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Abstract

Learning models with discrete latent variables using stochas-
tic gradient descent remains a challenge due to the high
variance of gradients. Modern variance reduction techniques
mostly consider categorical distributions and have limited ap-
plicability when the number of possible outcomes becomes
large. In this work, we consider models with latent permuta-
tions and propose control variates for the Plackett-Luce distri-
bution. In particular, the control variates allow us to optimize
black-box functions over permutations using stochastic gradi-
ent descent. To illustrate the approach, we consider a variety
of causal structure learning tasks for continuous and discrete
data. We show that for differentiable functions, our method
outperforms competitive relaxation-based optimization meth-
ods and is also applicable to non-differentiable score func-
tions.

Introduction

The vast majority of modern machine learning advance-
ments share one central method - gradient-based optimiza-
tion. Stochastic gradients give a scalable solution for learn-
ing, applicable when the loss function is too slow to com-
pute due to the size of data or even intractable. The latter
is often the case when the loss function includes an expec-
tation over random latent variables. The objectives of this
kind naturally arise in multiple settings, including proba-
bilistic latent variable models (Neal and Hinton 1998) and
reinforcement learning (Williams 1992). Often the distribu-
tion of random variables also depends on the optimizable pa-
rameters of the loss function, which in turn makes gradient
estimation harder and less reliable due to the high variance
of stochastic gradients.

Despite the recent breakthroughs in gradient estimation
for continuous latent variables (Kingma and Welling 2013;
Rezende, Mohamed, and Wierstra 2014; Mohamed et al.
2019), gradient estimation for discrete latent variables re-
mains a challenge. Currently, general-purpose estimators
(Williams 1992; Mnih and Gregor 2014) remain unreli-
able and the state-of-the-art methods (Tucker et al. 2017,
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Grathwohl et al. 2018; Yin and Zhou 2018) exclusively con-
sider the categorical distribution. Although the reduction to
the categorical case allows benefiting from gradient estima-
tors for continuous relaxations, such solutions are hard to
translate to discrete distributions with large support.

In this work, we consider a gradient estimator for the
Plackett-Luce distribution, a distribution over permutations.
Permutations naturally occur in various setting, such as
ranking problems (Guiver and Snelson 2009), optimal rout-
ing (Bello et al. 2016) and causal inference (Friedman and
Koller 2003). However, the support of the distribution is su-
perexponential in the number of items %, which makes repre-
senting a distribution as a categorical distribution intractable
even for dozens of items. At the same time, the Plackett-
Luce distribution has O(k) parameters and allows sampling
in O(klogk).

We translate the recent variance reduction techniques
(Tucker et al. 2017; Grathwohl et al. 2018) to the case
of Plackett-Luce distributions. Similarly to REBAR, we
use the difference of the REINFORCE estimator and the
reparametrized estimator for the relaxed model. In partic-
ular, we derive the conditional marginalization step (Tucker
et al. 2017) for the Plackett-Luce case. In our experiments,
we recast causal inference tasks as a variational optimization
over permutations and solve it using a gradient optimization
method. We show that our method outperforms competitive
relaxation-based approaches for optimization over permuta-
tions (Grover et al. 2019; Mena et al. 2018) for differentiable
score functions and is applicable in a wider range of scenar-
i0s.

Our main contributions are the following:

e We derive a low-variance gradient estimator for the
Plackett-Luce distribution;

e We apply the gradient estimator to solve variational op-
timization tasks for black-box functions and concentrate
primarily on causal inference tasks for continuous and
discrete data;

e For differentiable functions, we show that relaxation-
based gradient optimization does not work out-of-the-box
for causal inference tasks and propose additional con-
straints to achieve competitive results.



A Brief Tour of Gradient Estimation

We consider a general optimization task ming Ep,5(9)[f(0)],
where b is a discrete random variable parametrized by 6. The
expectation can be intractable, for instance when b is a vector
of categorical variables and the support of b is exponential
in the vector length. The standard solution is to construct a
stochastic estimate for the gradient §(f) := %]EP(HQ) [f (b)]
without explicitly computing the expectation. In this section,
we briefly review the gradient estimation algorithms.

