eight decimal numbers. Hence, in no

occasion we find that that the predicted implied volatility matched the current IV.

We propose three distinct trading strategies to assess the practicality of the signals, as-

suming perfect fractional investing is possible, and that we can enter and exit a position at

each time step. The strategies involve ATM straddles, delta-hedged portfolios and a base-

line model. For each strategy, we assume that $1000 are invested initially, and evaluate the

resulting profit and loss of these hypothetical strategies, comparing them with each other

based on their mean return, standard deviation as well as Sharpe- and Sortino ratio. Note

that the forecasts will never exactly match the implied volatility, i.e. the forecast will always

provide an indication of direction and magnitude of the volatility. Hence, our focus will be

on strategies involving directional position of future volatility and those addressing the pre-

dicted magnitude of the IV. We follow Harvey and Whaley (1992) with our strategies who

also highlight that these strategies are an ideal way to reduce the transaction costs.
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Strategy A

The first trading strategy (Strategy A) involves buying or selling ATM straddles with varying

maturities. This approach excludes considering strike levels away from ATM, as ITM options

are rarely traded for both call and put options. An ATM straddle involves purchasing (or

selling) a call and put option with the same strike price and maturity, creating an instanta-

neous delta-neutral position that is a pure bet on future volatility. In the event of a negative

signal at a given maturity, we sell an ATM call and put option, thereby placing a bet on a

decrease in future volatility. Conversely, for a positive signal, we take a long position in the

ATM straddle since we expect an increase in future volatility. Note that we focus solely on

the directional forecast of the signal, not its magnitude. Therefore, unless the models predict

different directions, the profit and loss will be identical across all models. Since the moneyness

of an option is rarely exactly 1, we select the closest moneyness to m = 1 that has both calls

and puts traded. We then consider special subsets Q̃t
+
and Q̃t

−
for this trading strategy:

Q̃t
(+,T )

=

{
(m,T ) ∈ Q+

t : m = argmin
m̂

|1− m̂|
}
,

Q̃t
+
=
⋃
T∈T

Q̃t
(+,T )

and

Q̃t
(−,T )

=

{
(m,T ) ∈ Q−

t : m = argmin
m̂

|1− m̂|
}
,

Q̃t
−
=
⋃
T∈T

Q̃t
(+,T )

,

where T describes the set of all tradable maturities. The straddle strategy is straight forward.

Let V A
t be the portfolio value of applicable straddles:

V A

t
=
∑

x∈Q̃t
+

[Ct(x) + Pt(x)]−
∑

x∈Q̃t
−

[Ct(x) + Pt(x)] ,

where Ct(m,T ) and Pt(m,T ) are the observed market prices of call and put option with

moneyness m and maturity T , respectively. For a positive (negative) portfolio value we

purchase (sell) XA

t
units of the straddle portfolio:12

XA

t
=

$1000

| V A

t
|

12Note that we assume zero interest rate. Otherwise, we could invest the initial capital into the risk free rate
until the next time step in case of V

A

t
< 0 where we would sell the quantity X. Given the high rebalancing

frequency of this study and the current interest rate, the risk-free profit generated within such a short window
is negligible and does not change the results of the study.
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and calculate the dollar-value of the profit G as:

GA

t+1
= XA

t

 ∑
x∈Q̃t

+

([
Ct+1(x) + Pt+1(x)

]
− [Ct(x) + Pt(x)]

)
+XA

t

 ∑
x∈Q̃t

−

(
[Ct(x) + Pt(x)]−

[
Ct+1(x) + Pt+1(x)

]) ,

and subsequently the percentage return as:

RA

t+1
=

GA

t+1

1000
.

Strategy B

The second strategy (Strategy B) involves a straightforward delta-hedged position responding

to each signal. For this strategy, we consider the entire options chain for each tradable matu-

rity and purchase/sell each call or put option based on the corresponding signal q. Moreover,

we establish an opposing position in the underlying St in the size of the option’s delta. To

achieve this, we define novel subsets for the call options that we purchase
(
Q̃t

+,C
)
, the calls

we sell
(
Q̃t

−,C
)
, and puts we buy

(
Q̃t

+,P
)
and puts we sell

(
Q̃t

−,P
)
, respectively as:

Q̃t
+,C

= Q+
t \ {(m,T ) : m < 1} ,

Q̃t
−,C

= Q−
t \ {(m,T ) : m < 1} ,

Q̃t
+,P

= Q+
t \ {(m,T ) : m ≥ 1}

Q̃t
−,P

= Q−
t \ {(m,T ) : m ≥ 1} .

The value of the delta-hedged portfolio is given by:

V B

t
=

∑
x∈Q̃t

+,C

[
Ct(x)− Stδ

C

t

(
x, σ

ξ

t+1

)]
−

∑
x∈Q̃t

−,C

[
Ct(x)− Stδ

C

t

(
x, σ

ξ

t+1

)]
+

∑
x∈Q̃t

+,P

[
Pt(x) + Stδ

P

t

(
x, σ

ξ

t+1

)]
−

∑
x∈Q̃t

−,P

[
Pt(x) + Stδ

P

t

(
x, σ

ξ

t+1

)]
,

where δt

(
m, τ, σ

ξ

t+1

)
is the option’s delta with strike m and TTM τ , calculated using each

models’ step-ahead predicted implied volatility σ
ξ

t+1
with ξ ∈[RW, VAR, LSTM].13 Here again,

we purchase (sell) the quantity XB

t
in units of the delta-hedge portfolio V B

t
. The same course

of action applies for the dollar-profit:

13We make an additional assumption following both Gonçalves and Guidolin (2006) and Bernales and
Guidolin (2014) who argue that it is a common practice for market maker to assume the same value for
the underlying at t+ 1 as in t. This is also in line with the efficient market hypothesis.
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GB

t+1
=XB

t

 ∑
x∈Q̃t

+,C

([
Ct+1(x)− St+1δ

C

t

(
x, σ

ξ

t+1

)]
−
[
Ct(x)− Stδ

C

t

(
x, σ

ξ

t+1

)])
+XB

t

 ∑
x∈Q̃t

+,P

([
Pt+1(x)− St+1δ

P

t

(
x, σ

ξ

t+1

)]
−
[
Pt(x)− Stδ

P

t

(
x, σ

ξ

t+1

)])
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and similar to the first strategy, we calculate the returns as:

RB

t+1
=

GB

t+1

1000
.

Strategy C

In addition to these two strategies, we want to include a passive strategy. We consider the

infamous buy and ‘hodl’ strategy. This term has become popular among the crypto community

and describes a simply buy and hold strategy, sometimes referred to as hold on for dear life.

This will be the benchmark the other two strategies will have to outperform. The PnL of this

strategy is given by:

RC

t+1
= 1000×

(
St+1

St
− 1

)
.

We want to measure the performance of the three strategy first and foremost based on

their return and standard deviation. In addition, we consider the standard deviation, Sharpe

(1994)- and Sortino and Price (1994)-Ratio of the strategies. Particularly the latter two

are important performance measures for any trading strategy as they provide a quantitative

assessment of the return generated by our trading strategy relative to the risk taken to achieve

that return.14 Traders are interested in these ratios as they provide a way to compare the

performance of different strategies or investment opportunities on a risk-adjusted basis. A

high Sharpe or Sortino ratio indicates that the returns are high relative to the level of risk

taken, while a low ratio indicates the opposite. A low or negative Sharpe or Sortino ratio

suggests that the returns are not worth the risk taken, and we should abandon the strategy.

14The Sharpe ratio measures the excess return generated by the strategy per unit of risk taken, where risk
is measured as the standard deviation of returns. The Sortino ratio, on the other hand, is a variation of the
Sharpe ratio and considers only downside risk, which is the risk of losses, i.e. it only accounts for downside
volatility.
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7.3 Empirical Results

Motivated by the discussions in Section 7.2, we present the empirical results in this section.

Initially, we evaluate the out-of-sample prediction efficiency of the random walk, VAR and

LSTM model using the measures introduced earlier; and subsequently, we investigate the

profitability of these forecast signals through the three trading strategies.

7.3.1 Statistical Results

Figure 7.5 presents the step-ahead predictions of each beta coefficient from the random walk

(purple), VAR (orange) and LSTM (green) models, in addition to the actual observed Model

1 beta values (red) during the out-of-sample period August to December 2022. In general,

all models capture trends effectively and generate reasonably precise predictions for all five

parameters. The figure shows that the random walk model outperforms the two more so-

phisticated models during stable tranquil (August to November) but exhibits substantial

fluctuations following significant jumps in the time series, mainly due to the ghost-features of

the rolling window. Particularly for the latter two parameter, which depict a generally wider

range, the RW demonstrates wide deviations from the true value around December 2022.

The VAR model captures the true value accurately but appears to lag slightly during larger

movements as it struggles to grasp substantial jumps and requires 2-3 time steps to adjust.

In contrast, the LSTM model yields similar good forecasts and is less prone to wide deviation

during sudden jumps. In fact, on rare occasions, such as 8 November or 16 December, it

even predicts the jump in the underlying bitcoin price successfully. This could be due to the

internal memory of the model, i.e. it might capture the current regime better, remember it

from previous observations, and use it better than the other two and react accordingly.

The statistical analysis of the forecasted values with the observed beta time series leads to

the conclusion that the VAR and LSTM outperform the random walk model throughout all

beta parameters in terms of RMSE and MAE.15 The main contributor to the poor performance

of the RW is certainly the inevitable ghost-features of a rolling window. Both the VAR and

LSTM models are better equipped to handle changes. However, we cannot identify one

definitive superior model between the VAR and LSTM models. In fact, the LSTM approach

captures the movements of β0 , β3 and β4 , i.e. the general surface level and term structure

more accurately than the VAR. In contrast, the VAR model outperforms for the volatility

skew parameter β1 and β2 which supports the findings of Lewis (2000). The Model 2 findings

of the analysis are consistent for the out-of-sample predictions, indicating robustness of the

results. The results of the six factor model are presented Section C.2.

15The mean absolute error for the random walk model for each beta coefficient, starting with β0 to β4 is
0.042, 0.006, 0.007, 0.198 and 0.153. By the same token, the mean absolute error of the VAR model are 0.0189,
0.003, 0.002, 0.044, 0.082 and the LSTM model shows 0.014, 0.005, 0.004, 0.041, 0.05. Similar, for the RMSE
error we identify for the RW 0.058, 0.009, 0.01, 0.281, 0.287; for the VAR 0.054, 0.009, 0.01, 0.2, 0.216; and
LSTM 0.031, 0.009, 0.01, 0.005, 0.075.
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Figure 7.5: Out-of-Sample Time Series β Coefficients

Time series of each β coefficient (red) of the deterministic implied volatility surface model estimated using
the robust ordinary least square method on Model 1, covering our out-of-sample period from August 2022 to
December 2023 in eight hour steps as well as the step-ahead prediction using the random walk benchmark
(purple), Vector Auto-Regressive model (orange) and Long-Short-Term memory model (green). We omit the
horizontal time axis for the sake of clearly but keep it for the last panel. The vertical axis is unit-free and
changes for each parameter.
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Table 7.3 presents the prediction errors of implied volatilities derived from the beta fore-

casts. Specifically, we translate the forecasted beta vector into individual option implied

volatilities at each time step and compare them with the actual observed implied volatility in

the subsequent time step. Our performance evaluation measures the predictive accuracy using

root-mean-squared error, mean absolute error, and mean directional error, and we report the

results in both absolute values (RMSE, MAE) and percentage points (MCD) for all step-ahead

predictions throughout the out-of-sample period. To explore potential variations across strike

levels and maturities, we further partition the predictions into distinct subgroups, including

short-, mid-, and long-term maturities, as well as OTM call/put and ATM options. Our

choice of the moneyness- and maturity range is motivated by the trading volume discussed

in Section 3.2. The exact maturity ranges are identical to Chapter 3, i.e. up to two weeks,

between two weeks a month and more than a month.

