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SUPPLEMENTAL MATERIAL

Field and fluid equations of motion

In order to obtain the equations of motion for our field
and fluid system we focus on the coupling between the
field and fluid parts of our energy momentum tensor. The
current of the energy-momentum tensor can be split into
field and fluid parts and coupled through a dissipative
friction term,

[∂µT
µν ]field = (∂µ∂

µφ)∂νφ− ∂V

∂φ
∂νφ = δν , (1)

[∂µT
µν ]fluid = ∂µ[(ε+ p)UµUν ] + ∂νp+

∂V

∂φ
∂νφ = −δν .

(2)

We can then write this coupling term as

δν = ηUµ∂µφ∂
νφ. (3)

From these two equations we can extract the equation
of motion for our system. By taking Eq (1) and dividing
through by δνφ we obtain

− φ̈+∇2φ− ∂V

∂φ
= ηγ(φ̇+ vi∂iφ). (4)

We find the equation of motion for the fluid energy
density E = γε by contracting Eq (2) with Uν giving

Ė + ∂i(Ev
i) + p[γ̇ + ∂(γvi)]− ∂V

∂φ
γ(φ̇+ vi∂iφ)

= ηγ2(φ̇+ vi∂iφ)2. (5)

Finally we obtain an expression for the fluid momen-
tum density Zi = γ(ε + p)Ui by considering the spatial
components of Eq (2),

Ż + ∂j(Ziv
j) + ∂ip+

∂V

∂φ
∂iφ = −ηγ(φ̇+ vj∂jφ)∂iφ. (6)

Gravitational waves

To obtain the gravitational wave energy density we
must first calculate the transverse traceless perturbations
in the metric, hTTij . We operate in linearised gravity and

therefore the equation of motion for hTTij is

�hTTij = 16πGTTTij , (7)

where TTTij is the transverse traceless projection of the
energy-momentum tensor.

Due to the numerical cost of computing the transverse
traceless components of the energy-momentum tensor, it
is useful to instead track an auxiliary tensor uij [1] which
evolves according to

�uij = 16πGTij . (8)

Then to obtain hTTij from uij we apply the transverse
traceless projector in wave space,

h̃TTij (k, t) = Λij,lm(k)ũlm(k, t), (9)

where

Λij,lm(k = Pim(k)Pjl(k)− 1

2
Pij(k)Plm(k), (10)

and

Pij(k) = δij − k̂ik̂j . (11)

This method then allows us to only need to perform the
necessary Fourier transforms and projections to calculate
the gravitational wave energy density at regular intervals
rather than every timestep.

Resolution convergence

To ensure the validity of our simulations we performed
a series of lattice resolution checks. To do this we re-
peated two simulations with vw = 0.44 and vw = 0.92
and α = 0.5 for a variety of different lattice spacings and
timesteps while keeping the total physical volume and
duration of the simulations fixed. We plot the conver-
gence of several key quantities with δx in Fig. 1 through
Fig. 3. We also plot a quadratic fit for the convergence
of each quantity with δx. We can see that all quanti-
ties converge. The worst convergence is for v2

⊥,max which

for δx = 1.0T−1
c we underestimate by up to 25% from

the extrapolation to the continuum limit. We also per-
formed tests for convergence of our simulations with δt.
For δt = 0.2T−1

c the error from our simulations is within
∼ 1% from the continuum limit for (Ωgw/Hnt)(1/HnRc)
and U f,max and ∼ 5% for v2

⊥,max.

Convergence to asymptotic fluid flow

In addition to testing convergence with lattice spacing,
we also check how close the fluid shells around colliding
bubbles in our simulation are to the final asymptotic pro-
files. To do this we perform spherically symmetric 1D
simulations of isolated bubbles and calculate U f,exp from
the fluid shell when the bubble has diameter Rc. We then
compare this to U f,exp calculated from the fluid shell at
t = 10000T−1

c , i.e when the diameter is � Rc and the
profile has reached its asymptotic solution. We plot the
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FIG. 1. Variation of gravitational wave energy density with
δx for vw = 0.44 and vw = 0.92 and transition strength of
α = 0.5. We normalise the y-axis by dividing by the result
from the simulation presented in the paper (δx = 1.0). Note

that (Ωgw/Hnt) signifies that we average the quantity inside
the brackets over the final ∆t = 2R∗ of the simulation.
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FIG. 2. Variation of U f,max with δx for vw = 0.44 and vw =
0.92 and transition strength of α = 0.5. We normalise the y-
axis by dividing by the result from the simulation presented
in the paper (δx = 1.0).

ratio of these two quantities for all α and vw in Fig. 4.
We can see that the bubbles colliding with the diameter
of the average bubble seperation are within 20% of the
asymptotic U f for all simulations. We believe this to be
sufficient for this study, and save a further investigation
on the convergence with increasing Rc for a future work.
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FIG. 3. Variation of v⊥,max with δx for vw = 0.44 and vw =
0.92 and transition strength of α = 0.5. We normalise the y-
axis by dividing by the result from the simulation presented
in the paper (δx = 1.0).
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FIG. 4. Plot comparing U f,exp calculated for an isolated
bubble when the diameter of the bubble is R∗ to late times
(t = 10000T−1

c ) where it has reached the asymptotic profile.