REINFORCE

The REINFORCE estimator (Williams 1992) gives us a
widely-applicable unbiased estimate for the gradient

Jremvrorce(f) = f(b)% logp(b|6), b~p(b|0). (1)

Although an unbiased gradient estimate is sufficient to guar-
antee convergence of stochastic gradient descent, in prac-
tice, the algorithm may not converge due to the high vari-
ance of the estimate (Tucker et al. 2017). The variance of the
REINFORCE estimator can be reduced using control vari-
ates. A Control variate is a function ¢(b) with a zero mean
[E, 56y [c(b)] = O that can be used to define another unbiased
estimator

Gev(f) = gremrorce(f) — c(b). 2
The variance of the new estimator gcy(f) is lower than the
variance of grevrorce(f) if ¢(b) is positively correlated
with the random variable f(b). As an illustration, the gra-
dient of probability % log p(b | 0) has zero mean, therefore
it can be used as a control variate (Mnih and Gregor 2014).

Reparametrization Gradients for Continuous
Relaxations

The reparametrization trick (Kingma and Welling 2013;
Rezende, Mohamed, and Wierstra 2014) is an alternative un-
biased low-variance gradient estimator, applicable when f is
differentiable and the latent variable b, is continuous. The
estimator represents the latent variable as a differentiable de-
terminisitc transformation b,,, = T'(v,8) of a fixed distri-
bution sample v and parameters 6 and estimates the gradient
as

) B af oT
greparam(f) = %f(bcom) = %%7 3)
v; ~ uniform[0,1], i =1,... k. 4

Although the reparametrization trick is not applica-
ble when the latent variable b is discrete, (Jang, Gu,
and Poole 2016; Maddison, Mnih, and Teh 2016) pro-
posed the Gumbel-softmax estimator, a modification of the
reparametrization trick for the relaxed categorical distribu-
tion.

To sample from a relaxed categorical distribution p(b | 6)

with probabilities %, Gumbel-Softmax first samples

a vector of independent Gumbel random variables z; ~
G(6;,1),i=1,...,k

Zi = T(Hi,vi) = 91 — log(— log(vi)) (5)
v; ~ uniform[0,1], i =1,...,k 6)

with location parameter 6. According to the Gumbel-max
trick (Maddison, Tarlow, and Minka 2014), the index of
the maximal element H(z) = argmax(z) is a categor-
ical random variable with distribution p(b | 6). Then,
to make the sampler differentiable, the Gumbel-softmax
trick replaces arg max(z) with a relaxation soft max(z) =
m(exp 21,...,exp z;). The gradient estimate is the
reparametrization gradient for the relaxed categorical distri-
bution:

N 0 of obo
Goumal ) = o f(0) = O ™
b = soft max(z) 8)

The resulting reparametrization gradient GGumper(f) has
much lower variance than grevrorce(f), but is generally
biased due to the relaxation.

Relaxation-based Control Variates

Recently, Tucker et al. (2017) and Grathwohl et al. (2018)
proposed control variates for REINFORCE estimator based
on the relaxed conditional distribution. Both works use the
REINFORCE gradient estimator for the relaxed categorical
distribution as a control variate for the non-relaxed estima-
tor. To eliminate the bias of the REINFORCE estimator, they
subtract the low-variance reparametrization gradient estima-
tor.

The key insight of Tucker et al. (2017) is the conditional
marginalization step used to correlate the non-relaxed RE-
INFORCE estimator and the control variate. Importantly, the
conditional marginalization relies on reparametrization trick
for the conditional distribution p(z | b,0), obtained from
the joint distribution p(b,z | 8) = p(b|z)p(z | 0) of the
Gumbel random vector z and the output of the Gumbel-max
trick b = H(z) = argmax(z). Tucker et al. (2017) derive a
reparametrizable sampling scheme for p(z | b, )

~ —log(—logv;) i=b
S log (*iii%i + exp(fib)) i#£b’

where vector v is a uniform i.i.d. vector v ~ uniform|0, 1]*.
This gives a two-step generative process for the distribution
p(z | b,0). On the first step we sample the maximum vari-
able v, from the Gumbel distribtuion and on the second step
we sample the other variables v;,7 # b from the Gumbel
distribution trunctated at Z;, with location parameter 6.