Our findings present a nuanced picture. Considering the entire surface, the VAR model

exhibits the lowest RMSE and MAE among the tested models but delivers an unsatisfying

MCD error. This observation remains consistent across different moneyness ranges. In fact,

the VAR model surpasses the LSTM model by 11.3% (10.6%) with respect to the RMSE

(MAE), and outperforms the RW even by 17.7% (21.8%). Both RW and VAR demonstrate

rather arbitrary prediction patterns, accurately forecasting the direction in 50.8% and 51.8%

of the time, respectively. Only the LSTM distinguishes itself in this aspect with 55.3%. It is

not surprising that the RW approach demonstrates the weakest performance overall and for

each moneyness/maturity subcategory in each metric. After all, a random prediction does

not take into account momentum and the ghost features’ influence on the overall results are

severe. Table 7.3 highlights the findings of Figure 7.5, i.e. VAR models the smirk better while

the LSTM captures the term structure more accurate.

We find remarkable results considering ATM strike levels across all maturities. The VAR

model’s long-term ATM prediction yields the overall best RMSE (0.025) and MAE (0.018)

values, however, the directional accuracy appears rather random. In contrast, the LSTM

shows great accuracy, despite having marginally higher RMSE and MAE. It is evident that, as

maturity decreases, the LSTM model’s accuracy in predicting the correct direction improves.

Specifically, while the model predicts the direction of long-term maturities in 52.6% of cases

accurately, this increases to 59.6% for mid-term options and peaks at 64.6% for short-term

ATM options. It is only in this subgroup that the VAR model produces higher RMSE and

MSE (both +11%) than the LSTM, while its directional accuracy remains rather arbitrarily

at 53.9%. Note that the correct direction is of paramount importance.16

Across all maturity classes, we observe considerable discrepancies between the tail predic-

tions for both call and put options and ATM implied volatilities. Irrespective of maturity and

model, tails exhibit higher RMSE and MAE values. Similarly, the directional forecast appears

16Consider this simple example: A stock price is currently traded at $100. Model A predicts the price to
go down to $99 while Model B forecasts $110. The stock price moves to $101; Model A has lower RMSE and
MAE but any trader would have lost money relying on the first prediction.
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to deteriorate as we progress further OTM, with the sole exception of mid- and long-term

OTM puts. The most plausible explanation for this phenomenon is the insufficiency of the

second-order Taylor expansion to capture the tail adequately. This issue is, in fact, twofold:

First, bitcoin option trading is predominantly clustered around ATM and near-maturity op-

tions, as demonstrated in Section 3.2. It is crucial to understand that, in an OLS, each

data point is assigned equal weight. Consequently, the concentration of observations around

short-term ATM options may lead to inaccurate model fits for OTM or longer-dated options.

Second, the tails exhibit greater shape variation, particularly for OTM calls. While the OTM

put implied volatility keeps a decreasing trend for increasing moneyness, the OTM call IV fre-

quently transitions between a (symmetric) smile and a hockey-shaped smirk. This allows for

more consistent modeling of OTM put implied volatility, while capturing OTM call implied

volatility proves to be more challenging.

Table 7.4 presents the outcomes of the Diebold-Mariano test statistic which conducts a

pairwise comparison of the forecast accuracy of the three models, i.e. RW-VAR, RW-LSTM

and VAR-LSTM. A positive DM value implies a preference for the second model over the first.

For example, the DM test statistic of 7.4 for the VAR-LSTM pair for mid-term ATM options

indicates that the LSTM model outperforms the VAR model in predictive performance. Our

findings here confirm the statistical evaluation from Table 7.1, with most results exhibiting the

highest significance. In other words, no strike/maturity subgroup demonstrates a preference

for the RW model, and the VAR model outperforms its counterparts overall. Nevertheless,

specific maturities and moneyness levels, particularly within the short- and mid-term maturity

ranges, yield different outcomes, such as the LSTMmodel outperforming the other two models.

We find the most pronounced results for short-term ATM options, which exhibit a strong

preference for the LSTM model, albeit to a lesser degree on the tails. The findings of Tables

7.1 and 7.4 motivate us to consider short-term ATM options for our further empirical research.

This particular subclass exhibits minimal errors while demonstrating the highest proportion

of accurate directional forecasts. Pursuing any other subclass for potential trading strategies

would likely generate inferior results, hence make them unworthy of further consideration.

Particularly the LSTM model seems to outperform the other models for short-term matu-

rities. Reasons for this might be that LSTM models excel at learning from historical sequences

and detecting hidden patterns that may not be apparent in linear models like VAR or the RW

model. The memory and non-linear activation functions of an LSTM can potentially capture

long-term dependencies and adapt to changing market conditions better, whereas traditional

models may fall short in capturing the underlying dynamics effectively.
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Table 7.3: Implied Volatility Out-of-Sample Average Prediction Errors by Moneyness and Maturity

Comparison of out-of-sample prediction errors using a variety of models, expressed as average of the three performance measures, i.e. Root Mean Squared Error
(RMSE), Mean Absolute Error (MAE) and Mean Directional Error (MDE). We consider the implied volatility surface backed out of the predicted beta coefficients
for the period from August 2022 to December 2022 on an eight hour frequency and divide the results for different maturities (Short Term: 3-14 days; Mid Term:
14-30 days; Long-Term: 30-270 days), moneyness levels (OTM Put: moneyness between 0.5-0.94; ATM: moneyness between 0.94-1.06; OTM Call: moneyness
between 1.06-2) as well as any permutation of these two. The last row and column depict the overall prediction errors. We highlight the overall best results in
blue.

Short-Term Mid-Term Long-Term Total

RMSE MAE MCD RMSE MAE MCD RMSE MAE MCD RMSE MAE MCD

OTM Put:
RW 0.08 0.0485 50.3% 0.066 0.0442 50.72% 0.0884 0.0513 51.19% 0.0838 0.05 51.49%

VAR 0.0786 0.0453 53.37% 0.0624 0.0417 52.78% 0.0389 0.028 54.01% 0.05 0.0326 53.7%

LSTM 0.0664 0.0418 62.39% 0.0604 0.0411 61.48% 0.0459 0.0352 53.92% 0.0516 0.0371 56.12%

ATM:
RW 0.0454 0.0339 51.64% 0.0375 0.0266 45.01% 0.0768 0,0389 50.57% 0.0614 0.0346 50.59%

VAR 0.0429 0.033 53.86% 0.0327 0.0241 48.72% 0.0246 0.0176 51.43% 0.0326 0.0235 51.65%

LSTM 0.0383 0.0294 64.63% 0.0304 0.0229 59.59% 0.033 0.025 52.62% 0.034 0.0258 57.66%

OTM Call:
RW 0.0536 0.0377 48.51% 0.0447 0.0308 45.96% 0.0811 0.0431 51.39% 0.0763 0.0414 51.06%

VAR 0.0484 0.0359 49.83% 0.0403 0.029 46.31% 0.0289 0.0212 50.72% 0.0321 0.0231 50.18%

LSTM 0.0397 0.031 62.1% 0.0365 0.0266 59.02% 0.036 0.0277 52.84% 0.0363 0.0279 53.99%

Total:
RW 0.0621 0.0403 50.27% 0.0532 0.0353 47.7% 0.0832 0.045 51.48% 0.0868 0.0474 50.79%

VAR 0.0595 0.0382 52.55% 0.0493 0.0331 49.55% 0.0323 0.0231 51.91% 0.0397 0.0268 51.83%

LSTM 0.0505 0.0343 63.11% 0.0468 0.0317 60.17% 0.0394 0.03 53.19% 0.0421 0.0305 55.32%
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Table 7.4: Diebold-Mariano Test Statistic

Pairwise comparison of the Diebold and Mariano (1995) (DM) statistic for out-of-sample predictions from
August 2022 to December 2022. We divide the results for different maturities (Short Term: 3-14 days; Mid
Term: 14-30 days; Long-Term: 30-270 days), moneyness levels (OTM Put: moneyness between 0.5-0.94; ATM:
moneyness between 0.94-1.06; OTM Call: moneyness between 1.06-2) as well as any permutation of these
two. The DM test compares the forecasting accuracy of the RW/VAR (column) with the VAR/LSTM (row)
model. It tests the null hypothesis that the forecasts have the same accuracy, i.e. a positive DM statistic
indicates that the first model has larger average forecast error compared to the second and hence the second
model is preferred. The p-value of the statistic is expressed using one (three) asterisks (

∗∗∗
) for the 10% (1%)

significance level.

Short-Term Mid-Term Long-Term Total

VAR LSTM VAR LSTM VAR LSTM VAR LSTM

OTM Put:

RW 0.44 3.48
∗∗∗

2.77
∗∗∗

2.83
∗∗∗

21.19
∗∗∗

15.86
∗∗∗

11.03
∗∗∗

10.48
∗∗∗

VAR 4.31
∗∗∗

1.07 −13.93
∗∗∗

1.38

ATM:

RW 5.04
∗∗∗

10.69
∗∗∗

8.15
∗∗∗

7.4
∗∗∗

12.71
∗∗∗

9.66
∗∗∗

15.33
∗∗∗

15.44
∗∗∗

VAR 10.41
∗∗∗

3.64
∗∗∗

−9.1
∗∗∗

4.26
∗∗∗

OTM Call:

RW 6.32
∗∗∗

8.04
∗∗∗

7.01
∗∗∗

5.31
∗∗∗

25.95
∗∗∗

20.37
∗∗∗

27.27
∗∗∗

22.35
∗∗∗

VAR 6.94
∗∗∗

3.07 −15.5
∗∗∗

−4.46
∗∗∗

Total:

RW 1.84
∗

6.64
∗∗∗

6.06
∗∗∗

6.21
∗∗∗

36.55
∗∗∗

33.31
∗∗∗

36.6
∗∗∗

34.4
∗∗∗

VAR 7.07
∗∗∗

2.67
∗∗∗

−43.97
∗∗∗

−9.92
∗∗∗

7.3.2 Economic Value

The findings in Table 7.3 support the choice to select only short-term ATM options for the

trading evaluation. Within this subgroup, we face up to two actively traded maturities, each

consisting of two to four strike levels. At each time we invest $1000 in the hypothetical

portfolios A,B and C, and document the return, as described in Subsection 7.2.3. Note that

strategy A considers only the directional forecast of each model whereas B accounts for each

exact prediction throughout the options chain. Table 7.5 summaries the trading performance

of the strategies using the three model predictions over the out-of-sample period from August

to December 2022. It presents the percentage mean, median and standard deviation of the

eight-hour returns as well as the Sharpe- and Sortino-ratio.

The first strategy reveals that only the LSTM forecasts procdue a positive mean return

of 1.18%. In contrast, both the RW and VAR models incur losses on average, with returns

of -0.18% and -0.12%, respectively. This can be attributed to their weak predictive power for

direction. Recall that both RW and VAR model can predict the correct direction in merely
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50% of the time, while the LSTM is boasts a 64% success rate. Accurate directional prediction

is of utmost importance for a straddle strategy, especially considering bitcoin’s proneness for

sudden price jumps. The marginally better results for the VAR model, compared to the RW

model, further confirm the findings in Table 7.3. Moreover, the LSTM model provides the

lowest standard deviation, resulting in impressive Sharpe and Sortino ratios. However, each

trade requires the purchase (sale) of an options portfolio and exit the position, forcing the

trader to cross the spread. With an average spread of 3.2% for ATM bitcoin options, this

presumably profitable straddle strategy would result in losses.