Parameter space

In order to understand the regions of parameter space
mapped out by our simulations, it can be illuminating
to plot the asymptotic maximum fluid flow velocity vp

against the wall velocity vw for each simulation point.
We do this in Fig. 5. Plotting the parameter space in
this manner separates subsonic-deflagrations, supersonic-
deflagrations, and detonations. Stronger phase transi-
tions with the same wall velocity have a larger value of
vp. Transitions with vp > vw are forbidden as this would
mean that in the wall frame fluid was flowing out from
the bubble. We additionally colour each simulation point
by the suppression factor in gravitational waves found in
our study.
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FIG. 5. Plot of maximum fluid flow velocity for the
asymptotic profile vp against the wall velocity. The green
dashed line separates subsonic-deflagrations from supersonic-
deflagrations. The blue dotted line gives the minimum vp for
a hybrid. Similarly the red dashed line shows the maximum
vp for a detonation. In the grey regions there are no solu-
tions. See Fig. 7 of [2] for more details. Each point has been
coloured according to the suppression in gravitational waves
given in Table I. Lines of constant α are shown in dashed grey.

Evolution of global quantities

In Fig. 6 we plot how U f and Uφ evolve for a deflagra-
tion and a detonation, both with strength α = 0.5. We
see that a rotational component of velocity v⊥ is gen-
erated during the bubble collision phase, and that the
deflagration generates v⊥ more efficiently than the det-
onation. We also see that, for the deflagration, Uφ de-

creases more slowly than it increases, indicating a slowing
down of the phase boundary.
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FIG. 6. The RMS fluid velocities decomposed into irrota-
tional and rotational modes, plotted against time. We also
plot the quantities U f and Uφ. Solid lines show a subsonic
deflagration with α = 0.5, vw = 0.44, and dashed lines a
detonation with α = 0.5, vw = 0.92.

Simulation slice stills

In this supplemental material we include various stills
taken from movies of our simulations of strong phase
transitions in the early universe, which can be seen in
Fig. 7 and Fig. 8. The movies these stills have been
taken from can be found in a Vimeo album [3].
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FIG. 7. Slices through (0, y, z) for a simulation with vw = 0.44, α = 0.5, corresponding to a deflagration. In the top row we
plot the temperature T/Tc. The midpoint of this colormap corresponds to Tn. The middle row shows the fluid velocity v. The
bottom row shows the vorticity |∇ × v|. The bubble walls are shaded in black for the top row, and white for the middle and
bottom row.
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FIG. 8. Slices through (0, y, z) for a simulation with vw = 0.92, α = 0.5, corresponding to a detonation. In the top row we
plot the temperature T/Tc. The midpoint of this colormap corresponds to Tn. The middle row shows the fluid velocity v. The
bottom row shows the vorticity |∇ × v|. The bubble walls are shaded in black for the top row, and white for the middle and
bottom row.
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Simulation parameters and measurements

vw α Tn/Tc tfinTc η/Tc U f,max U f,exp v2
⊥ v2

(
Ωgw

Hnt

)
1

HnR∗

Ωgw,exp

Hnt

1

HnR∗
0.24 0.050 0.45 4.8×103 1.2 0.036 0.039 6.4×10−5 1.3×10−3 4.6×10−8 1.2×10−7

0.24 0.073 0.41 4.8×103 1.3 0.048 0.055 1.5×10−4 2.3×10−3 1.4×10−7 5.0×10−7

0.24 0.11 0.37 4.8×103 1.5 0.063 0.082 3.7×10−4 4.1×10−3 4.1×10−7 2.4×10−6

0.24 0.16 0.33 4.8×103 1.8 0.074 0.12 9.1×10−4 5.7×10−3 6.0×10−7 9.5×10−6

0.24 0.23 0.30 4.8×103 2.4 0.075 0.16 2.0×10−3 5.9×10−3 4.6×10−7 3.3×10−5

0.24 0.34 0.28 4.8×103 5.1 0.066 0.22 2.9×10−3 4.4×10−3 2.3×10−7 1.2×10−4

0.44 0.0050 0.79 2.4×103 0.34 0.0083 0.0069 1.7×10−7 6.9×10−5 1.0×10−10 1.2×10−10