The unbiased RELAX estimator from Grathwohl et al.
(2018) is

reuax(F) =LF(0) — co(2)] 5 o p(b | 0)

(10)

0 0
+ 5g¢e(2) = 5566(2) (11)
b=H(z), z~p(z1]0), Z~p(z|b,0) (12)
where cg4(z) is a parametric function optimized to reduce the
variance of the estimator.

Similarly, for a differentiable function f the REBAR es-
timator by Tucker et al. (2017) uses the function f with the



relaxed argument soft max(z) and tunes the scalar parame-
ter n

denar( ) =L (5) — nf soft max(2))] 5 log p(b | 0

+ n%f(soft max(z))
- n%f(soft max(2)) (13)

Constructing Control Variates for the
Plackett-Luce Distribution

In this paper, we extend the stochastic gradient estimators
Jrear(f) and grerax(f) from the categorical distribution
to the Plackett-Luce distribution. With a slight abuse of no-
tation, below we use letter b to denote an integer vector
b = (b1,...,bx) € Sk that represent a permutation, 6 to
denote the parameters of the Plackett-Luce distribution and
p(b | 0) to denote the Plackett-Luce distribution.

The goal of this section is to define the two components
required to apply the aforementioned gradient estimators:
the mapping b = H(z) and the two reparametrizable con-
ditional distributions p(z | ) and p(z|b, ). After this we
apply the estimators as defined in eq. 11 and eq. 13, but to
emphasize the difference we refer to them as PL-RELAX
and PL-REBAR.

Definition 1. The Plackett-Luce distribution (Luce 2005;
Plackett 1975) with scores 0 = (61, ...,0y) is a distribu-
tion over permutations Sy, with the probability of outcome
be Sy

k
exp Oy,
pl0) = [[ = (15)
jl;[l Zﬁ:j exp by,

Intuitively, a sample from the Plackett-Luce distribution b =
(b1,...,bk) is generated as a sequence of samples from cat-
egorical distributions. The first component b; comes from
the categorical distribution with logits 6, then the second
components by comes from the categorical distribution with
the logits 6 without the component 0, and so on.

The Plackett-Luce can be used for variational optimiza-
tion (Staines and Barber 2012). Indeed, at the lower tem-
peratures 6 — %,T < 1 the distribution converges to a
divergent distribution. The mode of the Plackett-Luce dis-
tribution is the descending order permutation of the scores
Y : Oy > -+ > Oy, because b” permutation maximizes
each factor in the product in eq. 15.

Now we will give an alternative definition of the Plackett-
Luce distribution.

Lemma 1. (appears in (Grover et al. 2019; Yellott Jr 1977))
Let z be a vector of k independent Gumbel random variables
with location parameters specified by score vector 0

z; = 0; — log(—log(v;)), v; ~ uniform[0,1].  (16)

Then for a permutation b € Sy, the probability of event
{2, > > 20, }is

k

0
> 2,) = H P

i1 Sy exXD O,

Similarly to the Gumbel-max trick, Lemma 1 shows
that an order of a Gumbel-distributed vector is distributed
according to the Plackett-Luce distribution. Following the
lemma, for Plackett-Luce distributions we define p(z | )
to be a Gumbel-distributed vector and H (z) to be a sorting
operation

5 ~G0;,1), i=1,... .k (18)
H(z) = argsort(z) (19)

Our principal discovery is that, similarly to the categori-
cal case, the conditional distribution p(z|b, 8) factorizes into
a sequence of truncated Gumbel distributions. As a conse-
quence, the distribution is reparametrizable and can be used
to construct a control variate for a gradient estimator.

Proposition 1. Let p(b,z | 0) be the joint distortion with
z; ~ G(0;,1) and b = argsort(z). Then for uniform i.i.d

samples v; ~ uniform[0, 1] and ©; _ Zoiowi fori=
g Z" 1 exp Os
1,...,k the vector Z = (Z1,...,Zy)
- —log(—logv;) i=1
o= v 20
{log<l°é? vop(-5,) iz2

is a sample from the conditional distriubtion p(z | b, 0).