We find similar results for the second strategy. Once again, the only profitable trading

strategy is based on the LSTM forecasts, with an average return of 2.34%. The other two

models lag behind considerably, with -1.45% and -1.74% returns, respectively. However, we

face an entirely different situation now. Note that we use the predicted IV to calculate

each specific delta along the options chain and use this information to delta-hedge or option

position. A closer examination of the data reveals that the forecasted IVs occasionally deviate

significantly from the true value, particularly for options farther from ATM. Given the short

time to maturity, the second closest option to ATM might still exhibit a 30 delta which is

considered OTM for other asset classes. In fact, it is a combination of incorrect predictions

and a low initial portfolio value V B

t
that produces extreme positive or negative returns on

investment, explaining the high standard deviation but low median of the second trading

strategy. That is, we have observed numerous occasions where the portfolio value V B

t
is

almost offset, i.e. the delta-hedged positions in the portfolio cancel each other out. However,

the wrong delta calculated using the predictions results in an offsetting options position but

great profit/loss on the futures leg, implying profits (losses) of up to 250% (-190%). Both

the Sharpe and Sortino ratios reflect this IV misprediction. Although the average return for

the delta-hedged portfolio surpasses that of the straddle strategy by more than double, the

Sharpe and Sortino ratios are are more in favor for the straddle, suggesting a preference for

strategy A over B.

Interestingly, the ‘hodl’ benchmark (C) displays the highest standard deviation across all

models and strategies. In fact, it ranks as the third worst model after the delta-hedged RW

and VAR in terms of mean return, Sharpe, and Sortino ratios. However, the spread for the

underlying spot or futures is generally negligible, rendering the buy-and-hold strategy not

substantially worse than the others.
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Table 7.5: Trading Strategy Evaluation

Summary statistics of the three trading strategies (straddle, delta-hedge and buy-and-hold) for short-term
ATM options based on trading signals generated by distinct predictive models (RW, VAR and LSTM). The
performance measures include the average return, standard deviation, resulting Sharpe Ratio, and Sortino
Ratio, all expressed in percentage terms for the out-of-sample period August to December 2022 using the
intraday eight hour rebalancing frequency. We have highlighted the best model in blue.

Mean Std. Dev. Median Sharpe Ratio Sortino Ratio

Strategy A
(ATM Straddle)

RW -0.18 6.31 -0.76 -2.94 -4.46
VAR -0.12 6.14 -0.96 -2.03 -3.3
LSTM 1.18 5.85 0.52 20.13 38.56

Strategy B
(delta-hedged portfolio)

RW -1.45 19.15 -0.15 -7.55 -9.94
VAR -1.74 15.56 -0.21 -11.14 -13.34
LSTM 2.34 19.33 0.22 12.09 20.78

Strategy C
(Buy and Hodl) -0.94 28.1 -1.07 -4.54 -5.6

7.4 Concluding Remarks

This chapter introduces and implements a technical framework capable of capturing and

modeling the dynamics of bitcoin implied volatility in a manner that enables traders and

portfolio managers to generate positive returns. Our approach is two-fold: first, we model

the implied surface with a parametric model; and second, we use the resulting parameters to

create a time series, modeling and predicting these using both statistical and machine learning

models before benchmarking the predictions against a naive forecast. For the former, we

advocate the use of a second-order Taylor expansion to capture the key components driving

the surface (Dumas et al., 1998). This approach is easy to implement, intuitive for traders,

and capable of capturing the surface to a satisfactory extent, as we demonstrate using an

array of statistical evaluation measures like AIC, BIC, (adjusted) R2 or RMSE.

With regard to time series modeling, we compared three distinct approaches to obtain

step-ahead predictions: a random walk, VAR, and LSTM model, each with optimized lag.

Given the predicted model parameters, we translate these back into implied volatilities and

compare their accuracy with the actual observed market implied volatilities, measuring their

performance based on common statistical elements like RMSE, MAE, and MDE. Motivated by

the discussion in Section 3.2, we partition the surface into various maturity and moneyness

subcategories and find clear differences between groups. While the best overall results are

obtained from a VAR model concerning the RMSE and MAE, we find rather poor directional
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forecasts. Nevertheless, using the LSTM on short-term ATM options, we are able to predict

the right direction of the implied volatility in over 60% of the cases. Considering that this

subgroup contains the most overall trading volume, we decide to focus further research on

short-term ATM options only, i.e., those expiring within the next two weeks.

Based on this setup, we have introduced three distinct trading strategies and evaluated

their profitability. Namely, we consider a ATM straddle, delta-hedged portfolio and a simply

buy-and-hold strategy. For any trading signal obtained from the model, we either buy or sell

the respective option and re-evaluate our position at the next time increment. We backtest

these strategies on an out-of-sample period from August to December 2022 and find mixed

results. The VAR and RW model are not able to generate forecasts sufficient enough to

generate positive returns for any of the tested strategies. On the other hand, the LSTM

forecasts yield – on average – positive returns for both the delta-hedge and ATM straddle

strategy. Although the delta-hedged approach yields a higher average return, its standard

deviation greatly exceeds that of the ATM straddle, and consequently the delta-hedged Sharpe

and Sortino ratio are worse.17 Contrary, the ATM straddle shows fantastic results for both

Sharp and Sortino ratio.

While only the LSTM strategy-model pairs yielded positive average returns, any strategy

failed to be implemented into real market conditions due to transaction costs and fees. This

is a strong indicator of an efficient Bitcoin options market. Furthermore, we have shown that

Monte Carlo Dropout opens the door to an entirely new option pricing research strain. Despite

being an effective model that showed promising results, our LSTM model would benefit from

a larger historical dataset. Similar to the volatility index, this work is ahead of its time as we

are only scratching the surface of the possibilities of ML in financial data. However, we believe

that in 2-3 years’ time, there will be sufficient market data to train regimes and dynamics

more accurately. Moreover, the model could include more external information in the form

of another time series, such as the correlation between the implied volatility and the spot, or

the open interest of call and put options. A hybrid model between LSTM and VAR could

also be something to consider. Finally, it would be interesting to investigate a threshold for

the size of the signal, i.e. buy/sell an option only if a certain signal level is exceeded.

Overall, this chapter has contributed to understanding bitcoin implied volatility dynamics

and its efficiency, and provided insights into potential profitable trading strategies. Future

research could extend this work by incorporating additional information and more advanced

modeling techniques to further improve the performance of the trading strategies.

17Note that the ATM straddle requires a directional forecast only, while the delta-hedged approach considers
the size of the implied volatility to calculate the delta. In fact, in some occasions the forecasts were far too
off from the true value which resulted in abnormal returns for the delta-hedge strategy and consequently the
higher standard deviation.
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CONCLUSION

The internet as we know it today is – in its core – nothing more than a string of different

protocols, including but not limited to IP or HTTP etc. Blockchains are basically no different

and operate in similar spirit. They use mostly fully automated protocols, i.e. smart contracts,

which run in the background and serve some purpose like providing access to or storing data,

settle transactions or transfer value. A distinguishing feature of these technologies, however,

lies in their decentralised architecture and the resulting transparency. Hence, the question is

not ‘if’, but ‘when’ these two different types of protocols will interlink and blockchain projects

will (unconsciously) find their way into the everyday life of the general population.1

In this dissertation, we operate on the forefront of this transition and provide fundamental

research for what is to become “the next big thing” in the field of cryptocurrencies. We focus

on trading bitcoin options and its implied volatility extensively, thus establishing the basis

for further research in this area. Since its introduction in January 2009, bitcoin consistently

had the most trading volume, most media coverage and most controversy surrounding it

among all digital assets. No cryptocurrency has been declared dead more often, only to reach

new all-time heights. This has resulted in great interest for bitcoin derivatives, particularly

within the options market. This market has been steadily growing since its inception in 2017,

enabling agents to trade the very essence of bitcoin, i.e. its volatility. Our research shows

a considerable increase in the trading volume of bitcoin options, far outstripping the growth

observed for S&P 500 options, alongside the institutional interest in the bitcoin option market.

All these factors contributed to an increase in liquidity and declining bid-ask spread, thereby

intensifying the competition to uphold an edge. Furthermore, we identify clusters in trading

activity and assign these to potential groups of retail or institutional traders.

1One currently often mentioned and discussed topic are Central Bank Digital Currencies (CBDC). The
idea is rather simple: Any central banks runs its private blockchain and issues digital token worth one
USD/GBP/EUR. The central banks claim to have a better overview about current circulation and spend-
ing while critics see this as a step closer to total surveillance.
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However, the fragmentation of the crypto derivatives market and idle behaviour of regula-

tors created an array of different option settlement mechanisms. In the first research chapter,

we present and examine all available option types currently tradable on regulated and un-

regulated exchanges. We derive the mathematical pricing formulae under the assumption of

a Black and Scholes (1973) framework, and first show that inverse options, which account

for approximately 90% of the overall traded volume and open interest, can and should be

priced according to Garman and Kohlhagen (1983). Furthermore, we point out the market

incompleteness for the biggest crypto options exchanges and highlight key risks associated

with stablecoin-denominated options which represent all other tradable options on unregu-

lated exchanges. We emphasises the use of quanto options to tackle the de-pegging risk of

stablecoins and introduce an attractive, yet affordable exotic alternative to inverse options, i.e

quanto inverse, to enable wider participation in the bitcoin options market. Both quanto and

quanto inverse options are natural extensions of the currently available products and ensure

investor protection and increase participation in the market.

Progressing with our empirical research, we conclude that bitcoin implied volatility makes

a poor hedge for the underlying. Our analysis shows a frequent fluctuation in the correlation

between the bitcoin’s price and its implied volatility, in both magnitude and sign. Con-

sequently, the leverage effect, which we find in most traditional markets, does not hold for

bitcoin, indicating similarities to FX implied volatilities. This requires traders to reassess their

hedged options position and reevaluate their delta. In fact, we find evidence for a clear regime-

dependency of the spot-volatility correlation. However, bitcoin implied volatility also exhibits

characteristics akin to other asset classes like equities or commodities. For instance, sudden

jumps in the underlying make it spike up before it corrects itself in a mean-reverting manner

with both backwardation and contango periods clearly visible. As one might anticipate, the

overall level of implied volatility is significantly higher than in other asset classes, although we

do find instances where commodities depict higher volatility. A distinctive characteristic of

bitcoin implied volatility is its tail behaviour. While the standard implied volatility resembles

a hockey-stick shaped smirk, i.e. OTM put exceeding OTM calls with a local minima around

ATM levels, we encounter in many instances a strong variation in shape, i.e. symmetric or

even positive skew in which the OTM call exceeds the OTM put implied volatility.

These findings motivate our second research chapter which examines the dynamic hedg-

ing potential of various model-free smile-implied and regime-dependent smile-adjusted delta

for bitcoin options with different maturities and moneyness levels. For this, we consider the

unique derivatives of the crypto market and compare two distinct hedging instruments, i.e.

perpetuals and fixed-maturity futures, at an intra-day rebalancing frequency. Previous empir-

ical academic research on this strain of has only investigated equity index options. Our study

prioritise the robust, model-free framework that is preferred by so many practitioners. While

our findings are somewhat mixed, the general consensus of conclusions is that smile-adjusted

hedge ratios can only improve on the BS delta for OTM put options, sometimes. In some
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instances, we have demonstrated that the smile-implied (sticky-moneyness) delta can offer a

substantially superior hedge than a standard BS delta for OTM options, with efficiency gains

of over 40% in some cases. Furthermore, we find that bid-ask spreads on bitcoin options

are still relatively large, particularly at the tails, and much higher than they are on bitcoin

futures or perpetuals. Hence, the profitability of bitcoin options market making hinges more

on accurate dynamic delta-hedging than delta-gamma-vega hedging. Nevertheless, if spreads

on bitcoin options were to reduce in future, it would be interesting to investigate gamma and

vega hedging for a bitcoin options book or even different underlyings like ether or solana.