0.44 0.016 0.59 2.4×103 0.52 0.025 0.021 1.4×10−6 6.0×10−4 9.1×10−9 1.1×10−8

0.44 0.050 0.45 2.4×103 0.66 0.066 0.061 1.6×10−5 4.3×10−3 5.6×10−7 7.2×10−7

0.44 0.073 0.41 2.4×103 0.71 0.090 0.085 4.0×10−5 7.8×10−3 2.0×10−6 2.8×10−6

0.44 0.11 0.37 2.4×103 0.81 0.12 0.12 1.1×10−4 1.3×10−2 7.0×10−6 1.0×10−5

0.44 0.16 0.33 2.4×103 0.94 0.15 0.16 3.0×10−4 2.1×10−2 2.0×10−5 3.7×10−5

0.44 0.23 0.30 2.4×103 1.2 0.18 0.22 1.0×10−3 3.2×10−2 4.3×10−5 1.3×10−4

0.44 0.34 0.28 2.4×103 1.7 0.18 0.30 3.6×10−3 3.6×10−2 5.2×10−5 4.2×10−4

0.44 0.50 0.25 2.4×103 3.5 0.19 0.39 8.0×10−3 4.0×10−2 5.8×10−5 1.2×10−3

0.56 0.050 0.45 2.8×103 0.53 0.080 0.075 1.3×10−5 5.6×10−3 1.1×10−6 1.7×10−6

0.56 0.073 0.41 2.8×103 0.59 0.10 0.10 3.5×10−5 9.6×10−3 3.6×10−6 5.3×10−6

0.56 0.11 0.37 2.8×103 0.67 0.14 0.14 9.2×10−5 1.6×10−2 1.2×10−5 2.0×10−5

0.56 0.16 0.33 2.8×103 0.76 0.18 0.19 2.4×10−4 2.7×10−2 3.6×10−5 6.4×10−5

0.56 0.23 0.30 2.8×103 0.90 0.22 0.25 5.8×10−4 4.3×10−2 9.3×10−5 2.0×10−4

0.56 0.34 0.28 2.8×103 1.2 0.27 0.33 1.5×10−3 6.4×10−2 2.1×10−4 6.2×10−4

0.56 0.50 0.25 2.8×103 1.7 0.28 0.43 5.2×10−3 7.8×10−2 3.1×10−4 1.8×10−3

0.56 0.67 0.23 2.8×103 2.9 0.30 0.51 1.1×10−2 9.0×10−2 3.0×10−4 3.7×10−3

0.82 0.0050 0.79 2.8×103 0.11 0.0064 0.0066 2.3×10−7 4.0×10−5 4.8×10−11 1.0×10−10

0.82 0.016 0.59 2.8×103 0.16 0.019 0.020 2.2×10−6 3.6×10−4 4.3×10−9 9.1×10−9

0.82 0.050 0.45 2.8×103 0.18 0.055 0.061 1.5×10−5 2.8×10−3 2.9×10−7 7.6×10−7

0.82 0.073 0.41 2.8×103 0.19 0.076 0.088 2.6×10−5 5.2×10−3 1.1×10−6 3.2×10−6

0.82 0.11 0.37 2.8×103 0.20 0.11 0.13 4.7×10−5 9.4×10−3 4.1×10−6 1.4×10−5

0.82 0.16 0.33 2.8×103 0.22 0.15 0.18 8.4×10−5 1.6×10−2 1.2×10−5 5.5×10−5

0.92 0.0050 0.79 2.4×103 0.053 0.0051 0.0051 3.2×10−7 2.6×10−5 2.0×10−11 3.6×10−11

0.92 0.016 0.59 2.4×103 0.086 0.015 0.016 3.4×10−6 2.4×10−4 1.9×10−9 3.6×10−9

0.92 0.050 0.45 2.4×103 0.099 0.045 0.049 2.2×10−5 1.9×10−3 1.5×10−7 3.0×10−7

0.92 0.073 0.41 2.4×103 0.10 0.064 0.070 3.6×10−5 3.7×10−3 6.0×10−7 1.3×10−6

0.92 0.11 0.37 2.4×103 0.10 0.087 0.10 5.8×10−5 6.9×10−3 2.4×10−6 6.0×10−6

0.92 0.16 0.33 2.4×103 0.11 0.12 0.14 8.8×10−5 1.2×10−2 8.4×10−6 2.3×10−5

0.92 0.23 0.30 2.4×103 0.11 0.16 0.20 1.4×10−4 2.0×10−2 2.6×10−5 8.0×10−5

0.92 0.34 0.28 2.4×103 0.12 0.21 0.27 2.5×10−4 3.2×10−2 8.1×10−5 2.9×10−4

0.92 0.50 0.25 2.4×103 0.13 0.28 0.36 4.6×10−4 4.9×10−2 2.2×10−4 9.3×10−4

0.92 0.60 0.24 2.4×103 0.14 0.32 0.42 6.3×10−4 5.8×10−2 3.5×10−4 1.6×10−3

0.92 0.67 0.23 2.4×103 0.15 0.34 0.45 7.8×10−4 6.5×10−2 4.5×10−4 2.2×10−3

TABLE I. Key simulation parameters and measured quantities used to generate the graphs in this paper. Note that

(
Ωgw

Hnt

)
signifies that we average the quantity inside the brackets over the final ∆t = 2R∗ of the simulation.
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