The sampling procedure from Proposition 1 has two prin-
cipal differences from the sampling scheme for the categor-
ical case (see eq. 10). First, the truncation parameter Z,_,
now depends on the previous component ¢ — 1, while for
the categorical case the truncation parameter is defined by
the maximum component. Second, the location parameter is
now a cumulative sum and depends on the previous scores.

Related Work

Jang, Gu, and Poole; Maddison, Mnih, and Teh (2016;
2016) use the Gumbel distribution and Gumbel-max trick
to define continuous relaxations of discrete distributions,
by providing a gradient estimator which replaces the sam-
pling of a categorical distribution with a differentiable sam-
ple from a Gumbel-Softmax distribution.

The Gumbel-Softmax distribution does not scale to per-
mutations, as distribution over k-dimensional permutations
is equivalent to that over k! categories. Recently, a line of
work proposed various for optimization over permutations.
Linderman et al. (2018) relaxes the discrete set of permu-
tations to Birkhoff polytope, the set of doubly-stochastic
matrices, and extend stick-breaking approach (Sethuraman
1994) to satisfy polytope constraints. Mena et al. (2018) ob-
tain doubly-stochastic matrices by applying the Sinkhorn
operator. They use the Gumbel-Softmax distribution to
define a distribution over latent matchings, the implicit
Gumbel-Sinkhorn distribution. Grover et al. (2019) define
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Figure 1: Training curves and log-variance of gradient estimators for different estimators on a toy problem: )¢y | P, — Po.05 %

new relaxation to the set of unimodal row-stochastic matri-
ces, the set of matrices that have a unique maximal element
in every row.

Grathwohl et al. (2018) extend Tucker et al. (2017) and
derive control variate for black-box function optimization
combining the REINFORCE estimator and reparametriza-
tion trick. Yin and Zhou (2018) propose gradient estimator
that estimates the gradients of discrete distribution parame-
ters in an augmented space.

For the special case of TSP, (Bello et al. 2016; Kool, van
Hoof, and Welling 2018) introduce an amortized family of
distributions over permutations using a deep autoregressive
model and design control variates that exploit the structure
of the loss function.

Experiments

We demonstrate the effectiveness of the proposed method
with a simple toy task similar to Tucker et al. (2017), and
then continue to the more challenging task of optimization
over topological orderings for solving causal structure learn-
ing problems.

Toy Experiment

As a proof of concept we perform an experiment in min-
imizing E,,0)| Py — Pil|7 = Epe)f(Ps) as a function
of 6 where p(b|f) = Plackett-Luce(b|0). Py is permutation
matrix with elements py, ; = 1 and P, is a matrix with
% + t on the main diagonal and % — ﬁ in the remaining
positions. This problem can be seen as linear sum assign-
ment problem with specifically constructed doubly stochas-
tic matrix P;. It is easy to note that taking £k = 2 and
t = 0.05 leads to toy problem similar to that of Tucker
et al. (2017). We focus on ¢ = 0.05 and £ = 8 to enable
computation of exact gradients. For the PL-REBAR estima-
tor we take cy(2) = nf(o(z,7)) where o(z, T) is the con-
tinuous relaxation of permutations described by Grover et
al. (2019). For the PL-RELAX estimator we take c4(z) =
flo(z,7)) + pe(z) where ps(z) is a simple neural network

with two linear layers and ReLU activation between them.
Figure 1 shows the relative performance and gradient log-
variance of REINFORCE, PL-REBAR and PL-RELAX. Al-
though the REINFORCE estimator is unbiased, we can see
that the variance of the estimator is too large even for the
simple toy task, therefore the method is completely inap-
plicable for optimization over permutations. On the other
hand, the proposed method significantly reduces variance of
the gradient and thus converges to optimal. Also, similarly
to the toy experiment from Grathwohl et al. (2018) paper,
we observe better performance of the PL-RELAX estimator
due to free-form control variate parameterized by a neural
network.