However, as of this writing, the trading costs of hedging price and volatility risk with op-

tions could potentially offset any additional profits derived from possibly increasing trading

volumes due to a reduction in spreads

Beyond simply taking a directional (hedged) position in the underlying, our study illus-

trates how bitcoin options can be used to generate implied volatility indices across various

maturities. These indices consider the unique trading patterns of bitcoin options and serve

as a strike price for variance swaps. In a pioneering effort, we analyse the time series of the

bitcoin implied volatility index and emphasise its use as settlement value for futures trading.

Our findings confirm consistency of the bitcoin implied volatility index with those of other

classes, i.e. we identify extensive periods in contago and abrupt cycles in backwardation after

price crashes. Further research reveals that the bitcoin carry, i.e. the difference between

implied and realised volatility, is typically very high, reaching levels up to 30% which indi-

cates significant overpricing of bitcoin options. Following this line of inquiry, we regard the

calculated value of the bitcoin implied volatility index as a fair swap rate for a variance swap,

allowing us to examine its variance risk premium, i.e. the payoff to a variance swap. In an

attempt to position bitcoin on the global market better, we compare its VRP to other asset

classes like US equity, commodities and FX rates. Interestingly, our findings demonstrate

that bitcoin’s VRP mimics those of other asset classes, typically exhibiting a negative trend

with sudden surges into positive territory, albeit with much larger magnitudes. Despite its

tainted image, our comparison reveals that bitcoin has the most appealing VRP profile for

market makers, making it an attractive asset to trade. An examination of the determinants

of bitcoin volatility and its correlation to other assets yields no significant results. Indeed,

in recent years, bitcoin appears to have lost its diversification potential, a development we

mainly attribute to its increasing correlation with other major markets. Future research could

potentially include the index and resulting VRP behaviour of other coins and token like ether

or solana. Given the increase of trading volume for ether options in the last year, it is plau-

sible to assume that one could create an ETH implied volatility index, while it may still be

premature for solana. However, with the launch of futures on the DVOL, new opportunities

have emerged for researching the pricing and modelling of bitcoin VIX derivatives.

Our research has thus far focused primarily on slices of the implied surface, i.e. skews

with fixed maturity. In other words, we neglect most of the entire surface. In our final
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research chapter we aim to model and predict the dynamics of the bitcoin implied volatility

surface. For this, we pursue a two-step approach examining two main questions. First,

how well does out model replicate the surface; and second, how well can the time series

models predict the next step. In addressing the former, we consider a model-free approach

in which we fit intra-day market implied volatility surface data to an array of parametric

second-order Taylor expansions (Dumas et al., 1998). We identify a five-parameter model

that most closely replicates the surfaces and ensure its arbitrage-free nature. However, due

to option clusters for short-term ATM, it is challenging to capture tails with the second-order

polynomial. Hence, we find the most accurate results for short-term ATM IV. Next, we

model the rustling parameter time series. Motivated by the serial autocorrelated properties

of the time series, we fit a VAR model to predict the next steps. In light of the growing

interest in ML models, we integrate a LSTM model to our portfolio of predictive models,

as a natural non-linear extension of the VAR. Given the statistical success in predicting the

volatilities, we examine the economic value of our results through different trading strategies.

Interesting, this rudimentary approach yields encouraging results for short-term ATM options

as the trading strategies yield a positive mean return and high Sharpe and Sortino ratios when

backtesting on out-of-sample data. Our findings confirm the results of Bolch and Book (2022)

on S&P 500 options, i.e. short-term ATM options are predictable and it is possible to exploit

these. However, the practical implications of real-world transaction costs or bid-ask spreads

effectively nullify these results, indicating an efficient bitcoin options market.

The potential for further research in this domain are immense. Firstly, it would be in-

teresting to consider a dynamic regime-switching model to capture volatility regimes, e.g.

Hamilton’s Markos Switching model. In the same vein, a dynamic mixture model combining

VAR and LSTM might outperform a single model. Additionally, incorporating the spot-vol

correlation or changes in the open interest for the moneyness-maturity subcategories may

enhance forecast accuracy. On the other side, we are only scratching on the surface of ML

application on financial data. The implemented Monte Carlo Dropout function paves the

way to an entirely new research strain of pricing and hedging options as the MCDO provides

a probability distribution of future option or underlying prices. In general, our approach

could be readily extended to any other statistical or ML model, such as HAR, convolutional

LSTM, or Transformer models, which might yield improved accuracy. However, the currently

available data is insufficient to apply these models just yet. Similar to previous research, the

predictability of the ETH implied volatility surface, or joint dynamic modelling, would sig-

nificantly enhance our understanding of the cryptocurrency options market. Finally, it would

be interesting to investigate whether a threshold for the signal would yield improved results.

In many aspects, this thesis is ahead of its time. Often mis-perceived as a niche market,

we are the first to provide fundamental research for these promising crypto derivatives. The

presented methodologies, if not already, can and should be used to model, price and hedge

bitcoin options and their implied volatility. Our proprietary dataset is unmatched in cur-
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rent literature and covers the longest period of historical bitcoin option market data. Thus,

we examine existing products and those not yet available, or only traded OTC, and provide

valuable insight into the bitcoin options market for both academics and practitioners. The

continuous inflow of institutional players has transformed the bitcoin options market consid-

erably over the past three years. As a result, we have seen a rise in correlation between bitcoin

and large equity indices like S&P 500. Further influx of institutional liquidity will most likely

moderate the volatile nature of cryptocurrencies. However, prior to that, international regu-

lation will have to take place to provide a foundation on which trust in this asset class can

be built. We believe that bitcoin, as the prime cryptocurrency, will prevail as a highly traded

and liquid asset, but it will not lead the inevitable changes of the financial landscape. Its

architecture is too ancient and ill-equipped for modern tasks. Nevertheless, its influence over

other cryptocurrencies is indisputably strong, and as such, bitcoin can be seen as a proxy

for the overall cryptocurrency state. The findings of this dissertation help both scholars and

practitioners understand the cryptocurrency derivatives market better and pave the way for

further research as they allow other academics to build on our analyses.
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Cho, K., B. van Merriënboer, D. Bahdanau, and Y. Bengio (2014). On the properties of
neural machine translation: Encoder–decoder approaches. Proceedings of SSST 2014 - 8th
Workshop on Syntax, Semantics and Structure in Statistical Translation, 103–111.

Choi, H., P. Mueller, and A. Vedolin (2017). Bond variance risk premiums. Review of Fi-
nance 2 (3), 987–1022.

Chow, K. V., W. Jiang, and J. Li (2021). Does VIX Truly Measure Return Volatility? Hand-
book of Financial Econometrics, Mathematics, Statistics, and Machine Learning. World
Scientific.

Christoffersen, P.and Jacobs, C. (2004). The importance of the loss function in option valua-
tion. Journal of Financial Economics 72 (2), 291–318.

Clark, I. (2011). Foreign Exchange Option Pricing: A Practitioner’s Guide. Wiley Finance
Series.

Coleman, T., Y. Kim, Y. Li, and A. Verma (2001). Dynamic hedging with deterministic local
volatility function model. Journal of Risk 4 (1), 63–89.

Cont, R. and J. Da Fonseca (2002). Dynamics of implied volatility surfaces. Quantitative
Finance 2 (1), 45–60.

Corsi, F. (2009). A simple approximate long-memory model of realized volatility. Journal of
Financial Econometrics 7 (2), 174–196.

Cox, J. (1975). Notes on option pricing i: Constant elasticity of diffusions. Stanford University
Working Paper .

Cox, J., S. Ross, and M. Rubinstein (1979). Option pricing: A simplified approach. Journal
of Financial Economics 7 (3), 229–263.
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Teng, H. and W. Härdle (2022). Financial analytics of inverse BTC options in a stochastic
volatility world. SSRN Working Paper .

Todorov, V. (2010). Variance risk-premium dynamics: The role of jumps. Review of Financial
Studies 23 (1), 345–383.

Tompkins, R. and R. D’Ecclesia (2006). Unconditional return disturbances: A non-parametric
simulation approach. Journal of Banking and Finance 30, 287–314.

Trolle, A. and E. Schwartz (2010). Variance risk premia in energy commodities. Journal of
Derivatives 17 (3), 15–32.

Urquhart, A. (2016). The inefficiency of bitcoin. Economic Letters 148, 80–82.
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APPENDIX A

CRYPTO OPTION PRICING

A.1 Derivation of the Greeks

We present a step-by-step derivation of the quanto inverse Greeks. For the sake of readability,
we denote S$ = S. First, we derive some basic formulae:
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Note that the standard normal probability function ϕ(·) is given as:
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We use this to simplify:
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Next we show some basic derivatives:
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as well as:
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and lastly:
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Using (A.1) and (A.3), we can now define the quanto inverse call delta, i.e. the sensitivity of
the quanto inverse call price with respect to the underlying. We deliberately omit the quanto
inverse put derivation.
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In similar spirit, we can derive the quanto inverse call gamma, i.e. the second derivative of
the quanto inverse call price with respect to the underlying:
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Next, we consider the quanto inverse call vega (ν). Using (A.1) and (A.6), we show:
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Lastly, we present the time sensitivity theta (θ:

ϑ :=
∂f

∂τ
=

∂

∂τ
e−rτΦ(d2)− e(σ

2−2r)τS−1
t KΦ(d3)

=
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∂e−rτ

∂τ
Φ(d2) + e−rτ ∂Φ(d2)

∂d2

∂d2
∂τ

]
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S

[
∂e(σ

2−2r)τ

∂τ
Φ(d3) + e(σ
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∂d3

∂d3
∂τ

]

=

[
−re−rτΦ(d2) + e−rτϕ(d2)

∂d2
∂τ

]
−

K

S

[(
σ2 − 2r

)
Φ(d3)e

(σ2−2r)τ + e(σ
2−2r)τϕ(d3)

∂d3
∂τ

]

=

[
−re−rτΦ(d2) + e−rτϕ(d2)

∂d2
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]
−

K

S
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(
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− σ

2
√
τ
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=
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K

S
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2
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.

We deliberately exclude the derivation of the other Greeks as well as those for put options for
the sake of clarity and space. However, considering (A.1), (A.2), (A.3), (A.4) and (A.5) it is
a rather trivial but gradual task to derive and present the missing Greeks.



APPENDIX B

THE LONG SHORT TERM MEMORY
MODEL

Motivation: The significance of employing machine learning algorithms for finan-
cial data analysis cannot be understated. Recent technological advancements and
the availability of large-scale datasets catalysed a resurgence of machine learning
models. Although the application of these models to financial data is yet at its
infancy, a limited number of research studies demonstrate promising results in the
realms of pricing, hedging, and forecasting derivative data. Financial powerhouses
like Bloomberg or Citadel committed substantial resources to explore and exploit
this field. Although the foundations of these models often consist of straightfor-
ward linear algebraic equations, they still appear like a black box to numerous
researchers.

Summary: We present the fundamental architecture of both feedforward and
recurrent neural networks, explaining the mechanisms through which these models
operate, learn, and generate predictions. We provide a comprehensive overview
of the essential components constituting these models, alongside a rationale for
employing neural networks in addressing predictive challenges. Ideas, derivation
and information in this chapter are not my own. As a textbook chapter, all
notations, definitions, figures, formulae and examples are inspired by and adopted
from Goodfellow et al. (2016), Kelleher (2019), Schmidt (2019) Jansen (2020),
Brownlee (2021) and Zhang et al. (2023).
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B.1 Promise of Machine Learning

There has been a resurgence of interest in the application of self-learning algorithms to solve
a broad range of problems in recent years.1 The concept of machine learning (ML) has
its origins in the 1960s, yet its core idea remained the same. Within this field, models
autonomously “learn” and accumulate “experience” throughout a task, rather than relying
on external sources for updates. The objective is to identify relationships, highlight key
features, or generate entirely new elements in a self-learning fashion. Machine learning can
be categorized into three primary paradigms: supervised learning, unsupervised learning,
and reinforcement learning (RL). Supervised learning requires labelled data, wherein the
model is trained on input data with known target outputs. Examples of supervised learning
include the recognition of handwritten digits or the analysis of time series data. In contrast,
unsupervised learning models lack access to target output data; instead, the goal is to reveal
the structure of the input data. The probably most prominent model in this class is a Principal
Component Analysis (PCA). Lastly, reinforcement learning does not require labeled data but
strives to discover an optimal strategy within an Markovian environment by receiving rewards
or penalties based on the model’s actions. The ultimate goal is to maximize the reward over
time, with self-driving cars serving as a notable application in this field. Particularly, the
supervised learning model are of interest for our study as this subgroup can handle time
series and generate predictions. Hence, we remove unsupervised and reinforcement learning
from further consideration.

Among the supervised learning models, artificial neural networks (ANN) are perhaps the
most renowned. These models attempt to mimic the structure and information processing
mechanisms of the human brain. Similar to a human neuron, information is processed se-
quentially through action (input), perception (activation), and reaction (output). Models in
which information is processed unidirectionally are referred to as feedforward neural networks
(FNN), whereas those with recurrent or feedback loops constitute the class of recurrent neural
networks (RNN). The earliest implementations of FNN can be traced back to the 1950s and
have since spawned a variety of distinct models. Nonetheless, the most prevalent network
among practitioners remains the Multilayer Perceptron (MLP), as introduced by Rumelhart
et al. (1986).2 Recurrent neural networks represent an extension of ANN which incorporate
an internal memory function that retains information from previous inputs. Consequently,
these models are better suited for handling sequential input data, such as translation, speech
recognition, or time series analysis. Numerous variations of RNNs exist, each addressing
specific limitations of the basic model.3

Recent technologically advancements in availability of large-scale data make machine learn-
ing models an attractive alternative to traditional statistical models. Both academics and
industry professionals increasingly adopt ML models in financial data analysis due to their
capacity to process vast amounts of data, identify hidden patterns, and make data-driven deci-
sions. Common areas of applications include, among others, hedging single options (Mikkiliä,
2023) or option portfolios (Buehler et al., 2019), pricing (Hoang and Baur, 2021) derivatives
or forecasting Vrontos et al. (2021) volatility as discussed in the literature review. The ML
models’ ability to capture non-linear, regime-specific dynamics within underlying data sets,

1The term “algorithm” defines a static code protocol a computer follows step-wise till it reaches its end.
2See a simple perceptron model (Rosenblatt (1958)), the radial basis function networks (Broomhead and

Lowe (1988)) or Ritter-Kohonen maps (Ritter and Kohonen (1989)) to name a few
3See Elman networks (Elman (1990)), Jordan network (Jordan (1990)) or echo state network (Jaeger (2001)).

However, discussing these in detail would exceed the scope of this work.



B.2. FEEDFORWARD NEURAL NETWORK 185

as well as their minimal reliance on data assumptions, position these models as the most
promising innovations in contemporary financial research.

In the following, Section B.2 describes the basic architecture of a feedforward neural
network and its shortcomings for sequential data; and Section B.3 introduces the recurrent
extension of a FFN and emphasises the use of a long-short term memory model.

B.2 Feedforward Neural Network

The multilayer perceptron serves as the plain vanilla model for supervised feedforward neural
networks, providing a base architecture upon which other, more sophisticated models are
built. Consequently, we explain the essential architecture and procedure in greater depth.
A MLP is a function fω : X → Y, mapping the d-dimensional instance domain, sometimes
referred to as training or input set, X ⊂ Rd to the labelled domain Y ⊂ Rdo , given the internal
state of weights ω. This function processes labeled input data, or samples, x ∈ Rd, in form of
a d-dimensional vector and maps it to a do-dimensional output vector ŷ ∈ Rdo , attempting to
estimate a conditioned probability distribution P (y|x). One or more hidden layers h(l), where
l ∈ {1, ..., L} addresses a specific layer, bridge these two vectors. The number of neurons, or
hidden units |h(l)| = Nl in h(l) ∈ R1×Nl may vary. In a sense, the input and output vectors
can be regarded as layers themselves, albeit not hidden. A deep neural network describes
a network with L ≥ 1. We adhere to the standard literature notation where a bracketed
superscript denotes the hidden layer, bold letters represent matrices, and subscripts address
specific elements within a matrix.

B.2.1 Forward Propagation

The hidden layers are the processing units and form the backbone of any MLP. Consider
the simple case of one hidden layer, i.e L = 1. Information flows from the input vector
to the neurons, gets processed, and passed forward to the output vector. These flows are

unidirectional, and we define the output of the i-th neuron of the hidden layer as a
(1)
i . In

a fully connected MLP, each neuron is connected to all elements of the input vector, with
individual coefficients, or weights, associated with these connections. We denote the weight

from the i-th input element to the j−th neuron in first layer as w
(1)
(i,j). In general, MLPs

do not impose any constraints on these weights, but these range typically between 1 and 0
or -1, depending on the problem and modern libraries like Keras or Scitlearn allow to set
borders. Nonetheless, these limits can profoundly impact the learning structure of the model,
and theoretically, there are no absolute restrictions, as some MLPs have weights exceeding
one, see this discussion for an example.

Each neuron tries to identify a specific pattern or key characteristic within the input data.
This “divide and conquer” approach (Kelleher, 2019) combines the identified components and
tries to capture the bigger picture, similar to a mosaic. As such, the selection of the number
of layers and neurons is critical, as too many may result in capturing redundant information,
while too few could neglect essential content. The operating principle of a neuron j is as
simple as effective: First, it takes multiple inputs, which are the outputs of previous neurons,
or the input vector elements, and multiplies them with their associated weight and sums them

up to a value z
(1)
j . Additionally, it adds a bias term b

(1)
j to the sum in order to parallel shift the

weighted sum and consequently gaining more flexibility for the model fitting.4 It is common

4The bias term is an additional parameter added to the weighted sum of the inputs. It serves as an offset,

https://stackoverflow.com/questions/43253009/large-values-of-weights-in-neural-network
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to replace the bias by an additional weight w
(1)
j and we will do so for further calculations. In

the second step, the sum is passed through an activation function σ(l) at each layer l which
produces in the neuron’s output:

z
(1)
j = w

(1)
(1,j)x1 + w

(1)
(2,j)x2 + ...+ w

(1)
(d,j)xd − w

(1)
j

a
(1)
j = σ

(1)
j

(
z
(1)
j

)
.

The final model output follows an identical procedure with updated values and weights:

z
(o)
j = w

(o)
(1,j)a

(1)
1 + w

(o)
(2,j)a

(1)
2 + ...+ w

(o)
(N1,j)

a
(1)
N1

− w
(o)
j

ŷj = σ
(o)
j

(
z
(o)
j

)
,

where w(o) denotes the weighs from neuron to output vector and σ(o) defines an (optional)
activation function before the output. This formula can be expressed more general using the
matrix notation:5

Z(1) = W (1)x+ b(1)

h(1) = σ(1)
(
Z(1)

)
Z(o) = W (o)h(1) + b(o)

ŷ = σ(o)
(
Z(o)

)
with

x = [x1, x2, . . . , xd]
⊺ , b(1) =

[
w

(1)
1 , w

(1)
2 , . . . , w

(1)
N1

]⊺
, b(o) =

[
w

(o)
1 , w

(o)
2 , . . . , w

(o)
do

]⊺

and

W (1) =


w

(1)

(1,1)
w

(1)

(2,1)
· · · w

(1)

(d,1)

w
(1)

(1,2)
w

(1)

(2,2)
· · · w

(1)

(d,2)

...
...

. . .
...

w
(1)

(1,N1)
w

(1)

(2,N1)
· · · w

(1)

(d,N1)

 , W (o) =


w

(o)

(1,1)
w

(o)

(2,1)
· · · w

(o)

(N1,1)

w
(o)

(1,2)
w

(o)

(2,2)
· · · w

(o)

(N1,2)

...
...

. . .
...

w
(o)

(1,do)
w

(o)

(2,do)
· · · w

(o)

(N1,do)
.


Activation functions serve a crucial role as they decide whether a neuron is activated or

not. These functions must be differentiable and have non-linear properties to facilitate non-
linear mapping functions. A straightforward contradiction-based argument explains why:
Assume a linear activation function, i.e. the output of each neuron is simply the weighted
sum of the previous. The whole networks output would be trivial and simply resemble a linear
regression. The optimal activation function is typically identified through a trial-and-error

allowing the activation function to shift along the input axis, providing greater flexibility for the model fitting.
In a sense this resembles the constant b for a linear function y = ax+ b.

5Note that out initial choice of L = 1 can be generalised by stacking up hidden layers, e.g. h(2) = σ
(1)
2

(
Z(2)

)
up to h(L) = σ

(L)
L

(
Z(L)

)
.
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process. Table B.2.1 presents a selection of prevalent activation functions, illustrating their
mathematical representations, derivatives, and visual demonstrations. In the early stages
of neural network development, threshold functions were the standard choice for activation
functions, comprising simple binary indicator functions. With the evolution of gradient-
based learning models, the sigmoid function emerged as a natural alternative, offering a
smooth, differentiable approximation of the threshold function. Kalman and Kwasny (1992)
advocate the use of the hyperbolic tangent (tanh) function which maps input values to an
interval between -1 and 1. Both the sigmoid and tanh functions enjoy considerable popularity
due to their smooth, differentiable characteristics; however, the tanh function exhibits point
symmetry about the origin which may show advantages in modelling. The rectified linear unit
(ReLU) has probably become the most popular and widely-used choice, due to its simplicity of
implementation and exceptional performance (Nair and Hinton (2010), Glorot et al. (2011)).

Table B.2.1: Selection of Activation Functions

A selection of prevalent activation functions, illustrating their mathematical representations, derivatives, and
visual demonstrations.

Name Function Derivative Figure

Threshold σ(x) = 1{x>a} σ′(x) = 0

Sigmoid σ(x) = 1
1+e−x σ′(x) = σ(x)(1− σ(x))2

tanh σ(x) = 1−e−2x

1+e−2x σ′(x) = 1− σ(x)2

ReLU σ(x) =

{
0 if x < 0

x if x ≥ 0.
σ′(x) =

{
0 if x < 0

1 if x ≥ 0

Figure B.2.1 illustrates the standard MLP architecture, featuring one hidden layer with
four neurons, a three-dimensional input vector, and a two-dimensional output.6 The figure
demonstrates the feedforward process: Each element of the input vector is multiplied by its
corresponding weight, and the resulting sum (z) is forwarded to each neuron in the hidden
layer. Subsequently, this value undergoes the activation function σ before being passed on to
the output. ŷ. At this stage, the feedforward process ends and the forecast is compared with

6This illustration follows recent literature conventions, where information flows from left to right. However,
this choice is primarily based on personal preference and could alternatively depict information flowing from
bottom to top, as was presented in the 1990s. This structure can be employed to address both classification
and regression problems. The two-dimensional output might represent an action that needs to be taken, such
as a buy or sell decision, or a judgment, such as black or white. The input for these two classification problems
could consist of sentiment data or pixel values. It could also be used to predict the next two time steps of a
time series. For this regression problem the input would like be the past three time steps or two time steps
and an exogenous variable.
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the pre-determined target output and prepared for next steps of the backpropagation; hence,
the terminus of supervised learning with labelled data.

Figure B.2.1: Example Computational Graph of a Multilayer Perceptron

Simplistic visualisation of a fully connected MLP network with L = 1 hidden layer composed of four neurons,
i.e. N1 = 4. The input is a three dimensional vector x which results in a two-dimensional output vector ŷ.
Each neuron is connected to each and every element in the layers before and after, resulting 20 total weights
in this system. We omit some weight descriptions for the sake of clarity and show the calculation within a
neuron for only two neurons. The lower plot depicts an alternative visualisation of a MLP where the layer is
summarised as a box. The filled arrow heads depict a matrix operation.
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B.2.2 Backporpagation

For the sake of readability, let us keep the one-layer framework L = 1. A fully connected
MLP is typically expressed in the form:

f(x;ω),

where f denotes the mapping function, x reflects the input sample, and the internal state ω
is given as the combination of all available weights and biases within the network defines the
model’s internal state:

ω =
(
w

(1)
(1,1), w

(1)
(1,2), ..., w

(o)
(N1,Ndo )

, w
(1)
1 , w

(1)
2 , ...w

(o)
do

)
.