Causal Structure Learning Through Order Search

Directed acyclic graph (DAG) models are popular tools for
describing causal relationships and for guiding attempts to
learn them from data. Learning the structure of a DAG re-
mains challenging because of the combinatorial acyclicity
constraint. A common way to model causal relations is a
structural equation model (SEM). Let X be k-dimensional
random variable, then relations are described as follows:

Xi = fi(Xpa(i), €i)s (21)
where pa(i) is the set of parent vertices of variable X; and
g; is independent noise. Edge set {U_; Ujepai) 7 — i}
describes DAG G on k vertices associated with joint distri-
bution P (X) = Hle P(X;|pa(X;)). The basic structure
learning problem can therefore be formulated as follows: let
X be data matrix consisting of n i.i.d. samples of random
variable X. Also let D be space of DAGs. Then, given ob-
servations X the task is to find DAG G € D or so-called
Bayesian Network for joint distribution P(X):

?;“éBQ(G’ X) (22)

where () is function that scores DAG G given data.
To incorporate permutations in the objective (22) we con-
sider parametrization of DAG adjacency matrix using nilpo-
tent matrices which are upper triangular in basis induced



by topological ordering, namely W = PAPT where A

is strictly upper triangular adjacency matrix which describes

parent sets of variables and permutation matrix P which de-

scribes topological ordering. Then optimization over DAGs

can thus be seen as an optimization over topological order-
ings:

i P X 23

fin Q(P, X) (23)

where @ topological ordering P and Py is the set of per-

mutation matrices of size k. Optimization over A is usu-

ally hidden in the computation of @ It is worth noting
that this approach is similar to order MCMC (Friedman and
Koller 2003), however our work considers gradient-based
optimization over permutations matrices rather than discrete
order changes.

Continuous data We consider linear additive noise
SEMs:
X=WTX +¢ (24)

where W = PAPT and non-zero elements of A describe
linear coefficients and parent sets for each variable X;. As

score function @ we take L1 regularized mean squared loss
to be able to learn sparse DAGs:

_ : 1 T 2
QP X) = min %HX — PAP" X||7 + Al vec(A)]1

(25)
where A is the set of strictly upper triangular matrices. Com-
puting @ itself involves optimization problem, though it can
be efficiently solved using accelerated proximal gradient for
convex composite function optimization (Nesterov 2013).
To apply the proposed method, we reformulate (23) as varia-
tional optimization with respect to parameters of a Plackett-
Luce distribution:

min E Q(P, X) (26)
0 polo)

where p(b|f) = Plackett-Luce(b|), and P, is a permuta-
tion matrix with p,, ; = 1. It is worth noting that objective
(26) can be seen as a black-box function optimization and
PL-RELAX can deal with such setup.

As a concurrent approach, we consider work by Mena et
al. (2018) which proposes relaxing optimization over a set
of permutations to a set of doubly-stochastic matrices us-
ing the Sinkhorn operator. Another recent work by Grover
et al. (2019) proposes relaxation to the set of so-called uni-
modal row-stochastic matrices (URS) which intersects the
set of doubly-stochastic matrices and contains the set of all
permutation matrices. Since these methods can’t be used to
optimize black-box functions we reformulate (26) as:

1

min min o— | X~ P(6) AP(6) X [+ vee( )1 27)
where ¢ are the parameters of the corresponding relaxation.
We optimize (27) coordinate-wise using gradient descent
with respect to ¢ and accelerated proximal gradient opti-
mization with respect to A. We refer to the optimization of
this objective as SINKHORN or URS according to the used
relaxation.

We also try an alternative approach for the above relax-
ations. Since P(¢) is not a permutation matrix during train-
ing we extend (27) with an orthogonality constraint and re-
place |[vec(A)| with H,,(vec(PAPT)) where H,, is the Hu-
ber relaxation of L1 norm and  is a hyperparameter control-
ling tightness of relaxation:

1
minmin || X — P(¢)AP(¢)" X || 3+

+ AH,,(vec(P(¢) APT () %)
st |P(@)PT(6) — k2 =0

We use an Augmented Lagrangian (Nemirovski 1999) to
solve this equality constrained optimization problem (ECP)
(28) and refer to the solutions as SINKHORNgcp or
URS g p correspondingly.