Initially, the model selects ω randomly, which in the majority of cases leads to suboptimal
outputs. Consequently, the network must identify the optimal weights through a process
known as learning. This procedure involves three steps: First, the model generates a forecast
ŷ for a given sample x, as discussed in (B.2.1). Second, the model compares the forecast
with the actual value y, which we highlight using the red square in Figure B.2.1, using a
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pre-defined evaluation metric –or loss function– ℓ(ŷ,y).7 The choice of an appropriate loss
function is often related to the activation function in the output layer, and there is a wide
variety of potential options. Some of the most common loss functions include:

• Mean Square Error (MSE):
This loss function is used mainly for regression problems and prediction of real numbers.
The activation function in the last layer is ideally linear because a non-linear activation
would skew the result. It is calculated as:

ℓ(ŷ,y) =
1

do

do∑
i=1

(yi − ŷi)
2 .

Further extensions of this function are Mean Square Logarithmic Error (MSLE) or the
Mean Absolute Error (MAE) loss.

• Logarithmic Loss (LS):
This approach is commonly used for classification problems. The ideal activation func-
tion is the sigmoid or tanh as these outputs might be interpreted as probabilities. This
loss function is often referred as cross-entropy loss and is calculated as:

ℓ(ŷ,y) = − 1

do

do∑
i=1

(yi ln (ŷi) + (1− yi) ln (1− ŷi)) .

In the final step, the main objective of the learning process is to optimise ω, i.e. finding:

argmin
ω

ℓ(ŷ,y).

Learning, in essence, is a |ω|-dimensional optimisation problem, which is addressed by
a combination of the gradient descent and backpropagation algorithm. It is important to
note that these terms should not be used interchangeably: the backpropagation algorithm
efficiently computes the gradient, while the gradient descent refers to the optimization process.
The gradient descent algorithm is relatively intuitive, as it uses the gradient ∇ℓ to provide
information on the slope and directional changes required to locate the minima of the surface.
However, modern AI datasets contain vast amounts of data, which can quickly strain standard
computational resources. Consequently, processing all samples through the network before
updating the internal set of weights becomes a time-consuming task. To address this issue,
there are three distinct gradient descent algorithms, which differ only in their batches B.8

A batch is a parameter chosen arbitrarily to define the number of samples x that must pass
through the entire network before updating the model weights. In fact, the current literature
convention illustrates input samples not as single elements x but rather as a matrix/tensor X
representing a batch of n samples. Based on this concept, the three primary gradient descent
algorithms are:

• Batch Gradient Descent:
This approach considers only one batch, i.e. the batch size is equal to the length of the

7Although the terms “loss” and “cost” are sometimes used interchangeably, there is a subtle distinction
between these two: The loss function pertains to each sample, while the cost function represents the average
value across multiple loss functions.

8The idea of approaching a minima using the gradient of a function is fairly nothing new. In fact, Cauchy
(1847) is often referred to be the founder of this technique and cited frequently, see Goodfellow et al. (2016).
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training set X . Hence the cost function is calculated using the loss functions of every
sample in the entire training dataset. It has the advantage of being a precise method to
estimate the minimum but requires time and hardware resources since the output for
every sample needs to be stored. The weight is updated after every sample has passed
through the forward process, based on the gradient of the cost function.

• Stochastic Gradient Descent:
The stochastic gradient descent (SGD) algorithm is an extension of the classic (batch)
gradient descent algorithm. The main characteristic is the batch size of one, i.e. the
internal state of the weights is updated based on the loss function after every randomly
chosen sample that went through the network. The internal state is updated each
sample. This makes the whole procedure rather fast and gives insight of the model
performance but has a high probability of resulting a noisy learning curve which is
prone to jumps. Note that it is highly unlikely to get the same results when running the
data multiple times through the model because samples are selected randomly which
influences the weight updates directly.

• Mini-Batch Gradient Descent:
This method is a combination of the previous two and enjoys great popularity among
practitioners. Batches in this approach are greater than one but smaller than the train-
ing set. The weights are updated based on the cost function over n = |B| randomly
selected samples.

The number of times all batches, i.e. the all samples in the dataset run once through the
network is called epoch E. Here again, it is not guaranteed that the gradient will ultimately
lead to the minima after one epoch. Hence, multiple iterations are needed to find the optimum
weights. There is no magic formula to find the optimal number of iterations but plotting the
error-function lead to the correct number.

In contrast to the analytical derivation, the numerical calculation of the gradient can be
highly resource-intensive. The backpropagation algorithm, as introduced by Rumelhart et al.
(1986), calculates the gradient in a cost-efficient and fast manner which is then forwarded
to the gradient descent algorithm for the actual learning. Recall the general chain rule of
calculus:

Theorem 1 (Chain Rule). For x ∈ Rd, y ∈ Rdo and g : Rd → Rdo , f : Rdo → R with
z = f(y) and y = g(x) it holds:

∂z

∂xi
=

do∑
j=1

∂z

∂yj

∂yj
∂xi

,

where the subscript i denotes the i−th element of the vector. More general, the chain rule
states:

∇xz =

(
∂y

∂x

)⊺

∇yz,

where =
(
∂y
∂x

)
is the Jacobian matrix of g and ∇ denotes the gradient vector.

Proof. See for example Leibniz (1676).

Determining the partial derivative of each weight in the network is the primary objective
of the backward propagation, specifically, computing ∇wℓ(ŷ, y) efficiently. Referring back to
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Figure B.2.1, it is obvious that the output vector ŷ has the greatest influence on the overall
loss function. Computing the partial derivatives of ℓ (ŷ,y) with respect to each element in ŷ
is straightforward and solely depends on the activation function in the output layer. However,
the forecast itself is merely a combination of outputs from previous layers. The weights to and
from these preceding layers are not directly connected to the loss functions. Consequently,
the algorithm proceeds backward to compute the partial derivatives of each weight. Following
Graves (2012), and for the sake if clarity, it is helpful to introduce:

δj =
∂ℓ (ŷ,y)

∂zj
,

with zj being the summed weights of previous outputs. Moving from the output to the last
hidden layer, we get:

δi =
∂ℓ (ŷ,y)

∂ai

∂ai
∂zi

=
∂ai
∂zi

|ŷ|∑
k=1

ℓ (ŷ,y)

∂zk

∂zk
∂ai

(B.1)

where i ∈ {1, 2, .., N1} addresses a node in the hidden layer, zi is again the summed weight
and ai describes the output of a neuron in the layer. Note that the loss function depends on
each node solely through the node’s output. Taking the derivatives of these two yields:

δi = σ′(ai)

|ŷ|∑
k=1

δkw
(o)
(i,k).

After all δ are calculated, we can use these to derive:

∂ℓ (ŷ,y)

∂w(i,j)
=

∂ℓ (ŷ,y)

∂aj

∂aj
∂wi,j

= δjai

Or, more general:

∇ωℓ (ŷ,y) =

(
∂Z

∂ω

)⊺

∇Zℓ. (B.2)

After each batch, the model then updates the internal weights:

ωnew = ωold − (η∇ωℓ (ŷ,y)) , (B.3)

where η is an adjustable learning rate. Note that in this vector operation, each gradient is
treated distinctly. The learning rate determines the extent to which the gradient (slope and
direction) is used to update the weights. It plays a critical role in the timing and precision of
the optimal weights. If the rate is too high, there is a possibility that the minimum is never
detected but rather oscillates around it. If it is too low, the learning process might consume
excessive resources.

B.2.3 Optimise the Optimisation

We presented the fundamental architecture and underlying mathematics of a plain vanilla
FFN. This model can be employed to address a diverse array of problems. Specifically, we
aim to explore its application in time series forecasting. In this setup, we would provide
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the model a training set of p lagged data as input and target the step ahead prediction as
output. An optimal ML predictive model would learn from the training data and extrapolate
its acquired “knowledge” to a test set it has never encountered before. A popular metric to
evaluate the goodness-of-fit is the loss function of the model, which illustrates how ℓ develops
as the model trains over epochs. In an ideal scenario, the loss function would rapidly converge
toward zero. The next step is to estimate the generalisation error, i.e. the difference between
the loss function on the train and test set. In the optimal case, both loss functions would
converge toward zero, indicating a flawless fit.

As model developer, we have great influence over the loss function’s shape. Obvious
approaches include adjusting hyperparameters such as the number of layers, nodes, and ac-
tivation functions. However, Sutskever et al. (2013) emphasise that manipulating the input
data itself likely has the most significant impact on the overall fit . Indeed, Wolpert and
Macready (1995) highlight that learning algorithms perform better on data with certain dis-
tributions. In the following, we will introduce a selection of data manipulation techniques
and architectural implementations aimed at enhancing overall model performance. Note that
there exists a plethora of variations in the field of data manipulation and model enhancement.
However, explaining each in greater detail would exceed the scope of this work.9

Scaling

Data scaling within the range [a, b] presents a prominent preprocessing approach. This tech-
nique involves transforming the time such that the minimum value is assigned to a, the
maximum corresponds to b, and the other fall within the interval. Typically, a is chosen to
be either -1 or 0, while b is set 1. This proves beneficial, as most activation functions are par-
ticularly sensible within these intervals. More important, this method preserves the original
distribution of the data. In general, using scaled data improves the overall model performance
and allows for faster convergence. One reason is that the gradients with respect to different
parameter will be more balanced if all features are on the same scale.

Early Stopping

Early stopping provides a conventional regularisation technique for deep neural networks. This
method restricts number of training epochs and monitors the train (valuation) loss throughout
the training process. It terminates the training process when the loss exhibits no improvement
exceeding a predetermined threshold over a defined number of epochs. The main advantage
is the time-saving aspect. In the context of large-scale models, this may yield considerable
time and cost savings, which are of paramount importance in practical applications.

Checkpoint

The loss function does not decrease monotonously. In certain occasions, and depending on
the batch size, the loss function may experience an abrupt increase. Hence, it is not assured
that the overall best model fit is attained at the end of training, that is, after all epoch have
been executed. The checkpoint method captures snapshots subsequent to each elapsed epoch.
It stores the initial ω internally and compares the loss after each epoch. Upon observing
an enhancement in the loss function, it overwrites ω with the current model weights. This
process ensures selecting the best model, irrespective of the final update.

9For a detailed description of the following, as well as additional techniques, please see the original source
of the definitions from Zhang et al. (2023).
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Dropout

The Dropout technique (Srivastava et al., 2014) serves as the standard approach to avoid
overfitting in ML modelling. As the name suggests, this method drops out neurons within
each hidden layer at a predetermined probability. Figure B.2.2 is copied from Zhang et al.
(2023) and demonstrates the mechanism in action. On the left, we have a fully connected
MLP with one hidden layer compromised of five neurons. On the right side, we apply the
Droput and see that the second and fifth neuron are deactivated during the forward process.
As a result, the associated weights do not partake in the training process, thus reducing
the likelihood of overfitting. As the computations do not rely on the two excluded neurons,
their gradients vanish in the backpropagation algorithm. The Dropout technique is both
computationally efficient and unrestricted in terms of model selection.

Figure B.2.2: Dropout Visualisation

Visual representation of a plain vanilla MLP network with one hidden layer before (left) and after (right) the
Dropout function. This figure is copied from Zhang et al. (2023). All credits belong to the authors. For a
detailed revision, please see Zhang et al. (2023) and their corresponding Book Website.

The Dropout function has a desirable side effect as it can be used as a Bayesian approxi-
mation (Gal and Ghahramani, 2016). The standard use of the dropout function is to disable
connections during training randomly, but activate all connections for prediction. However,
by actively keeping random connections disabled during prediction, each predictive result
differs slightly for the same input. The simulation of multiple predictions then generates
a histogram or density function of the possible predictions which allows us to estimate the
prediction uncertainty and evaluate the model’s reliability.

B.3 Recurrent Neural Network

The multi-layer perceptron model presents a reasonable attempt to predict (financial) time
series data, despite its primary function being pattern recognition. It is important to note
that the output relies solely on the arbitrarily selected (isolated) input from the training
set. As such, it fails to capture the trend, regime or momentum prior to the input sample. It
ignores favorable characteristics of the time series such as autocorrelation. To address this, we

http://www.d2l.ai/chapter_multilayer-perceptrons/dropout.html
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introduce recurrent architectures, each exhibiting distinct properties that address particular
challenges intrinsic to financial data.

Recurrent neural networks form an own class of neural networks that allow previous infor-
mation to influence current operations. This characteristic makes these models particularly
well-suited for sequential data, such as time series, and allows for the potential capture of
different regimes. For this, the base architecture requires sequential input data in the form
Xt ∈ Rn×d, which is a mini-batch of sorted samples of n sequences. The current time step
of variables will be denoted with a subscript. For readability, we keep the assumption of a
single hidden layer and define the hidden state as Ht ∈ Rn×N1 at time t.10 Note the time-
dependency, i.e. the hidden state at a previous time will have direct influence on current
calculations. As such, we need to store the hidden layer from operations and define a tem-
poral dependency for the operations. These recurrent or hidden-to-hidden connections are
captured by a weight matrix W̃ ∈ RN1×N1 which connects hidden layers across time and is
shared throughout the model.11 The purpose of this additional parameter is to be an internal
memory, which, unlike a simple FNN, uses information from possibly the entire history to
map an output. The key components are iterative loops across time steps. More specifically,
since neurons attempt to identify patterns in the data, incorporating a recurrent connection
between hidden layers may reveal significant patterns from past sequences and integrate this
information into the current context. Hence, rather than modelling P (xt|xt−1, ...,x1), the
RNN approximates:

P (xt|xt−1, ...,x1) ≈ P (xt|Ht−1) .

Figure B.3.1 illustrates the typical RNN architecture in the two ways it appears in aca-
demic literature, i.e. as “folded” (LHS) with the typically black square, and unfolded (RHS)
network. For instance, consider first the unfolded version. It depicts the feedforward calcu-
lation, i.e. from the input sample xt (bottom) to the prediction ŷt (top), it follows the same
logic and calculations as the MLP. The key difference are the connections between time (left

to right). In addition to the FNN, the RNN allows the hidden-to-hidden matrix W̃ influence
the hidden layers at each time step t = 1, ..., τ. The folded presentation of the architecture
summarises these inter-time connections by the self-loop.

10The standard literature assumes a aggregated hidden layer block H. For the sake of readability, we assume
just one hidden layer, but this could be easily extended.

11As a result, it assumes that identical weights can be applied to various time steps, necessitating stationary
data. Initially, an hidden state matrix H0 is generated –usually a null-matrix– as well as it corresponding
weight matrix W̃ .
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Figure B.3.1: Example Computational of a Recurrent Neural Network

Simplistic visualisation of or a plain vanilla folded (LHS) and unfolded (RHS) Recurrent Neural Network
with sequential length τ. For the sake of clarity, we choose the box representation of the hidden layer and
indicate matrix operations by the filled arrow heads. The black square in the circuit loop on the unfolded
graph represents a one-step time delay in the network and summarises the RHS where each node/operation is
assigned a time step individually. At the beginning, the model is kicked off by an randomly selected hidden
state matrix.
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We can express the calculations in Figure B.3.1 adapting the more general matrix notation
of Schmidt (2019) by:

Ht = σ(1)
(
XtW

(1) +Ht−1W̃ + b(1)
)

Ŷt = σ(o)
(
HtW

(o)
)
.

The introduction of time dependency in recurrent neural networks has implications for
the learning process. While the gradient descent algorithm remains unchanged, the back-
propagation algorithm needs an extension to accommodate the temporal dimension. Two
distinct backpropagation algorithms have been developed for this purpose: Real-Time Re-
current Learning (RTRL, Robinson and Fallside (1987)) and Backpropagation Through Time
(BPTT, Werbos (1990)). Over time, BPTT has proven to be more efficient in terms of com-
putational resources and simplicity, and thus, we will focus on its application in this context.
As seen in Figure B.3.1, the forward pass in an RNN does not differ significantly from that of
a standard MLP model. The primary distinction arises during the backward pass. For each
input sample xt there is a prediction ŷt and associated loss ℓ(ŷt,yt). We now define a total
loss function L as the sum over all sample losses in a batch:

L
(
Ŷ ,Y

)
=

τ∑
t=1

ℓt (ŷt,yt) . (B.4)

The backpropagation through time algorithm considers the total loss and propagates it back
through each time step, similar to a simple FNN, and then across the time steps to the
beginning. In a way, the errors are travelling back in time to capture the influence of the
hidden-to-hidden matrix. Mathematically, this procedure does not differ from (B.2) signif-
icantly. In a way, the BPTT algorithm repeatedly and recursively applies the chain rule.
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Following the same notation as in Schmidt (2019), we skip some calculations and present the
final gradients:

∂L
∂W (o)

=
τ∑

t=1

∂ℓt
∂ŷt

· ∂ŷt

∂σ(o)
·Ht

∂L
∂W̃

=
τ∑

t=1

∂ℓt
∂ŷt

· ∂ŷt

∂σ(o)
·W (o)

t∑
k=1

∂Ht

∂Hk
· ∂Hk

∂W̃

∂L
∂W (1)

=
τ∑

t=1

∂ℓt
∂ŷt

· ∂ŷt

∂σ(o)
·W (o)

t∑
k=1

∂Ht

∂Hk
· ∂Hk

∂W (1)
.

Schmidt (2019) emphasises that the computation of ∂Ht
∂Hk

is basically a matrix multiplica-
tion across the entire sequence τ. The presence of small values (< 1) within this multiplication
diminishes the gradient at each time step until it ultimately vanishes, a phenomena widely
known as the “vanishing gradient problem”. On the other hand, large values (>> 1) can
result in exceptionally large gradients, also known as the “exploding gradient problem”. An
optimisation is not possible due to the activation functions’ sensitivity to narrow ranges. A
rudimentary solution involves gradient clipping, i.e. scaling the gradient similar to the wind-
sorising process. Nevertheless, addressing the vanishing gradient problem requires a more
sophisticated approach. Among the most successful implementations is to control actively
which information is passed through a layer. These gated RNNs form a distinct subclass of
neural networks and promise to solve existing issues. The two most common networks incor-
porating these information gates are the long short-term memory (LSTM) models (Hochreiter
and Schmidhuber, 1997) or the gated recurrent unit (GRU) model (Cho et al., 2014). Notably,
LSTMs enjoy considerable popularity among practitioners and are frequently employed for
sequential data, which is why our focus is directed towards this model.

Long Short-Term Memory Model

The LSTM is an advanced RNN. As such, its base architecture resembles the standard recur-
rent neural networks but each neuron is replaced by a memory cell. These memory cells contain
an internal state Ct which is a neuron with a self-connected recurrent edge of fixed weight
one. This characteristic ensures that the gradient can span numerous time steps without van-
ishing or exploding. The underlying concept behind this design is relatively straightforward:
A plain vanilla RNN maintains its long-term memory in the form of weights which change
slowly during training. Additionally, the hold a short-term memory in the form of activation,
which pass forward between layers. The LSTM model takes it one step further and introduces
an intermediate type of storage via the memory cell (Zhang et al., 2023).

Gates

The internal state of a LSTM memory cell consists of three gates: (i) the “input gate” It,
which decides how much a new input should affect the internal state; (ii) the “forget gate” Ft

which decides if and by how much the internal state should be reduced; an (iii) the “output
gate” Ot which describes the effect of the neurons output on the internal state. Note the
subtle difference: In a MLP, the hidden layer is influenced only by the input and activation
functions; in a RNN, the hidden layer is influenced by the input, activation function and the
(constant) hidden layer of the previous time-step; the LSTM allows the previous hidden layer
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to be kept, gated, or ignored before including it in the cell state. The mathematics behind
these gates are basic matrix multiplications. Keeping the same notation as in Section B.3, we
denote an output gate Ot, an input gate It and a forget gate Ft and define them as:

Ot = sig
(
XtW

(xo) +Ht−1W
(ho) + b(o)

)
It = sig

(
XtW

(xi) +Ht−1W
(hi) + b(i)

)
Ft = sig

(
XtW

(xf) +Ht−1W
(hf) + b(f)

)
,

where sig(·) denotes the sigmoid function, W (xo), W (xi),W (xf) ∈ R(d×N1) and W (ho), W (hi),
W (hf) ∈ R(N1×N1) are weight matrices with their respective biases b ∈ R(1×N1).

Next, we define an “input node” C̃t ∈ R(n×N1). This node is a pre-filter and will later
update the internal state of the cell. It considers the input to the neuron and passes it through
a hyperbolic tan function which limits the output to (−1, 1). The input node is defined as:

C̃t = tanh
(
XtW

(xc) +Ht−1W
(hc) + b(c)

)
,

with its respective weights W (xc) ∈ R(d×N1), W (hc) ∈ R(N1×N1) and bias b(c) ∈ R(1×N1).
Figure B.3.2 illustrates the first step of the LSTM processing procedure. Similar to an

RNN, the input data, along with the hidden state of the previous time step feeds into the
cell. Then, the combined information is passed through four distinct gates. These employ
the sigmoid (forget, input and output gate) activation function, limiting the output within
the range (0, 1, while the input node passes through a hyperbolic tangent activation function,
clipping the output on an (−1, 1) interval. Note that the calculation throughout the three
gates differs only on their weights and bias.

Figure B.3.2: Visualisation of a LSTM Cell (I)

Visual representation of a LSTM model. This figure is copied from Schmidt (2019) and Zhang et al. (2023).
All credits belong to the authors. For a detailed description of changes between steps, please see Zhang et al.
(2023) or the Book Website.

http://www.d2l.ai/chapter_recurrent-modern/lstm.html
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Internal State & Output

In the second step, e gate outputs determine and influence the current cell state and neuron
output. We introduce the internal cell state, denoted as Ct ∈ Rn×N1 which regulates the
preservation of prior information before passing it to the next cell state. Here, the forget
gate determines the extent to which the previous state should be discarded, while the input
gate and node dictate the degree to which new input should affect the cell state. Note that
this provides flexibility, enabling the learning mechanism to decide when to maintain the
value unaltered and when to modify it, based upon the incoming data. The mathematical
computation at this stage is as follows:

Ct = Ft ⊙Ct−1 + It ⊙ C̃t,

where ⊙ denotes the element-wise multiplication or Hadamard product. At this point, the
update of the internal state is complete and will be transmitted to the next time step. To
calculate the output of the LSTM cell, i.e. the hidden state Ht, the model employs the tanh
function on the internal memory state after the forget and input updates and subsequently
multiplies the output point-wise with the results of the output gate:

Ht = Ot ⊙ tanh (Ct) .

Figure B.3.3 summarises the internal process of a LSTM cell and combines the steps discussed.
The mathematical operations are presented in light blue, while the activation functions are
given in dark blue rectangles. Input data, along with the previous hidden state is passed
through gates which then update the internal cell state. This internal cell state is passed on
the next time step and influences the output of the cell. This procedure is repeated at the
next time step for all samples in the batch.