We simulated graphs from two well-known random graph
models with different degree distributions: Erdos-Renyi ran-
dom graphs and Scale-free networks with k and 4 k ex-
pected number of edges, denoted by ER1, ER4, SF1, SF4 re-
spectively. Given a random acyclic graph we assigned edge
weights independently from U ([—2; —0.5] U [0.5; 2]) to ob-
tain weight matrix W. To generate data matrix X we follow
generating process of linear SEM (24) with standard Gaus-
sian noise.

As a sanity check, we also introduce a simple baseline. We
generate Erdos-Renyi random graphs with the correspond-
ing expected number of edges and refer to it as RANDOM
baseline.

For each method we report the following metrics: struc-
tural hamming distance (SHD), structural hamming dis-
tance between CPDAGs (SHD-CPDAG) and structural in-
terventional distance (SID) (Peters and Biihlmann 2013).
We also report score difference ) (25) between learned
and ground truth DAGs on additionally generated validation
samples X ;-

We consider graphs of 10, 20 and 50 nodes. For
PL-RELAX we take the mode of the distribution after train-
ing. For SINKHORN relaxation we apply the Hungarian al-
gorithm to find the closest permutation matrix. For URS we
use the argmax permutation property to obtain the permuta-
tion matrix. Regularization coefficient A is set to 0.5 for all
methods.

Tables 1-3 show the performance of all methods for differ-
ing number of nodes k averaged across 5 random seeds (the
error ranges represent standard deviation). We can see that
the proposed method clearly outperforms relaxations. Also,
it is worth mentioning that SINKHORN and URS perform
poorly in terms of score function values due to the fact that
the optimization is carried out over the set of relaxed matri-

ces. This leads to deterioration in score value @ when relax-
ation is transformed to permutation. As we can see there is
no such problem with ECP versions of relaxations, though
they perform worse than PL-RELAX and require additional
constrained optimization techniques to be applied. Also, one
more observation should be explained: PL-RELAX almost
always ends up with better solutions in terms of score func-
tion than the ground truth DAG, therefore solves the op-
timization problem well. However, it is not ideal in terms



Table 1: Results for ER and SF graphs of 10 nodes

ERI ER4

ValQ — Q*  SHD SHD-CPDAG  SID Val Q — Q* SHD SHD-CPDAG  SID
PL-RELAX 02417 52425 5.8432 13.049.6  13.84254 294+19 34.0+4.6 67.6+1.5
SINKHORNgcp 1.845.3 56427 64429 1424102 4.8+10.4 31.242.6 33.642.7 69.6:2.3
URSpcp 1354269 74437 74436 16.0+£8.9  12.4+6.2 29.843.6 32.844.9 67.442.1
SINKHORN 85941012  12.043.7 12.0+3.7 29.4+173 4019.6+3138.0  36.64+24 37.8+1.7 79.8+6.9
URS 71441289  10.842.9 11.043.2 26.0+£10.5 1894.9+1704.8  34.6422 36.842.8 744427
RANDOM 122.3+184.3 18.8425 18.842.6 2724143  10078.2410770.5 254432 33.0+4.5 65.84+5.9

SF1 SF4

ValQ — Q*  SHD SHD-CPDAG  SID Val Q — Q* SHD SHD-CPDAG  SID
PL-RELAX 0.740.3 20+17 22417 24424  -13+14 8243.1 8.8+33 15.4+5.9
SINKHORNpcp  0.6+2.9 28432  3.0432 764123  -0344.0 6.6+15 7.0+18 11.8+4.0
URSpcp 1.6£1.8 50+17 54422 70422 21423 12.84£2.5 13.4422 24.845.6
SINKHORN 2264224 9.040.0 9.2+0.4 174438  232.44251.8 172428 17.6+3.4 34.449.9
URS 10.145.2 9.6+12  9.6+12 14.6+2.1  69.6+81.6 14.6+1.4 14.6+12 29.2+5.8
RANDOM 3544224 172426 18.0+26 23.6+64  240.34251.0 344426 35.6+22 31.4+11.2