Figure B.3.3: Visualisation of a LSTM Cell (II)

Visual representation of a LSTM model. This figure is copied from Schmidt (2019) and Zhang et al. (2023).
All credits belong to the authors. For a detailed description of changes between steps, please see Zhang et al.
(2023) or the Book Website.

http://www.d2l.ai/chapter_recurrent-modern/lstm.html


APPENDIX C

IMPLIED VOLATILITY DYNAMICS

C.1 LSTM Model Specification

We discussed the concept of data pre-processing earlier in Chapter B. After ensuring the
stationarity of each beta time series, we compare different scaling methods on our dataset, i.e.
standardise each time series on [0, 1] or [-1, 1] using the preprocessing library, normalise
the data or leave it unchanged. Out of these four data manipulations, the standardisation on
[0, 1] yields the best result on the validation set. Less surprising, the raw data performance
comes in last. Unfortunately, determine the optimal hyperparameters for the model f remains
a challenging task without a general go-to solution. The optimal choice of parameters, i.e.
number of lags p, the batch size B, number of nodes n, epochs E and hidden layers d as well
as the activation function requires a trail-and-error approach and is often considered more an
art then science. For this, we set:

p ∈ [3, 9, 21, 42, 90, 102, 135], B ∈ [10, 32, 64, 128, 250],

E ∈ [50, 100, 150, 200, 250, 300], n ∈ [10, 50, 80, 100, 150, 200],

and examine all possible permutations of the hyperparameter through a grid search.1 Overall,
we compared 1,250 different models and measure the best model by its MSE and the R2 value
on the validation set.

From the outset, it was evident that the primary issue with the data was its insufficient
size, leading to overfitting of the model and resulting exceptionally low training loss, but
divergent validation loss. To overcome this data limitation, we follow Srivastava et al. (2014)
and install the DropOut technique as a regulation mechanism into each layer of our model,
which randomly disables 5% of the connections. Furthermore, we explore the option of using
the DropOut technique as a Bayesian approximation as discussed in Chapter B. In fact, our

1A grid search describes an algorithm in which any possible permutation is tested, validated and the results
archived. The final result describes the best performing model hyperparameter based on the chosen loss
function. For this we utilised two machines: (i) a MacBook Pro with 2GHz Quad-Core Intel Core i5 and 16GB
3733 MHz LPDDR4X RAM; and (ii) a Dell XPS 13 with 1.3GHz 8×Intel Core i7 and 16GB LPDDR4X RAM.
We used the multiprocessing function of Python. This enables cores to run parallel and evaluate model
parallel. For our grid-search, we used twelve physical and four virtual cores over a period of two weeks to
obtain optimal results. We test different permutations with one or two hidden layer and find best results for
two hidden layers.

199
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investigation reveals that the use of the Monte Carlo Dropout function enhances the model’s
performance, as measured by MSE and R2.2 Figure C.1.1 illustrates the use of the Dropout
as Bayesian approximation, i.e. we generate 1000 predictive simulations of first parameter β0
for t = 01/08/2022 at 16:00 GMT and plot the kernel density of the forecasts. We already
inverted the scaling, i.e. the x-axis represents the true β0 values. The results cluster around
-0.33 which indicates a general implied volatility level of 71.5%, during a time when the 10-day
ATM volatility was 70.5%. Furthermore, there is some wider variation and a small ”bump”
at -0.615 indicating a volatility level of 54%. This is a consequence of the relatively stable
underlying bitcoin price at $22,500 for the two months leading up to August and a generally
declining implied volatility. This bump may indicate the future trend and direction of the
volatility. This type of probability density function paves the way for a new strain of option
pricing research that we will not further pursue in this work.

Figure C.1.1: Kernel Density Estimate

Results of 1000 simulations of the β0 coefficient on 1 August 2022 at 08:00 GMT for 1 August 2022 at 16:00
GMT, presented as a kernel density estimate. The x-axis represents the predicted value, while the y-axis
represents the estimated probability density.

2Using the same hyperparemeter, the the Monte Carolo approach yiels and average improvement of 6%
(4%) in terms of MSE (R2) on the validation set.
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Figure C.1.2 depicts the performance of our LSTM model across epochs in terms of the
MSE loss function. The plot comprises two curves: the training loss and the validation loss.
The training and validation loss curves both exhibit a steady decline over epochs, indicating
that the model is learning effectively from the training data and generalising well to the
validation data. The convergence of these curves implies that the model achieves excellent
results with minimal over- or underfitting.3

Figure C.1.2: Comparison of Training Loss and Validation Loss of LSTM Model

Comparison of training loss (black) and validation loss (gold) of the LSTM model with n = 150 nodes, p = 102
lags, batch size B = 64 and two hidden layer. The x-axis represents the epoch number, while the y-axis
represents the MSE value.

3Note the atypical observation, as the validation loss is lower than the training loss. This may be attributed
to two factors. First, the DropOut function is applied only during the training phase, and not during prediction.
During training, a random 5% of connections are disabled, while all connections are active during prediction.
Secondly, it could be because the training loss is measured during the training phase, while the validation loss
is measured after each epoch, thereby leading to discrepancies in their magnitudes.
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C.2 Robustness Check

Figure C.2.1: Model 2 Out-of-Sample Time Series β Coefficients

Time series of each β coefficient (red) of the deterministic implied volatility surface model estimated using
the robust ordinary least square method on Model 2, covering our out-of-sample period from August 2022 to
December 2023 in eight hour steps as well as the step-ahead prediction using the random walk benchmark
(purple), vector autoregressive model (orange) and Long-Short-Term memory model (green). We omit the
horizontal time axis for the sake of clearly but keep it for the last panel. The vertical axis is unit-free and
changes for each parameter.
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Table C.2.1: Model 2 Implied Volatility Out-of-Sample Average Prediction Errors by Moneyness and Maturity

Comparison of out-of-sample prediction errors using a variety of models, expressed as average of the three performance measures, i.e. Root Mean Squared Error
(RMSE), Mean Absolute Error (MAE) and Mean Directional Error (MDE). We consider the implied volatility surface backed out of the predicted beta coefficients
for the period from August 2022 to December 2022 on an eight hour frequency and divide the results for different maturities (Short Term: 3-14 days; Mid Term:
14-30 days; Long-Term: 30+ days), moneyness levels (OTM Put: moneyness between 0.5-0.94; ATM: moneyness between 0.94-1.06; OTM Call: moneyness
between 1.06-2) as well as any permutation of these two. The last row and column depict the overall prediction errors. We highlight the overall best results in
blue.

Short-Term Mid-Term Long-Term Total

RMSE MAE MCD RMSE MAE MCD RMSE MAE MCD RMSE MAE MCD

OTM Put:
RW 0.0735 0.0436 50.02% 0.0645 0.0417 51.42% 0.0763 0.0449 52.48% 0.0738 0.0441 52.21%

VAR 0.0756 0.0432 54.56% 0.0603 0.0398 52.84% 0.0391 0.0283 53.43% 0.0502 0.0326 53.47%

LSTM 0.0746 0.0442 58.53% 0.0649 0.0422 57% 0.0514 0.0392 53.24% 0.0579 0.0405 54.7%

ATM:
RW 0.0463 0.0349 50.34% 0.0388 0.0278 45.05% 0.0653 0.0338 59.94% 0.0542 0.0327 48.85%

VAR 0.0443 0.034 53.57% 0.0338 0.0247 46.79% 0.0231 0.0166 59.94% 0.0334 0.0239 50.26%

LSTM 0.0441 0.0344 58.49% 0.0344 0.0266 53.59% 0.0368 0.0263 51.53% 0.0387 0.0289 54.15%

OTM Call:
RW 0.0524 0.0379 49.2% 0.0458 0.0322 54.13% 0.074 0.0401 50.05% 0.0698 0.039 49.77%

VAR 0.048 0.0355 49.81% 0.0401 0.029 46.63% 0.0287 0.0212 49.84% 0.0321 0.0232 49.46%

LSTM 0.0431 0.0335 56.85% 0.0376 0.0281 55.43% 0.0401 0.0294 52.39% 0.04 0.0296 53.09%

Total:
RW 0.0574 0.0383 50.59% 0.0517 0.0343 47.44% 0.0753 0.0418 51.08% 0.0698 0.0401 50.44%

VAR 0.0567 0.0372 52.96% 0.047 0.0317 48.98% 0.0321 0.0231 50.94% 0.0389 0.0264 50.91%

LSTM 0.0553 0.0372 58.% 0.0488 0.0329 55.43% 0.0446 0.033 52.61% 0.0468 0.0336 53.81%
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Table C.2.2: Model 2 Diebold-Mariano Test Statistic

Pair-wise comparison of the Diebold and Mariano (1995) (DM) statistic for out-of-sample predictions from
August 2022 to December 2022. We divide the results for different maturities (Short Term: 3-14 days; Mid
Term: 14-30 days; Long-Term: 30+ days), moneyness levels (OTM Put: moneyness between 0.5-0.94; ATM:
moneyness between 0.94-1.06; OTM Call: moneyness between 1.06-2) as well as any permutation of these
two. The DM test compares the forecasting accuracy of the RW/VAR (column) with the VAR/LSTM (row)
model. It tests the null hypothesis that the forecasts have the same accuracy, i.e. a positive DM statistic
indicates that the first model has larger average forecast error compared to the second and hence the second
model is preferred. The p-value of the statistic is expressed using one (three) asterisks (

∗∗∗
) for the 10% (1%)

significance level.

Short-Term Mid-Term Long-Term Total

VAR LSTM VAR LSTM VAR LSTM VAR LSTM

OTM Put:

RW -0.65 -0.42 2.81
∗∗

−0.2 10.31
∗∗∗

7.6
∗∗∗

10.12
∗∗∗

7.19
∗∗∗

VAR 0.32 -2.22 −30.44
∗∗∗

−9.42
∗∗∗

ATM:

RW 4.49
∗∗∗

3.04
∗∗∗

9.86
∗∗∗

5.09
∗∗∗

7.13
∗∗∗

5.55
∗∗∗

7.71
∗∗∗

6.07
∗∗∗

VAR −0.2 -0.84 −18.4
∗∗∗

−14.12
∗∗∗

OTM Call:

RW 5.51
∗∗∗

6.55
∗∗∗

9.79
∗∗∗

6.5
∗∗∗

15.8
∗∗∗

12.94
∗∗∗

15.93
∗∗∗

13.52
∗∗∗

VAR 4.52
∗∗∗

2.45
∗∗

−32.82
∗∗∗

−25.07
∗∗∗

Total:

RW 0.56 1.89
∗

6.41
∗∗∗

2.52
∗∗

20.96
∗∗∗

16.64
∗∗∗

2.123
∗∗∗

16.92
∗∗∗

VAR 0.99 −1.66
∗∗

−53.01
∗∗∗

−22.6
∗∗∗
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Table C.2.3: Model 2 Trading Strategy Evaluation

Summary statistics of the three trading strategies (straddle, delta hedge and buy-and-hold) for short-term
ATM options based on trading signals generated by distinct predictive models (RW, VAR and LSTM). The
performance measures include the average return, standard deviation, resulting Sharpe Ratio, and Sortino
Ratio, all expressed in percentage terms for the out-of-sample period August to December 2022 using the
intraday eight hour rebalancing frequency. We have highlighted the best model in blue.

Mean Std. Dev. Median Sharpe Ratio Sortino Ratio

Strategy A
(ATM Straddle)

RW -0.36 6.16 -0.99 -5.91 -8.92
VAR -0.1 6.05 -0.88 -1.57 -2.55
LSTM 0.49 6.06 -0.08 8.16 13.93

Strategy B
(delta-hedged portfolio)

RW -3.02 21.67 -0.31 -13.92 -15.91
VAR -2.15 18.23 -0.24 -11.79 -13.75
LSTM 0.23 22.55 0 1.02 1.4

Strategy C
(Buy and Hodl) -0.94 28.1 -1.07 -4.54 -5.6
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