Table 2: Results for ER and SF graphs of 20 nodes

ERI ER4

Val § — O* SHD SHD-CPDAG  SID Val Q — Q* SHD SHD-CPDAG  SID
PL-RELAX 11.9421.3 152463 16.6+6.9 7244646 495242945 70.045.1  73.2+4.9 293.8+16.4
SINKHORNgcp 10.4+8.7 158447 17.0+£6.0 84.8456.3  2519.0+3715.2 78.0+£6.1  78.8+5.5 302.2+15.8
URSgcp 27.5434.2 20.646.3 214472 96.8+74.6  1011.4+745.5 758429  76.64+2.9 300.2420.3
SINKHORN 1651.243050.4 24.046.1 25.0+6.7 13124765 126284.6:+:194386.3  88.8+£6.0  91.0+5.7 330.0+14.1
URS 1189.4+1815.5 26.4+84 26.6+8.6 13424750  7179677.6+7874489.3 93.0+3.8  94.4+4.5 328.0+11.5
RANDOM 8951412703  37.8+52 38.8+4.9 146.8479.9  109891.2474968.7 113.044.9 1144441 330.6:+£9.2

SF1 SF4

Val § — Q* SHD SHD-CPDAG  SID Val § — Q* SHD SHD-CPDAG  SID
PL-RELAX 15402 40406  4.6+0.5 42407 58412 192445  19.2+5.0 44.4+15.6
SINKHORNgcp 1.944.3 6.6422  6.6+2.4 104450  -04+24 25.645.6  25.8+5.9 58.6::19.7
URSgpcp 3.0+2.0 10.6+2.0 10.6+1.6 144440  85+118 302458  30.6+5.2 72.2425.0
SINKHORN 38.3426.2 19.0£0.0  19.0+£0.0 350424  158.2+99.9 446458  44.846.1 103.6420.8
URS 38.3426.2 19.04£0.0 19.0+0.0 350424  140.74140.6 420454  42.8+45.1 89.84:20.4
RANDOM 94.0+36.4 362426 36.6+2.3 48.6+14.7  635.5+182.6 98.2+6.1  99.2+455 168.84+29.6

Table 3: Results for ER and SF graphs of 50 nodes

ERI ER4

ValQ — Q*  SHD SHD-CPDAG ~ SID Val § — Q* SHD SHD-CPDAG  SID
PL-RELAX 27410 19.8£6.7  22.448.1 100.4447.5  2099.142007.3 206.64+37.3 208.6+£375  1793.64+182.4
SINKHORNgcp  5.547.0 30.046.3  30.8+5.8 151.8435.1  43463.970904.3 221.0414.7 22324152  1846.4+158.3
URSgcp 10.344.7 41,0424 40.042.7 177.6+17.1  22997.9438346.1 239.4431.6 24024315  1789.84154.4
SINKHORN 90.3435.8  49.6+43  49.6+4.3 275.0442.5 231304.84290019.0 248.6+18.5 2504+19.1  1966.8+135.5
URS 90.3435.8  49.6+43  49.6:+4.3 275.0442.5 546793216.7+£984510739.7 320.2426.8 320.8427.1  2119.0+130.5
RANDOM 27104716 994493  99.8+95 30124604 477442.0+£661243.9 360.8423.5 361.0+£232  2175.0452.6

SF1 SF4

ValQ — Q*  SHD SHD-CPDAG  SID Val Q — Q* SHD SHD-CPDAG  SID
PL-RELAX 38404 11.6£3.0 124423 142452  -12425 67.0£93  67.44+10.0 226.0+£28.4
SINKHORNpcp 25.1£182  28.6465  28.446.1 584121  124.3+126.0 9444227  95.64+23.0 257.2425.8
URSgcp 3214443 334£102 33.6£10.7 5564327  164.4453.1 110.6=12.8 111.4+13.7  319.6+18.1
SINKHORN 13824682  49.040.0  49.040.0 110.645.5  10238.215850.1 139.048.3  139.648.1 387.0437.2
URS 13824682  49.040.0  49.040.0 110.6+55  7966.94+4838.0 142.8+£11.8 1442+12.1  527.4486.8

RANDOM 380.1+£207.8 97.8£7.3  97.8£7.3 155.4£31.2 10109.842027.0 312.0£14.9 312.4£15.0 807.0£101.7




of metrics. Peters and Biihlman (2014) proved that given
enough data, it is possible to identify the ground truth DAG
if data was generated from linear SEM with Gaussian homo-
geneous noise. Authors used LO-regularized mean squared
error score function, but it is non-convex and hard to op-
timize, therefore L1-regularization is used in practice. Be-
cause of relaxation of the L0 norm and finite amount of data
all guarantees vanish, and we observe inconsistency between
the metrics of interest and values of the surrogate score func-
tion Q.

Discrete data Due to the discrete and nonlinear nature of
categorical data, it cannot be modeled with the SEM de-
fined previously. Discrete variable networks can however
be modeled as generated by sampling each node’s condi-
tional probability table, depending only on the configura-
tion of its parent nodes. In the standard general form this
is Xy = fi(Xpa(i)), where f; is assumed to be multinomial,
thus

[i(Xpa(i)) ~ Multinomial(©x,|Pa(X;))

where ©x,|Pa(X;) are the conditional probabilities

Rather than learning the optimal A for a given P by min-
imising a training loss, we can therefore instead try to max-
imise the marginal likelihood based on the above model

Q(P.X) = max P(X| A, P) (29)

which can be found using the factorisation

d g
PX[A, P) = [T 1] PXipacy=ji0)-  (30)
i=1j=1

As a result of the decomposition of the score by node in
equation (30), the maximum a posteriori (MAP) parent set
can be selected from the set of parents permitted by the topo-
logical ordering for each node, independently of the rest.
Due to the ordering, the graph resulting from combining
each of these MAP parent connections is guaranteed to be
acyclic, thus the exact MAP DAG for a given ordering can
be found. Due to the combinatorial size of even this reduced
search space, the set of permitted parents for a given node
is reduced further, to only those that cannot be easily proven
to be conditionally independent - as determined by a stan-
dard constraint-based method (in this case the PC-stable al-
gorithm (Colombo and Maathuis 2014)). As this finds the
exact solution for a reduced search space, the result is an
approximation of the best score possible for the ordering.
Whilst this provides an approximate score for any given or-
der, it is a non-differentiable black-box function; therefore
whilst our method can be applied to this permutation op-
timization, options are severely limited - the SINKHORN
and URS methods used for continuous SEM graph bench-
marks for example cannot be used. For a simple evaluation,
Table 4 shows the result of our method on data sampled
from the standard ALARM network compared against ran-
dom orders, and permutations optimized by order MCMC
(Friedman and Koller 2003), all using the same MAP DAG
method described above, with the quotient normalized max-
imum likelihood score (Silander et al. 2018).

Table 4: Results for ALARM graph (37 nodes)

SHD SHD-CPDAG SID
PL-RELAX 8 17 110
SINKHORN N/A
URS N/A
ORDER MCMC 8 10 101
RANDOM 25.8+3.6 30.1£3.8 476.7x71.7
Conclusion

In this work we proposed a gradient-based optimization
method, with unique capabilities for application to Plackett-
Luce distributions over permutations. A proof of concept
experiment shows our method outperforms existing meth-
ods for differentiable objective functions, whilst also gen-
eralizing to non-differentiable black-box functions, and be-
ing applicable to permutation learning despite the factorial
complexity. This allowed us to extend Plackett-Luce distri-
bution based causal graphical model structure learning be-
yond the simple SEM based methods, to the more general
case of DAGs of arbitrary variable types.

In future, our method could be combined with other stan-
dard scoring functions from Bayesian network literature -
providing they decompose as described in equation (30) -
for DAG structure learning of continuous data from different
model types. Other potential applications include approxi-
mate inference for probabilistic models with latent permuta-
tions, routing problems and combinatorial problems for per-
mutations.
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